stm_thermal.c 18 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
 * Author: David Hernandez Sanchez <david.hernandezsanchez@st.com> for
 * STMicroelectronics.
 */

#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/thermal.h>

#include "../thermal_core.h"
#include "../thermal_hwmon.h"

/* DTS register offsets */
#define DTS_CFGR1_OFFSET	0x0
#define DTS_T0VALR1_OFFSET	0x8
#define DTS_RAMPVALR_OFFSET	0X10
#define DTS_ITR1_OFFSET		0x14
#define DTS_DR_OFFSET		0x1C
#define DTS_SR_OFFSET		0x20
#define DTS_ITENR_OFFSET	0x24
#define DTS_CIFR_OFFSET		0x28

/* DTS_CFGR1 register mask definitions */
#define HSREF_CLK_DIV_MASK	GENMASK(30, 24)
#define TS1_SMP_TIME_MASK	GENMASK(19, 16)
#define TS1_INTRIG_SEL_MASK	GENMASK(11, 8)

/* DTS_T0VALR1 register mask definitions */
#define TS1_T0_MASK		GENMASK(17, 16)
#define TS1_FMT0_MASK		GENMASK(15, 0)

/* DTS_RAMPVALR register mask definitions */
#define TS1_RAMP_COEFF_MASK	GENMASK(15, 0)

/* DTS_ITR1 register mask definitions */
#define TS1_HITTHD_MASK		GENMASK(31, 16)
#define TS1_LITTHD_MASK		GENMASK(15, 0)

/* DTS_DR register mask definitions */
#define TS1_MFREQ_MASK		GENMASK(15, 0)

/* Less significant bit position definitions */
#define TS1_T0_POS		16
#define TS1_SMP_TIME_POS	16
#define TS1_HITTHD_POS		16
#define HSREF_CLK_DIV_POS	24

/* DTS_CFGR1 bit definitions */
#define TS1_EN			BIT(0)
#define TS1_START		BIT(4)
#define REFCLK_SEL		BIT(20)
#define REFCLK_LSE		REFCLK_SEL
#define Q_MEAS_OPT		BIT(21)
#define CALIBRATION_CONTROL	Q_MEAS_OPT

/* DTS_SR bit definitions */
#define TS_RDY			BIT(15)
/* Bit definitions below are common for DTS_SR, DTS_ITENR and DTS_CIFR */
#define HIGH_THRESHOLD		BIT(2)
#define LOW_THRESHOLD		BIT(1)

/* Constants */
#define ADJUST			100
#define ONE_MHZ			1000000
#define POLL_TIMEOUT		5000
#define STARTUP_TIME		40
#define TS1_T0_VAL0		30
#define TS1_T0_VAL1		130
#define NO_HW_TRIG		0

/* The Thermal Framework expects millidegrees */
#define mcelsius(temp)		((temp) * 1000)

/* The Sensor expects oC degrees */
#define celsius(temp)		((temp) / 1000)

struct stm_thermal_sensor {
	struct device *dev;
	struct thermal_zone_device *th_dev;
	enum thermal_device_mode mode;
	struct clk *clk;
	int high_temp;
	int low_temp;
	int temp_critical;
	int temp_passive;
	unsigned int low_temp_enabled;
	int num_trips;
	int irq;
	unsigned int irq_enabled;
	void __iomem *base;
	int t0, fmt0, ramp_coeff;
};

static irqreturn_t stm_thermal_alarm_irq(int irq, void *sdata)
{
	struct stm_thermal_sensor *sensor = sdata;

	disable_irq_nosync(irq);
	sensor->irq_enabled = false;

	return IRQ_WAKE_THREAD;
}

static irqreturn_t stm_thermal_alarm_irq_thread(int irq, void *sdata)
{
	u32 value;
	struct stm_thermal_sensor *sensor = sdata;

	/* read IT reason in SR and clear flags */
	value = readl_relaxed(sensor->base + DTS_SR_OFFSET);

	if ((value & LOW_THRESHOLD) == LOW_THRESHOLD)
		writel_relaxed(LOW_THRESHOLD, sensor->base + DTS_CIFR_OFFSET);

	if ((value & HIGH_THRESHOLD) == HIGH_THRESHOLD)
		writel_relaxed(HIGH_THRESHOLD, sensor->base + DTS_CIFR_OFFSET);

	thermal_zone_device_update(sensor->th_dev, THERMAL_EVENT_UNSPECIFIED);

	return IRQ_HANDLED;
}

static int stm_sensor_power_on(struct stm_thermal_sensor *sensor)
{
	int ret;
	u32 value;

	/* Enable sensor */
	value = readl_relaxed(sensor->base + DTS_CFGR1_OFFSET);
	value |= TS1_EN;
	writel_relaxed(value, sensor->base + DTS_CFGR1_OFFSET);

	/*
	 * The DTS block can be enabled by setting TSx_EN bit in
	 * DTS_CFGRx register. It requires a startup time of
	 * 40μs. Use 5 ms as arbitrary timeout.
	 */
	ret = readl_poll_timeout(sensor->base + DTS_SR_OFFSET,
				 value, (value & TS_RDY),
				 STARTUP_TIME, POLL_TIMEOUT);
	if (ret)
		return ret;

	/* Start continuous measuring */
	value = readl_relaxed(sensor->base +
			      DTS_CFGR1_OFFSET);
	value |= TS1_START;
	writel_relaxed(value, sensor->base +
		       DTS_CFGR1_OFFSET);

	return 0;
}

static int stm_sensor_power_off(struct stm_thermal_sensor *sensor)
{
	u32 value;

	/* Stop measuring */
	value = readl_relaxed(sensor->base + DTS_CFGR1_OFFSET);
	value &= ~TS1_START;
	writel_relaxed(value, sensor->base + DTS_CFGR1_OFFSET);

	/* Ensure stop is taken into account */
	usleep_range(STARTUP_TIME, POLL_TIMEOUT);

	/* Disable sensor */
	value = readl_relaxed(sensor->base + DTS_CFGR1_OFFSET);
	value &= ~TS1_EN;
	writel_relaxed(value, sensor->base + DTS_CFGR1_OFFSET);

	/* Ensure disable is taken into account */
	return readl_poll_timeout(sensor->base + DTS_SR_OFFSET, value,
				  !(value & TS_RDY),
				  STARTUP_TIME, POLL_TIMEOUT);
}

static int stm_thermal_calibration(struct stm_thermal_sensor *sensor)
{
	u32 value, clk_freq;
	u32 prescaler;

	/* Figure out prescaler value for PCLK during calibration */
	clk_freq = clk_get_rate(sensor->clk);
	if (!clk_freq)
		return -EINVAL;

	prescaler = 0;
	clk_freq /= ONE_MHZ;
	if (clk_freq) {
		while (prescaler <= clk_freq)
			prescaler++;
	}

	value = readl_relaxed(sensor->base + DTS_CFGR1_OFFSET);

	/* Clear prescaler */
	value &= ~HSREF_CLK_DIV_MASK;

	/* Set prescaler. pclk_freq/prescaler < 1MHz */
	value |= (prescaler << HSREF_CLK_DIV_POS);

	/* Select PCLK as reference clock */
	value &= ~REFCLK_SEL;

	/* Set maximal sampling time for better precision */
	value |= TS1_SMP_TIME_MASK;

	/* Measure with calibration */
	value &= ~CALIBRATION_CONTROL;

	/* select trigger */
	value &= ~TS1_INTRIG_SEL_MASK;
	value |= NO_HW_TRIG;

	writel_relaxed(value, sensor->base + DTS_CFGR1_OFFSET);

	return 0;
}

/* Fill in DTS structure with factory sensor values */
static int stm_thermal_read_factory_settings(struct stm_thermal_sensor *sensor)
{
	/* Retrieve engineering calibration temperature */
	sensor->t0 = readl_relaxed(sensor->base + DTS_T0VALR1_OFFSET) &
					TS1_T0_MASK;
	if (!sensor->t0)
		sensor->t0 = TS1_T0_VAL0;
	else
		sensor->t0 = TS1_T0_VAL1;

	/* Retrieve fmt0 and put it on Hz */
	sensor->fmt0 = ADJUST * (readl_relaxed(sensor->base +
				 DTS_T0VALR1_OFFSET) & TS1_FMT0_MASK);

	/* Retrieve ramp coefficient */
	sensor->ramp_coeff = readl_relaxed(sensor->base + DTS_RAMPVALR_OFFSET) &
					   TS1_RAMP_COEFF_MASK;

	if (!sensor->fmt0 || !sensor->ramp_coeff) {
		dev_err(sensor->dev, "%s: wrong setting\n", __func__);
		return -EINVAL;
	}

	dev_dbg(sensor->dev, "%s: T0 = %doC, FMT0 = %dHz, RAMP_COEFF = %dHz/oC",
		__func__, sensor->t0, sensor->fmt0, sensor->ramp_coeff);

	return 0;
}

static int stm_thermal_calculate_threshold(struct stm_thermal_sensor *sensor,
					   int temp, u32 *th)
{
	int freqM;
	u32 sampling_time;

	/* Retrieve the number of periods to sample */
	sampling_time = (readl_relaxed(sensor->base + DTS_CFGR1_OFFSET) &
			TS1_SMP_TIME_MASK) >> TS1_SMP_TIME_POS;

	/* Figure out the CLK_PTAT frequency for a given temperature */
	freqM = ((temp - sensor->t0) * sensor->ramp_coeff)
		 + sensor->fmt0;

	dev_dbg(sensor->dev, "%s: freqM for threshold = %d Hz",
		__func__, freqM);

	/* Figure out the threshold sample number */
	*th = clk_get_rate(sensor->clk);
	if (!*th)
		return -EINVAL;

	*th = *th / freqM;

	*th *= sampling_time;

	return 0;
}

static int stm_thermal_set_threshold(struct stm_thermal_sensor *sensor)
{
	u32 value, th;
	int ret;

	value = readl_relaxed(sensor->base + DTS_ITR1_OFFSET);

	/* Erase threshold content */
	value &= ~(TS1_LITTHD_MASK | TS1_HITTHD_MASK);

	/* Retrieve the sample threshold number th for a given temperature */
	ret = stm_thermal_calculate_threshold(sensor, sensor->high_temp, &th);
	if (ret)
		return ret;

	value |= th & TS1_LITTHD_MASK;

	if (sensor->low_temp_enabled) {
		/* Retrieve the sample threshold */
		ret = stm_thermal_calculate_threshold(sensor, sensor->low_temp,
						      &th);
		if (ret)
			return ret;

		value |= (TS1_HITTHD_MASK  & (th << TS1_HITTHD_POS));
	}

	/* Write value on the Low interrupt threshold */
	writel_relaxed(value, sensor->base + DTS_ITR1_OFFSET);

	return 0;
}

/* Disable temperature interrupt */
static int stm_disable_irq(struct stm_thermal_sensor *sensor)
{
	u32 value;

	/* Disable IT generation for low and high thresholds */
	value = readl_relaxed(sensor->base + DTS_ITENR_OFFSET);
	writel_relaxed(value & ~(LOW_THRESHOLD | HIGH_THRESHOLD),
		       sensor->base + DTS_ITENR_OFFSET);

	dev_dbg(sensor->dev, "%s: IT disabled on sensor side", __func__);

	return 0;
}

/* Enable temperature interrupt */
static int stm_enable_irq(struct stm_thermal_sensor *sensor)
{
	u32 value;

	/*
	 * Code below enables High temperature threshold using a low threshold
	 * sampling value
	 */

	/* Make sure LOW_THRESHOLD IT is clear before enabling */
	writel_relaxed(LOW_THRESHOLD, sensor->base + DTS_CIFR_OFFSET);

	/* Enable IT generation for low threshold */
	value = readl_relaxed(sensor->base + DTS_ITENR_OFFSET);
	value |= LOW_THRESHOLD;

	/* Enable the low temperature threshold if needed */
	if (sensor->low_temp_enabled) {
		/* Make sure HIGH_THRESHOLD IT is clear before enabling */
		writel_relaxed(HIGH_THRESHOLD, sensor->base + DTS_CIFR_OFFSET);

		/* Enable IT generation for high threshold */
		value |= HIGH_THRESHOLD;
	}

	/* Enable thresholds */
	writel_relaxed(value, sensor->base + DTS_ITENR_OFFSET);

	dev_dbg(sensor->dev, "%s: IT enabled on sensor side", __func__);

	return 0;
}

static int stm_thermal_update_threshold(struct stm_thermal_sensor *sensor)
{
	int ret;

	sensor->mode = THERMAL_DEVICE_DISABLED;

	ret = stm_sensor_power_off(sensor);
	if (ret)
		return ret;

	ret = stm_disable_irq(sensor);
	if (ret)
		return ret;

	ret = stm_thermal_set_threshold(sensor);
	if (ret)
		return ret;

	ret = stm_enable_irq(sensor);
	if (ret)
		return ret;

	ret = stm_sensor_power_on(sensor);
	if (ret)
		return ret;

	sensor->mode = THERMAL_DEVICE_ENABLED;

	return 0;
}

/* Callback to get temperature from HW */
static int stm_thermal_get_temp(void *data, int *temp)
{
	struct stm_thermal_sensor *sensor = data;
	u32 sampling_time;
	int freqM, ret;

	if (sensor->mode != THERMAL_DEVICE_ENABLED)
		return -EAGAIN;

	/* Retrieve the number of samples */
	ret = readl_poll_timeout(sensor->base + DTS_DR_OFFSET, freqM,
				 (freqM & TS1_MFREQ_MASK), STARTUP_TIME,
				 POLL_TIMEOUT);

	if (ret)
		return ret;

	if (!freqM)
		return -ENODATA;

	/* Retrieve the number of periods sampled */
	sampling_time = (readl_relaxed(sensor->base + DTS_CFGR1_OFFSET) &
			TS1_SMP_TIME_MASK) >> TS1_SMP_TIME_POS;

	/* Figure out the number of samples per period */
	freqM /= sampling_time;

	/* Figure out the CLK_PTAT frequency */
	freqM = clk_get_rate(sensor->clk) / freqM;
	if (!freqM)
		return -EINVAL;

	dev_dbg(sensor->dev, "%s: freqM=%d\n", __func__, freqM);

	/* Figure out the temperature in mili celsius */
	*temp = mcelsius(sensor->t0 + ((freqM - sensor->fmt0) /
			 sensor->ramp_coeff));

	dev_dbg(sensor->dev, "%s: temperature = %d millicelsius",
		__func__, *temp);

	/* Update thresholds */
	if (sensor->num_trips > 1) {
		/* Update alarm threshold value to next higher trip point */
		if (sensor->high_temp == sensor->temp_passive &&
		    celsius(*temp) >= sensor->temp_passive) {
			sensor->high_temp = sensor->temp_critical;
			sensor->low_temp = sensor->temp_passive;
			sensor->low_temp_enabled = true;
			ret = stm_thermal_update_threshold(sensor);
			if (ret)
				return ret;
		}

		if (sensor->high_temp == sensor->temp_critical &&
		    celsius(*temp) < sensor->temp_passive) {
			sensor->high_temp = sensor->temp_passive;
			sensor->low_temp_enabled = false;
			ret = stm_thermal_update_threshold(sensor);
			if (ret)
				return ret;
		}

		/*
		 * Re-enable alarm IRQ if temperature below critical
		 * temperature
		 */
		if (!sensor->irq_enabled &&
		    (celsius(*temp) < sensor->temp_critical)) {
			sensor->irq_enabled = true;
			enable_irq(sensor->irq);
		}
	}

	return 0;
}

/* Registers DTS irq to be visible by GIC */
static int stm_register_irq(struct stm_thermal_sensor *sensor)
{
	struct device *dev = sensor->dev;
	struct platform_device *pdev = to_platform_device(dev);
	int ret;

	sensor->irq = platform_get_irq(pdev, 0);
	if (sensor->irq < 0) {
		dev_err(dev, "%s: Unable to find IRQ\n", __func__);
		return sensor->irq;
	}

	ret = devm_request_threaded_irq(dev, sensor->irq,
					stm_thermal_alarm_irq,
					stm_thermal_alarm_irq_thread,
					IRQF_ONESHOT,
					dev->driver->name, sensor);
	if (ret) {
		dev_err(dev, "%s: Failed to register IRQ %d\n", __func__,
			sensor->irq);
		return ret;
	}

	sensor->irq_enabled = true;

	dev_dbg(dev, "%s: thermal IRQ registered", __func__);

	return 0;
}

static int stm_thermal_sensor_off(struct stm_thermal_sensor *sensor)
{
	int ret;

	ret = stm_sensor_power_off(sensor);
	if (ret)
		return ret;

	clk_disable_unprepare(sensor->clk);

	return 0;
}

static int stm_thermal_prepare(struct stm_thermal_sensor *sensor)
{
	int ret;
	struct device *dev = sensor->dev;

	ret = clk_prepare_enable(sensor->clk);
	if (ret)
		return ret;

	ret = stm_thermal_read_factory_settings(sensor);
	if (ret)
		goto thermal_unprepare;

	ret = stm_thermal_calibration(sensor);
	if (ret)
		goto thermal_unprepare;

	/* Set threshold(s) for IRQ */
	ret = stm_thermal_set_threshold(sensor);
	if (ret)
		goto thermal_unprepare;

	ret = stm_enable_irq(sensor);
	if (ret)
		goto thermal_unprepare;

	ret = stm_sensor_power_on(sensor);
	if (ret) {
		dev_err(dev, "%s: failed to power on sensor\n", __func__);
		goto irq_disable;
	}

	return 0;

irq_disable:
	stm_disable_irq(sensor);

thermal_unprepare:
	clk_disable_unprepare(sensor->clk);

	return ret;
}

#ifdef CONFIG_PM_SLEEP
static int stm_thermal_suspend(struct device *dev)
{
	int ret;
	struct platform_device *pdev = to_platform_device(dev);
	struct stm_thermal_sensor *sensor = platform_get_drvdata(pdev);

	ret = stm_thermal_sensor_off(sensor);
	if (ret)
		return ret;

	sensor->mode = THERMAL_DEVICE_DISABLED;

	return 0;
}

static int stm_thermal_resume(struct device *dev)
{
	int ret;
	struct platform_device *pdev = to_platform_device(dev);
	struct stm_thermal_sensor *sensor = platform_get_drvdata(pdev);

	ret = stm_thermal_prepare(sensor);
	if (ret)
		return ret;

	sensor->mode = THERMAL_DEVICE_ENABLED;

	return 0;
}
#endif /* CONFIG_PM_SLEEP */

SIMPLE_DEV_PM_OPS(stm_thermal_pm_ops, stm_thermal_suspend, stm_thermal_resume);

static const struct thermal_zone_of_device_ops stm_tz_ops = {
	.get_temp	= stm_thermal_get_temp,
};

static const struct of_device_id stm_thermal_of_match[] = {
		{ .compatible = "st,stm32-thermal"},
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, stm_thermal_of_match);

static int stm_thermal_probe(struct platform_device *pdev)
{
	struct stm_thermal_sensor *sensor;
	struct resource *res;
	const struct thermal_trip *trip;
	void __iomem *base;
	int ret, i;

	if (!pdev->dev.of_node) {
		dev_err(&pdev->dev, "%s: device tree node not found\n",
			__func__);
		return -EINVAL;
	}

	sensor = devm_kzalloc(&pdev->dev, sizeof(*sensor), GFP_KERNEL);
	if (!sensor)
		return -ENOMEM;

	platform_set_drvdata(pdev, sensor);

	sensor->dev = &pdev->dev;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(base))
		return PTR_ERR(base);

	/* Populate sensor */
	sensor->base = base;

	sensor->clk = devm_clk_get(&pdev->dev, "pclk");
	if (IS_ERR(sensor->clk)) {
		dev_err(&pdev->dev, "%s: failed to fetch PCLK clock\n",
			__func__);
		return PTR_ERR(sensor->clk);
	}

	/* Register IRQ into GIC */
	ret = stm_register_irq(sensor);
	if (ret)
		return ret;

	sensor->th_dev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0,
							      sensor,
							      &stm_tz_ops);

	if (IS_ERR(sensor->th_dev)) {
		dev_err(&pdev->dev, "%s: thermal zone sensor registering KO\n",
			__func__);
		ret = PTR_ERR(sensor->th_dev);
		return ret;
	}

	if (!sensor->th_dev->ops->get_crit_temp) {
		/* Critical point must be provided */
		ret = -EINVAL;
		goto err_tz;
	}

	ret = sensor->th_dev->ops->get_crit_temp(sensor->th_dev,
			&sensor->temp_critical);
	if (ret) {
		dev_err(&pdev->dev,
			"Not able to read critical_temp: %d\n", ret);
		goto err_tz;
	}

	sensor->temp_critical = celsius(sensor->temp_critical);

	/* Set thresholds for IRQ */
	sensor->high_temp = sensor->temp_critical;

	trip = of_thermal_get_trip_points(sensor->th_dev);
	sensor->num_trips = of_thermal_get_ntrips(sensor->th_dev);

	/* Find out passive temperature if it exists */
	for (i = (sensor->num_trips - 1); i >= 0;  i--) {
		if (trip[i].type == THERMAL_TRIP_PASSIVE) {
			sensor->temp_passive = celsius(trip[i].temperature);
			/* Update high temperature threshold */
			sensor->high_temp = sensor->temp_passive;
			}
	}

	/*
	 * Ensure low_temp_enabled flag is disabled.
	 * By disabling low_temp_enabled, low threshold IT will not be
	 * configured neither enabled because it is not needed as high
	 * threshold is set on the lowest temperature trip point after
	 * probe.
	 */
	sensor->low_temp_enabled = false;

	/* Configure and enable HW sensor */
	ret = stm_thermal_prepare(sensor);
	if (ret) {
		dev_err(&pdev->dev,
			"Not able to enable sensor: %d\n", ret);
		goto err_tz;
	}

	/*
	 * Thermal_zone doesn't enable hwmon as default,
	 * enable it here
	 */
	sensor->th_dev->tzp->no_hwmon = false;
	ret = thermal_add_hwmon_sysfs(sensor->th_dev);
	if (ret)
		goto err_tz;

	sensor->mode = THERMAL_DEVICE_ENABLED;

	dev_info(&pdev->dev, "%s: Driver initialized successfully\n",
		 __func__);

	return 0;

err_tz:
	thermal_zone_of_sensor_unregister(&pdev->dev, sensor->th_dev);
	return ret;
}

static int stm_thermal_remove(struct platform_device *pdev)
{
	struct stm_thermal_sensor *sensor = platform_get_drvdata(pdev);

	stm_thermal_sensor_off(sensor);
	thermal_remove_hwmon_sysfs(sensor->th_dev);
	thermal_zone_of_sensor_unregister(&pdev->dev, sensor->th_dev);

	return 0;
}

static struct platform_driver stm_thermal_driver = {
	.driver = {
		.name	= "stm_thermal",
		.pm     = &stm_thermal_pm_ops,
		.of_match_table = stm_thermal_of_match,
	},
	.probe		= stm_thermal_probe,
	.remove		= stm_thermal_remove,
};
module_platform_driver(stm_thermal_driver);

MODULE_DESCRIPTION("STMicroelectronics STM32 Thermal Sensor Driver");
MODULE_AUTHOR("David Hernandez Sanchez <david.hernandezsanchez@st.com>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:stm_thermal");