intel_dpio_phy.c 31.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
/*
 * Copyright © 2014-2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "intel_drv.h"

/**
 * DOC: DPIO
 *
 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
 * ports. DPIO is the name given to such a display PHY. These PHYs
 * don't follow the standard programming model using direct MMIO
 * registers, and instead their registers must be accessed trough IOSF
 * sideband. VLV has one such PHY for driving ports B and C, and CHV
 * adds another PHY for driving port D. Each PHY responds to specific
 * IOSF-SB port.
 *
 * Each display PHY is made up of one or two channels. Each channel
 * houses a common lane part which contains the PLL and other common
 * logic. CH0 common lane also contains the IOSF-SB logic for the
 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
 * must be running when any DPIO registers are accessed.
 *
 * In addition to having their own registers, the PHYs are also
 * controlled through some dedicated signals from the display
 * controller. These include PLL reference clock enable, PLL enable,
 * and CRI clock selection, for example.
 *
 * Eeach channel also has two splines (also called data lanes), and
 * each spline is made up of one Physical Access Coding Sub-Layer
 * (PCS) block and two TX lanes. So each channel has two PCS blocks
 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
 * data/clock pairs depending on the output type.
 *
 * Additionally the PHY also contains an AUX lane with AUX blocks
 * for each channel. This is used for DP AUX communication, but
 * this fact isn't really relevant for the driver since AUX is
 * controlled from the display controller side. No DPIO registers
 * need to be accessed during AUX communication,
 *
 * Generally on VLV/CHV the common lane corresponds to the pipe and
 * the spline (PCS/TX) corresponds to the port.
 *
 * For dual channel PHY (VLV/CHV):
 *
 *  pipe A == CMN/PLL/REF CH0
 *
 *  pipe B == CMN/PLL/REF CH1
 *
 *  port B == PCS/TX CH0
 *
 *  port C == PCS/TX CH1
 *
 * This is especially important when we cross the streams
 * ie. drive port B with pipe B, or port C with pipe A.
 *
 * For single channel PHY (CHV):
 *
 *  pipe C == CMN/PLL/REF CH0
 *
 *  port D == PCS/TX CH0
 *
 * On BXT the entire PHY channel corresponds to the port. That means
 * the PLL is also now associated with the port rather than the pipe,
 * and so the clock needs to be routed to the appropriate transcoder.
 * Port A PLL is directly connected to transcoder EDP and port B/C
 * PLLs can be routed to any transcoder A/B/C.
 *
 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
 * digital port D (CHV) or port A (BXT). ::
 *
 *
 *     Dual channel PHY (VLV/CHV/BXT)
 *     ---------------------------------
 *     |      CH0      |      CH1      |
 *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
 *     |---------------|---------------| Display PHY
 *     | PCS01 | PCS23 | PCS01 | PCS23 |
 *     |-------|-------|-------|-------|
 *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
 *     ---------------------------------
 *     |     DDI0      |     DDI1      | DP/HDMI ports
 *     ---------------------------------
 *
 *     Single channel PHY (CHV/BXT)
 *     -----------------
 *     |      CH0      |
 *     |  CMN/PLL/REF  |
 *     |---------------| Display PHY
 *     | PCS01 | PCS23 |
 *     |-------|-------|
 *     |TX0|TX1|TX2|TX3|
 *     -----------------
 *     |     DDI2      | DP/HDMI port
 *     -----------------
 */

/**
 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
 */
struct bxt_ddi_phy_info {
	/**
	 * @dual_channel: true if this phy has a second channel.
	 */
	bool dual_channel;

	/**
	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
	 * Otherwise the GRC value will be copied from the phy indicated by
	 * this field.
	 */
	enum dpio_phy rcomp_phy;

	/**
	 * @reset_delay: delay in us to wait before setting the common reset
	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
	 */
	int reset_delay;

	/**
	 * @pwron_mask: Mask with the appropriate bit set that would cause the
	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
	 */
	u32 pwron_mask;

	/**
	 * @channel: struct containing per channel information.
	 */
	struct {
		/**
		 * @port: which port maps to this channel.
		 */
		enum port port;
	} channel[2];
};

static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
	[DPIO_PHY0] = {
		.dual_channel = true,
		.rcomp_phy = DPIO_PHY1,
		.pwron_mask = BIT(0),

		.channel = {
			[DPIO_CH0] = { .port = PORT_B },
			[DPIO_CH1] = { .port = PORT_C },
		}
	},
	[DPIO_PHY1] = {
		.dual_channel = false,
		.rcomp_phy = -1,
		.pwron_mask = BIT(1),

		.channel = {
			[DPIO_CH0] = { .port = PORT_A },
		}
	},
};

static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
	[DPIO_PHY0] = {
		.dual_channel = false,
		.rcomp_phy = DPIO_PHY1,
		.pwron_mask = BIT(0),
		.reset_delay = 20,

		.channel = {
			[DPIO_CH0] = { .port = PORT_B },
		}
	},
	[DPIO_PHY1] = {
		.dual_channel = false,
		.rcomp_phy = -1,
		.pwron_mask = BIT(3),
		.reset_delay = 20,

		.channel = {
			[DPIO_CH0] = { .port = PORT_A },
		}
	},
	[DPIO_PHY2] = {
		.dual_channel = false,
		.rcomp_phy = DPIO_PHY1,
		.pwron_mask = BIT(1),
		.reset_delay = 20,

		.channel = {
			[DPIO_CH0] = { .port = PORT_C },
		}
	},
};

static const struct bxt_ddi_phy_info *
bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
{
	if (IS_GEMINILAKE(dev_priv)) {
		*count =  ARRAY_SIZE(glk_ddi_phy_info);
		return glk_ddi_phy_info;
	} else {
		*count =  ARRAY_SIZE(bxt_ddi_phy_info);
		return bxt_ddi_phy_info;
	}
}

static const struct bxt_ddi_phy_info *
bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
	int count;
	const struct bxt_ddi_phy_info *phy_list =
		bxt_get_phy_list(dev_priv, &count);

	return &phy_list[phy];
}

void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
			     enum dpio_phy *phy, enum dpio_channel *ch)
{
	const struct bxt_ddi_phy_info *phy_info, *phys;
	int i, count;

	phys = bxt_get_phy_list(dev_priv, &count);

	for (i = 0; i < count; i++) {
		phy_info = &phys[i];

		if (port == phy_info->channel[DPIO_CH0].port) {
			*phy = i;
			*ch = DPIO_CH0;
			return;
		}

		if (phy_info->dual_channel &&
		    port == phy_info->channel[DPIO_CH1].port) {
			*phy = i;
			*ch = DPIO_CH1;
			return;
		}
	}

	WARN(1, "PHY not found for PORT %c", port_name(port));
	*phy = DPIO_PHY0;
	*ch = DPIO_CH0;
}

void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
				  enum port port, u32 margin, u32 scale,
				  u32 enable, u32 deemphasis)
{
	u32 val;
	enum dpio_phy phy;
	enum dpio_channel ch;

	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);

	val = I915_READ(BXT_PORT_TX_DW2_LN0(phy, ch));
	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
	val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW2_GRP(phy, ch), val);

	val = I915_READ(BXT_PORT_TX_DW3_LN0(phy, ch));
	val &= ~SCALE_DCOMP_METHOD;
	if (enable)
		val |= SCALE_DCOMP_METHOD;

	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
		DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");

	I915_WRITE(BXT_PORT_TX_DW3_GRP(phy, ch), val);

	val = I915_READ(BXT_PORT_TX_DW4_LN0(phy, ch));
	val &= ~DE_EMPHASIS;
	val |= deemphasis << DEEMPH_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW4_GRP(phy, ch), val);

	val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
}

bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
			    enum dpio_phy phy)
{
	const struct bxt_ddi_phy_info *phy_info;

	phy_info = bxt_get_phy_info(dev_priv, phy);

	if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
		return false;

	if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
		DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
				 phy);

		return false;
	}

	if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
		DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
				 phy);

		return false;
	}

	return true;
}

static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
	u32 val = I915_READ(BXT_PORT_REF_DW6(phy));

	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
}

static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
				  enum dpio_phy phy)
{
	if (intel_wait_for_register(dev_priv,
				    BXT_PORT_REF_DW3(phy),
				    GRC_DONE, GRC_DONE,
				    10))
		DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
}

static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
			      enum dpio_phy phy)
{
	const struct bxt_ddi_phy_info *phy_info;
	u32 val;

	phy_info = bxt_get_phy_info(dev_priv, phy);

	if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
		/* Still read out the GRC value for state verification */
		if (phy_info->rcomp_phy != -1)
			dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);

		if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
			DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
					 "won't reprogram it\n", phy);
			return;
		}

		DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
				 "force reprogramming it\n", phy);
	}

	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
	val |= phy_info->pwron_mask;
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);

	/*
	 * The PHY registers start out inaccessible and respond to reads with
	 * all 1s.  Eventually they become accessible as they power up, then
	 * the reserved bit will give the default 0.  Poll on the reserved bit
	 * becoming 0 to find when the PHY is accessible.
	 * HW team confirmed that the time to reach phypowergood status is
	 * anywhere between 50 us and 100us.
	 */
	if (wait_for_us(((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
		(PHY_RESERVED | PHY_POWER_GOOD)) == PHY_POWER_GOOD), 100)) {
		DRM_ERROR("timeout during PHY%d power on\n", phy);
	}

	/* Program PLL Rcomp code offset */
	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
	val &= ~IREF0RC_OFFSET_MASK;
	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);

	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
	val &= ~IREF1RC_OFFSET_MASK;
	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);

	/* Program power gating */
	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
		SUS_CLK_CONFIG;
	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);

	if (phy_info->dual_channel) {
		val = I915_READ(BXT_PORT_CL2CM_DW6(phy));
		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
		I915_WRITE(BXT_PORT_CL2CM_DW6(phy), val);
	}

	if (phy_info->rcomp_phy != -1) {
		uint32_t grc_code;

		bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);

		/*
		 * PHY0 isn't connected to an RCOMP resistor so copy over
		 * the corresponding calibrated value from PHY1, and disable
		 * the automatic calibration on PHY0.
		 */
		val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
							  phy_info->rcomp_phy);
		grc_code = val << GRC_CODE_FAST_SHIFT |
			   val << GRC_CODE_SLOW_SHIFT |
			   val;
		I915_WRITE(BXT_PORT_REF_DW6(phy), grc_code);

		val = I915_READ(BXT_PORT_REF_DW8(phy));
		val |= GRC_DIS | GRC_RDY_OVRD;
		I915_WRITE(BXT_PORT_REF_DW8(phy), val);
	}

	if (phy_info->reset_delay)
		udelay(phy_info->reset_delay);

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val |= COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
	const struct bxt_ddi_phy_info *phy_info;
	uint32_t val;

	phy_info = bxt_get_phy_info(dev_priv, phy);

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val &= ~COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);

	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
	val &= ~phy_info->pwron_mask;
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
}

void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
	const struct bxt_ddi_phy_info *phy_info =
		bxt_get_phy_info(dev_priv, phy);
	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
	bool was_enabled;

	lockdep_assert_held(&dev_priv->power_domains.lock);

	if (rcomp_phy != -1) {
		was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);

		/*
		 * We need to copy the GRC calibration value from rcomp_phy,
		 * so make sure it's powered up.
		 */
		if (!was_enabled)
			_bxt_ddi_phy_init(dev_priv, rcomp_phy);
	}

	_bxt_ddi_phy_init(dev_priv, phy);

	if (rcomp_phy != -1 && !was_enabled)
		bxt_ddi_phy_uninit(dev_priv, phy_info->rcomp_phy);
}

static bool __printf(6, 7)
__phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
		       i915_reg_t reg, u32 mask, u32 expected,
		       const char *reg_fmt, ...)
{
	struct va_format vaf;
	va_list args;
	u32 val;

	val = I915_READ(reg);
	if ((val & mask) == expected)
		return true;

	va_start(args, reg_fmt);
	vaf.fmt = reg_fmt;
	vaf.va = &args;

	DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
			 "current %08x, expected %08x (mask %08x)\n",
			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
			 mask);

	va_end(args);

	return false;
}

bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
			      enum dpio_phy phy)
{
	const struct bxt_ddi_phy_info *phy_info;
	uint32_t mask;
	bool ok;

	phy_info = bxt_get_phy_info(dev_priv, phy);

#define _CHK(reg, mask, exp, fmt, ...)					\
	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
			       ## __VA_ARGS__)

	if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
		return false;

	ok = true;

	/* PLL Rcomp code offset */
	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
		    "BXT_PORT_CL1CM_DW9(%d)", phy);
	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
		    "BXT_PORT_CL1CM_DW10(%d)", phy);

	/* Power gating */
	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
		    "BXT_PORT_CL1CM_DW28(%d)", phy);

	if (phy_info->dual_channel)
		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
			   "BXT_PORT_CL2CM_DW6(%d)", phy);

	if (phy_info->rcomp_phy != -1) {
		u32 grc_code = dev_priv->bxt_phy_grc;

		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
			   grc_code << GRC_CODE_SLOW_SHIFT |
			   grc_code;
		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
		       GRC_CODE_NOM_MASK;
		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
			   "BXT_PORT_REF_DW6(%d)", phy);

		mask = GRC_DIS | GRC_RDY_OVRD;
		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
			    "BXT_PORT_REF_DW8(%d)", phy);
	}

	return ok;
#undef _CHK
}

uint8_t
bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
				     uint8_t lane_count)
{
	switch (lane_count) {
	case 1:
		return 0;
	case 2:
		return BIT(2) | BIT(0);
	case 4:
		return BIT(3) | BIT(2) | BIT(0);
	default:
		MISSING_CASE(lane_count);

		return 0;
	}
}

void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
				     uint8_t lane_lat_optim_mask)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
	enum port port = dport->port;
	enum dpio_phy phy;
	enum dpio_channel ch;
	int lane;

	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);

	for (lane = 0; lane < 4; lane++) {
		u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));

		/*
		 * Note that on CHV this flag is called UPAR, but has
		 * the same function.
		 */
		val &= ~LATENCY_OPTIM;
		if (lane_lat_optim_mask & BIT(lane))
			val |= LATENCY_OPTIM;

		I915_WRITE(BXT_PORT_TX_DW14_LN(phy, ch, lane), val);
	}
}

uint8_t
bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
	enum port port = dport->port;
	enum dpio_phy phy;
	enum dpio_channel ch;
	int lane;
	uint8_t mask;

	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);

	mask = 0;
	for (lane = 0; lane < 4; lane++) {
		u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));

		if (val & LATENCY_OPTIM)
			mask |= BIT(lane);
	}

	return mask;
}


void chv_set_phy_signal_level(struct intel_encoder *encoder,
			      u32 deemph_reg_value, u32 margin_reg_value,
			      bool uniq_trans_scale)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	enum pipe pipe = intel_crtc->pipe;
	u32 val;
	int i;

	mutex_lock(&dev_priv->sb_lock);

	/* Clear calc init */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
	}

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);

	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
	}

	/* Program swing deemph */
	for (i = 0; i < intel_crtc->config->lane_count; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
	}

	/* Program swing margin */
	for (i = 0; i < intel_crtc->config->lane_count; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));

		val &= ~DPIO_SWING_MARGIN000_MASK;
		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;

		/*
		 * Supposedly this value shouldn't matter when unique transition
		 * scale is disabled, but in fact it does matter. Let's just
		 * always program the same value and hope it's OK.
		 */
		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;

		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
	}

	/*
	 * The document said it needs to set bit 27 for ch0 and bit 26
	 * for ch1. Might be a typo in the doc.
	 * For now, for this unique transition scale selection, set bit
	 * 27 for ch0 and ch1.
	 */
	for (i = 0; i < intel_crtc->config->lane_count; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
		if (uniq_trans_scale)
			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
		else
			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
	}

	/* Start swing calculation */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
	}

	mutex_unlock(&dev_priv->sb_lock);

}

void chv_data_lane_soft_reset(struct intel_encoder *encoder,
			      bool reset)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	enum pipe pipe = crtc->pipe;
	uint32_t val;

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
	if (reset)
		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
	else
		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);

	if (crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
		if (reset)
			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
		else
			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
	}

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
	val |= CHV_PCS_REQ_SOFTRESET_EN;
	if (reset)
		val &= ~DPIO_PCS_CLK_SOFT_RESET;
	else
		val |= DPIO_PCS_CLK_SOFT_RESET;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);

	if (crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
		val |= CHV_PCS_REQ_SOFTRESET_EN;
		if (reset)
			val &= ~DPIO_PCS_CLK_SOFT_RESET;
		else
			val |= DPIO_PCS_CLK_SOFT_RESET;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
	}
}

void chv_phy_pre_pll_enable(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	enum pipe pipe = intel_crtc->pipe;
	unsigned int lane_mask =
		intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
	u32 val;

	/*
	 * Must trick the second common lane into life.
	 * Otherwise we can't even access the PLL.
	 */
	if (ch == DPIO_CH0 && pipe == PIPE_B)
		dport->release_cl2_override =
			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);

	chv_phy_powergate_lanes(encoder, true, lane_mask);

	mutex_lock(&dev_priv->sb_lock);

	/* Assert data lane reset */
	chv_data_lane_soft_reset(encoder, true);

	/* program left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA1_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA1_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA2_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA2_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

	/* program clock channel usage */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
	if (pipe != PIPE_B)
		val &= ~CHV_PCS_USEDCLKCHANNEL;
	else
		val |= CHV_PCS_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);

	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
		if (pipe != PIPE_B)
			val &= ~CHV_PCS_USEDCLKCHANNEL;
		else
			val |= CHV_PCS_USEDCLKCHANNEL;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
	}

	/*
	 * This a a bit weird since generally CL
	 * matches the pipe, but here we need to
	 * pick the CL based on the port.
	 */
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
	if (pipe != PIPE_B)
		val &= ~CHV_CMN_USEDCLKCHANNEL;
	else
		val |= CHV_CMN_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);

	mutex_unlock(&dev_priv->sb_lock);
}

void chv_phy_pre_encoder_enable(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;
	int data, i, stagger;
	u32 val;

	mutex_lock(&dev_priv->sb_lock);

	/* allow hardware to manage TX FIFO reset source */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);

	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
	}

	/* Program Tx lane latency optimal setting*/
	for (i = 0; i < intel_crtc->config->lane_count; i++) {
		/* Set the upar bit */
		if (intel_crtc->config->lane_count == 1)
			data = 0x0;
		else
			data = (i == 1) ? 0x0 : 0x1;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
				data << DPIO_UPAR_SHIFT);
	}

	/* Data lane stagger programming */
	if (intel_crtc->config->port_clock > 270000)
		stagger = 0x18;
	else if (intel_crtc->config->port_clock > 135000)
		stagger = 0xd;
	else if (intel_crtc->config->port_clock > 67500)
		stagger = 0x7;
	else if (intel_crtc->config->port_clock > 33750)
		stagger = 0x4;
	else
		stagger = 0x2;

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
	val |= DPIO_TX2_STAGGER_MASK(0x1f);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);

	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
		val |= DPIO_TX2_STAGGER_MASK(0x1f);
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
	}

	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
		       DPIO_LANESTAGGER_STRAP(stagger) |
		       DPIO_LANESTAGGER_STRAP_OVRD |
		       DPIO_TX1_STAGGER_MASK(0x1f) |
		       DPIO_TX1_STAGGER_MULT(6) |
		       DPIO_TX2_STAGGER_MULT(0));

	if (intel_crtc->config->lane_count > 2) {
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
			       DPIO_LANESTAGGER_STRAP(stagger) |
			       DPIO_LANESTAGGER_STRAP_OVRD |
			       DPIO_TX1_STAGGER_MASK(0x1f) |
			       DPIO_TX1_STAGGER_MULT(7) |
			       DPIO_TX2_STAGGER_MULT(5));
	}

	/* Deassert data lane reset */
	chv_data_lane_soft_reset(encoder, false);

	mutex_unlock(&dev_priv->sb_lock);
}

void chv_phy_release_cl2_override(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (dport->release_cl2_override) {
		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
		dport->release_cl2_override = false;
	}
}

void chv_phy_post_pll_disable(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
	u32 val;

	mutex_lock(&dev_priv->sb_lock);

	/* disable left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

	mutex_unlock(&dev_priv->sb_lock);

	/*
	 * Leave the power down bit cleared for at least one
	 * lane so that chv_powergate_phy_ch() will power
	 * on something when the channel is otherwise unused.
	 * When the port is off and the override is removed
	 * the lanes power down anyway, so otherwise it doesn't
	 * really matter what the state of power down bits is
	 * after this.
	 */
	chv_phy_powergate_lanes(encoder, false, 0x0);
}

void vlv_set_phy_signal_level(struct intel_encoder *encoder,
			      u32 demph_reg_value, u32 preemph_reg_value,
			      u32 uniqtranscale_reg_value, u32 tx3_demph)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	enum dpio_channel port = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;

	mutex_lock(&dev_priv->sb_lock);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
			 uniqtranscale_reg_value);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);

	if (tx3_demph)
		vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);

	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
	mutex_unlock(&dev_priv->sb_lock);
}

void vlv_phy_pre_pll_enable(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel port = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;

	/* Program Tx lane resets to default */
	mutex_lock(&dev_priv->sb_lock);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
			 DPIO_PCS_TX_LANE2_RESET |
			 DPIO_PCS_TX_LANE1_RESET);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
				 DPIO_PCS_CLK_SOFT_RESET);

	/* Fix up inter-pair skew failure */
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
	mutex_unlock(&dev_priv->sb_lock);
}

void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
	enum dpio_channel port = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;
	u32 val;

	mutex_lock(&dev_priv->sb_lock);

	/* Enable clock channels for this port */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
	val = 0;
	if (pipe)
		val |= (1<<21);
	else
		val &= ~(1<<21);
	val |= 0x001000c4;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);

	/* Program lane clock */
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);

	mutex_unlock(&dev_priv->sb_lock);
}

void vlv_phy_reset_lanes(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel port = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;

	mutex_lock(&dev_priv->sb_lock);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
	mutex_unlock(&dev_priv->sb_lock);
}