r600_dma.c 13.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
/*
 * Copyright 2013 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Alex Deucher
 */
#include <drm/drmP.h>
#include "radeon.h"
#include "radeon_asic.h"
#include "r600d.h"

u32 r600_gpu_check_soft_reset(struct radeon_device *rdev);

/*
 * DMA
 * Starting with R600, the GPU has an asynchronous
 * DMA engine.  The programming model is very similar
 * to the 3D engine (ring buffer, IBs, etc.), but the
 * DMA controller has it's own packet format that is
 * different form the PM4 format used by the 3D engine.
 * It supports copying data, writing embedded data,
 * solid fills, and a number of other things.  It also
 * has support for tiling/detiling of buffers.
 */

/**
 * r600_dma_get_rptr - get the current read pointer
 *
 * @rdev: radeon_device pointer
 * @ring: radeon ring pointer
 *
 * Get the current rptr from the hardware (r6xx+).
 */
uint32_t r600_dma_get_rptr(struct radeon_device *rdev,
			   struct radeon_ring *ring)
{
	u32 rptr;

	if (rdev->wb.enabled)
		rptr = rdev->wb.wb[ring->rptr_offs/4];
	else
		rptr = RREG32(DMA_RB_RPTR);

	return (rptr & 0x3fffc) >> 2;
}

/**
 * r600_dma_get_wptr - get the current write pointer
 *
 * @rdev: radeon_device pointer
 * @ring: radeon ring pointer
 *
 * Get the current wptr from the hardware (r6xx+).
 */
uint32_t r600_dma_get_wptr(struct radeon_device *rdev,
			   struct radeon_ring *ring)
{
	return (RREG32(DMA_RB_WPTR) & 0x3fffc) >> 2;
}

/**
 * r600_dma_set_wptr - commit the write pointer
 *
 * @rdev: radeon_device pointer
 * @ring: radeon ring pointer
 *
 * Write the wptr back to the hardware (r6xx+).
 */
void r600_dma_set_wptr(struct radeon_device *rdev,
		       struct radeon_ring *ring)
{
	WREG32(DMA_RB_WPTR, (ring->wptr << 2) & 0x3fffc);
}

/**
 * r600_dma_stop - stop the async dma engine
 *
 * @rdev: radeon_device pointer
 *
 * Stop the async dma engine (r6xx-evergreen).
 */
void r600_dma_stop(struct radeon_device *rdev)
{
	u32 rb_cntl = RREG32(DMA_RB_CNTL);

	if (rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX)
		radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size);

	rb_cntl &= ~DMA_RB_ENABLE;
	WREG32(DMA_RB_CNTL, rb_cntl);

	rdev->ring[R600_RING_TYPE_DMA_INDEX].ready = false;
}

/**
 * r600_dma_resume - setup and start the async dma engine
 *
 * @rdev: radeon_device pointer
 *
 * Set up the DMA ring buffer and enable it. (r6xx-evergreen).
 * Returns 0 for success, error for failure.
 */
int r600_dma_resume(struct radeon_device *rdev)
{
	struct radeon_ring *ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
	u32 rb_cntl, dma_cntl, ib_cntl;
	u32 rb_bufsz;
	int r;

	WREG32(DMA_SEM_INCOMPLETE_TIMER_CNTL, 0);
	WREG32(DMA_SEM_WAIT_FAIL_TIMER_CNTL, 0);

	/* Set ring buffer size in dwords */
	rb_bufsz = order_base_2(ring->ring_size / 4);
	rb_cntl = rb_bufsz << 1;
#ifdef __BIG_ENDIAN
	rb_cntl |= DMA_RB_SWAP_ENABLE | DMA_RPTR_WRITEBACK_SWAP_ENABLE;
#endif
	WREG32(DMA_RB_CNTL, rb_cntl);

	/* Initialize the ring buffer's read and write pointers */
	WREG32(DMA_RB_RPTR, 0);
	WREG32(DMA_RB_WPTR, 0);

	/* set the wb address whether it's enabled or not */
	WREG32(DMA_RB_RPTR_ADDR_HI,
	       upper_32_bits(rdev->wb.gpu_addr + R600_WB_DMA_RPTR_OFFSET) & 0xFF);
	WREG32(DMA_RB_RPTR_ADDR_LO,
	       ((rdev->wb.gpu_addr + R600_WB_DMA_RPTR_OFFSET) & 0xFFFFFFFC));

	if (rdev->wb.enabled)
		rb_cntl |= DMA_RPTR_WRITEBACK_ENABLE;

	WREG32(DMA_RB_BASE, ring->gpu_addr >> 8);

	/* enable DMA IBs */
	ib_cntl = DMA_IB_ENABLE;
#ifdef __BIG_ENDIAN
	ib_cntl |= DMA_IB_SWAP_ENABLE;
#endif
	WREG32(DMA_IB_CNTL, ib_cntl);

	dma_cntl = RREG32(DMA_CNTL);
	dma_cntl &= ~CTXEMPTY_INT_ENABLE;
	WREG32(DMA_CNTL, dma_cntl);

	if (rdev->family >= CHIP_RV770)
		WREG32(DMA_MODE, 1);

	ring->wptr = 0;
	WREG32(DMA_RB_WPTR, ring->wptr << 2);

	WREG32(DMA_RB_CNTL, rb_cntl | DMA_RB_ENABLE);

	ring->ready = true;

	r = radeon_ring_test(rdev, R600_RING_TYPE_DMA_INDEX, ring);
	if (r) {
		ring->ready = false;
		return r;
	}

	if (rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX)
		radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size);

	return 0;
}

/**
 * r600_dma_fini - tear down the async dma engine
 *
 * @rdev: radeon_device pointer
 *
 * Stop the async dma engine and free the ring (r6xx-evergreen).
 */
void r600_dma_fini(struct radeon_device *rdev)
{
	r600_dma_stop(rdev);
	radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]);
}

/**
 * r600_dma_is_lockup - Check if the DMA engine is locked up
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Check if the async DMA engine is locked up.
 * Returns true if the engine appears to be locked up, false if not.
 */
bool r600_dma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
{
	u32 reset_mask = r600_gpu_check_soft_reset(rdev);

	if (!(reset_mask & RADEON_RESET_DMA)) {
		radeon_ring_lockup_update(rdev, ring);
		return false;
	}
	return radeon_ring_test_lockup(rdev, ring);
}


/**
 * r600_dma_ring_test - simple async dma engine test
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Test the DMA engine by writing using it to write an
 * value to memory. (r6xx-SI).
 * Returns 0 for success, error for failure.
 */
int r600_dma_ring_test(struct radeon_device *rdev,
		       struct radeon_ring *ring)
{
	unsigned i;
	int r;
	unsigned index;
	u32 tmp;
	u64 gpu_addr;

	if (ring->idx == R600_RING_TYPE_DMA_INDEX)
		index = R600_WB_DMA_RING_TEST_OFFSET;
	else
		index = CAYMAN_WB_DMA1_RING_TEST_OFFSET;

	gpu_addr = rdev->wb.gpu_addr + index;

	tmp = 0xCAFEDEAD;
	rdev->wb.wb[index/4] = cpu_to_le32(tmp);

	r = radeon_ring_lock(rdev, ring, 4);
	if (r) {
		DRM_ERROR("radeon: dma failed to lock ring %d (%d).\n", ring->idx, r);
		return r;
	}
	radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 1));
	radeon_ring_write(ring, lower_32_bits(gpu_addr));
	radeon_ring_write(ring, upper_32_bits(gpu_addr) & 0xff);
	radeon_ring_write(ring, 0xDEADBEEF);
	radeon_ring_unlock_commit(rdev, ring, false);

	for (i = 0; i < rdev->usec_timeout; i++) {
		tmp = le32_to_cpu(rdev->wb.wb[index/4]);
		if (tmp == 0xDEADBEEF)
			break;
		DRM_UDELAY(1);
	}

	if (i < rdev->usec_timeout) {
		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
	} else {
		DRM_ERROR("radeon: ring %d test failed (0x%08X)\n",
			  ring->idx, tmp);
		r = -EINVAL;
	}
	return r;
}

/**
 * r600_dma_fence_ring_emit - emit a fence on the DMA ring
 *
 * @rdev: radeon_device pointer
 * @fence: radeon fence object
 *
 * Add a DMA fence packet to the ring to write
 * the fence seq number and DMA trap packet to generate
 * an interrupt if needed (r6xx-r7xx).
 */
void r600_dma_fence_ring_emit(struct radeon_device *rdev,
			      struct radeon_fence *fence)
{
	struct radeon_ring *ring = &rdev->ring[fence->ring];
	u64 addr = rdev->fence_drv[fence->ring].gpu_addr;

	/* write the fence */
	radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_FENCE, 0, 0, 0));
	radeon_ring_write(ring, addr & 0xfffffffc);
	radeon_ring_write(ring, (upper_32_bits(addr) & 0xff));
	radeon_ring_write(ring, lower_32_bits(fence->seq));
	/* generate an interrupt */
	radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_TRAP, 0, 0, 0));
}

/**
 * r600_dma_semaphore_ring_emit - emit a semaphore on the dma ring
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 * @semaphore: radeon semaphore object
 * @emit_wait: wait or signal semaphore
 *
 * Add a DMA semaphore packet to the ring wait on or signal
 * other rings (r6xx-SI).
 */
bool r600_dma_semaphore_ring_emit(struct radeon_device *rdev,
				  struct radeon_ring *ring,
				  struct radeon_semaphore *semaphore,
				  bool emit_wait)
{
	u64 addr = semaphore->gpu_addr;
	u32 s = emit_wait ? 0 : 1;

	radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SEMAPHORE, 0, s, 0));
	radeon_ring_write(ring, addr & 0xfffffffc);
	radeon_ring_write(ring, upper_32_bits(addr) & 0xff);

	return true;
}

/**
 * r600_dma_ib_test - test an IB on the DMA engine
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Test a simple IB in the DMA ring (r6xx-SI).
 * Returns 0 on success, error on failure.
 */
int r600_dma_ib_test(struct radeon_device *rdev, struct radeon_ring *ring)
{
	struct radeon_ib ib;
	unsigned i;
	unsigned index;
	int r;
	u32 tmp = 0;
	u64 gpu_addr;

	if (ring->idx == R600_RING_TYPE_DMA_INDEX)
		index = R600_WB_DMA_RING_TEST_OFFSET;
	else
		index = CAYMAN_WB_DMA1_RING_TEST_OFFSET;

	gpu_addr = rdev->wb.gpu_addr + index;

	r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256);
	if (r) {
		DRM_ERROR("radeon: failed to get ib (%d).\n", r);
		return r;
	}

	ib.ptr[0] = DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 1);
	ib.ptr[1] = lower_32_bits(gpu_addr);
	ib.ptr[2] = upper_32_bits(gpu_addr) & 0xff;
	ib.ptr[3] = 0xDEADBEEF;
	ib.length_dw = 4;

	r = radeon_ib_schedule(rdev, &ib, NULL, false);
	if (r) {
		radeon_ib_free(rdev, &ib);
		DRM_ERROR("radeon: failed to schedule ib (%d).\n", r);
		return r;
	}
	r = radeon_fence_wait_timeout(ib.fence, false, usecs_to_jiffies(
		RADEON_USEC_IB_TEST_TIMEOUT));
	if (r < 0) {
		DRM_ERROR("radeon: fence wait failed (%d).\n", r);
		return r;
	} else if (r == 0) {
		DRM_ERROR("radeon: fence wait timed out.\n");
		return -ETIMEDOUT;
	}
	r = 0;
	for (i = 0; i < rdev->usec_timeout; i++) {
		tmp = le32_to_cpu(rdev->wb.wb[index/4]);
		if (tmp == 0xDEADBEEF)
			break;
		DRM_UDELAY(1);
	}
	if (i < rdev->usec_timeout) {
		DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i);
	} else {
		DRM_ERROR("radeon: ib test failed (0x%08X)\n", tmp);
		r = -EINVAL;
	}
	radeon_ib_free(rdev, &ib);
	return r;
}

/**
 * r600_dma_ring_ib_execute - Schedule an IB on the DMA engine
 *
 * @rdev: radeon_device pointer
 * @ib: IB object to schedule
 *
 * Schedule an IB in the DMA ring (r6xx-r7xx).
 */
void r600_dma_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib)
{
	struct radeon_ring *ring = &rdev->ring[ib->ring];

	if (rdev->wb.enabled) {
		u32 next_rptr = ring->wptr + 4;
		while ((next_rptr & 7) != 5)
			next_rptr++;
		next_rptr += 3;
		radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 1));
		radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
		radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xff);
		radeon_ring_write(ring, next_rptr);
	}

	/* The indirect buffer packet must end on an 8 DW boundary in the DMA ring.
	 * Pad as necessary with NOPs.
	 */
	while ((ring->wptr & 7) != 5)
		radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0));
	radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_INDIRECT_BUFFER, 0, 0, 0));
	radeon_ring_write(ring, (ib->gpu_addr & 0xFFFFFFE0));
	radeon_ring_write(ring, (ib->length_dw << 16) | (upper_32_bits(ib->gpu_addr) & 0xFF));

}

/**
 * r600_copy_dma - copy pages using the DMA engine
 *
 * @rdev: radeon_device pointer
 * @src_offset: src GPU address
 * @dst_offset: dst GPU address
 * @num_gpu_pages: number of GPU pages to xfer
 * @resv: reservation object to sync to
 *
 * Copy GPU paging using the DMA engine (r6xx).
 * Used by the radeon ttm implementation to move pages if
 * registered as the asic copy callback.
 */
struct radeon_fence *r600_copy_dma(struct radeon_device *rdev,
				   uint64_t src_offset, uint64_t dst_offset,
				   unsigned num_gpu_pages,
				   struct reservation_object *resv)
{
	struct radeon_fence *fence;
	struct radeon_sync sync;
	int ring_index = rdev->asic->copy.dma_ring_index;
	struct radeon_ring *ring = &rdev->ring[ring_index];
	u32 size_in_dw, cur_size_in_dw;
	int i, num_loops;
	int r = 0;

	radeon_sync_create(&sync);

	size_in_dw = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT) / 4;
	num_loops = DIV_ROUND_UP(size_in_dw, 0xFFFE);
	r = radeon_ring_lock(rdev, ring, num_loops * 4 + 8);
	if (r) {
		DRM_ERROR("radeon: moving bo (%d).\n", r);
		radeon_sync_free(rdev, &sync, NULL);
		return ERR_PTR(r);
	}

	radeon_sync_resv(rdev, &sync, resv, false);
	radeon_sync_rings(rdev, &sync, ring->idx);

	for (i = 0; i < num_loops; i++) {
		cur_size_in_dw = size_in_dw;
		if (cur_size_in_dw > 0xFFFE)
			cur_size_in_dw = 0xFFFE;
		size_in_dw -= cur_size_in_dw;
		radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_COPY, 0, 0, cur_size_in_dw));
		radeon_ring_write(ring, dst_offset & 0xfffffffc);
		radeon_ring_write(ring, src_offset & 0xfffffffc);
		radeon_ring_write(ring, (((upper_32_bits(dst_offset) & 0xff) << 16) |
					 (upper_32_bits(src_offset) & 0xff)));
		src_offset += cur_size_in_dw * 4;
		dst_offset += cur_size_in_dw * 4;
	}

	r = radeon_fence_emit(rdev, &fence, ring->idx);
	if (r) {
		radeon_ring_unlock_undo(rdev, ring);
		radeon_sync_free(rdev, &sync, NULL);
		return ERR_PTR(r);
	}

	radeon_ring_unlock_commit(rdev, ring, false);
	radeon_sync_free(rdev, &sync, fence);

	return fence;
}