machine_kexec_64.c 10.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
/*
 * PPC64 code to handle Linux booting another kernel.
 *
 * Copyright (C) 2004-2005, IBM Corp.
 *
 * Created by: Milton D Miller II
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2.  See the file COPYING for more details.
 */


#include <linux/kexec.h>
#include <linux/smp.h>
#include <linux/thread_info.h>
#include <linux/init_task.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/cpu.h>

#include <asm/page.h>
#include <asm/current.h>
#include <asm/machdep.h>
#include <asm/cacheflush.h>
#include <asm/paca.h>
#include <asm/mmu.h>
#include <asm/sections.h>	/* _end */
#include <asm/prom.h>
#include <asm/smp.h>
#include <asm/hw_breakpoint.h>

int default_machine_kexec_prepare(struct kimage *image)
{
	int i;
	unsigned long begin, end;	/* limits of segment */
	unsigned long low, high;	/* limits of blocked memory range */
	struct device_node *node;
	const unsigned long *basep;
	const unsigned int *sizep;

	if (!ppc_md.hpte_clear_all)
		return -ENOENT;

	/*
	 * Since we use the kernel fault handlers and paging code to
	 * handle the virtual mode, we must make sure no destination
	 * overlaps kernel static data or bss.
	 */
	for (i = 0; i < image->nr_segments; i++)
		if (image->segment[i].mem < __pa(_end))
			return -ETXTBSY;

	/*
	 * For non-LPAR, we absolutely can not overwrite the mmu hash
	 * table, since we are still using the bolted entries in it to
	 * do the copy.  Check that here.
	 *
	 * It is safe if the end is below the start of the blocked
	 * region (end <= low), or if the beginning is after the
	 * end of the blocked region (begin >= high).  Use the
	 * boolean identity !(a || b)  === (!a && !b).
	 */
	if (htab_address) {
		low = __pa(htab_address);
		high = low + htab_size_bytes;

		for (i = 0; i < image->nr_segments; i++) {
			begin = image->segment[i].mem;
			end = begin + image->segment[i].memsz;

			if ((begin < high) && (end > low))
				return -ETXTBSY;
		}
	}

	/* We also should not overwrite the tce tables */
	for_each_node_by_type(node, "pci") {
		basep = of_get_property(node, "linux,tce-base", NULL);
		sizep = of_get_property(node, "linux,tce-size", NULL);
		if (basep == NULL || sizep == NULL)
			continue;

		low = *basep;
		high = low + (*sizep);

		for (i = 0; i < image->nr_segments; i++) {
			begin = image->segment[i].mem;
			end = begin + image->segment[i].memsz;

			if ((begin < high) && (end > low))
				return -ETXTBSY;
		}
	}

	return 0;
}

#define IND_FLAGS (IND_DESTINATION | IND_INDIRECTION | IND_DONE | IND_SOURCE)

static void copy_segments(unsigned long ind)
{
	unsigned long entry;
	unsigned long *ptr;
	void *dest;
	void *addr;

	/*
	 * We rely on kexec_load to create a lists that properly
	 * initializes these pointers before they are used.
	 * We will still crash if the list is wrong, but at least
	 * the compiler will be quiet.
	 */
	ptr = NULL;
	dest = NULL;

	for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
		addr = __va(entry & PAGE_MASK);

		switch (entry & IND_FLAGS) {
		case IND_DESTINATION:
			dest = addr;
			break;
		case IND_INDIRECTION:
			ptr = addr;
			break;
		case IND_SOURCE:
			copy_page(dest, addr);
			dest += PAGE_SIZE;
		}
	}
}

void kexec_copy_flush(struct kimage *image)
{
	long i, nr_segments = image->nr_segments;
	struct  kexec_segment ranges[KEXEC_SEGMENT_MAX];

	/* save the ranges on the stack to efficiently flush the icache */
	memcpy(ranges, image->segment, sizeof(ranges));

	/*
	 * After this call we may not use anything allocated in dynamic
	 * memory, including *image.
	 *
	 * Only globals and the stack are allowed.
	 */
	copy_segments(image->head);

	/*
	 * we need to clear the icache for all dest pages sometime,
	 * including ones that were in place on the original copy
	 */
	for (i = 0; i < nr_segments; i++)
		flush_icache_range((unsigned long)__va(ranges[i].mem),
			(unsigned long)__va(ranges[i].mem + ranges[i].memsz));
}

#ifdef CONFIG_SMP

static int kexec_all_irq_disabled = 0;

static void kexec_smp_down(void *arg)
{
	local_irq_disable();
	mb(); /* make sure our irqs are disabled before we say they are */
	get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
	while(kexec_all_irq_disabled == 0)
		cpu_relax();
	mb(); /* make sure all irqs are disabled before this */
	hw_breakpoint_disable();
	/*
	 * Now every CPU has IRQs off, we can clear out any pending
	 * IPIs and be sure that no more will come in after this.
	 */
	if (ppc_md.kexec_cpu_down)
		ppc_md.kexec_cpu_down(0, 1);

	kexec_smp_wait();
	/* NOTREACHED */
}

static void kexec_prepare_cpus_wait(int wait_state)
{
	int my_cpu, i, notified=-1;

	hw_breakpoint_disable();
	my_cpu = get_cpu();
	/* Make sure each CPU has at least made it to the state we need.
	 *
	 * FIXME: There is a (slim) chance of a problem if not all of the CPUs
	 * are correctly onlined.  If somehow we start a CPU on boot with RTAS
	 * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
	 * time, the boot CPU will timeout.  If it does eventually execute
	 * stuff, the secondary will start up (paca[].cpu_start was written) and
	 * get into a peculiar state.  If the platform supports
	 * smp_ops->take_timebase(), the secondary CPU will probably be spinning
	 * in there.  If not (i.e. pseries), the secondary will continue on and
	 * try to online itself/idle/etc. If it survives that, we need to find
	 * these possible-but-not-online-but-should-be CPUs and chaperone them
	 * into kexec_smp_wait().
	 */
	for_each_online_cpu(i) {
		if (i == my_cpu)
			continue;

		while (paca[i].kexec_state < wait_state) {
			barrier();
			if (i != notified) {
				printk(KERN_INFO "kexec: waiting for cpu %d "
				       "(physical %d) to enter %i state\n",
				       i, paca[i].hw_cpu_id, wait_state);
				notified = i;
			}
		}
	}
	mb();
}

/*
 * We need to make sure each present CPU is online.  The next kernel will scan
 * the device tree and assume primary threads are online and query secondary
 * threads via RTAS to online them if required.  If we don't online primary
 * threads, they will be stuck.  However, we also online secondary threads as we
 * may be using 'cede offline'.  In this case RTAS doesn't see the secondary
 * threads as offline -- and again, these CPUs will be stuck.
 *
 * So, we online all CPUs that should be running, including secondary threads.
 */
static void wake_offline_cpus(void)
{
	int cpu = 0;

	for_each_present_cpu(cpu) {
		if (!cpu_online(cpu)) {
			printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
			       cpu);
			cpu_up(cpu);
		}
	}
}

static void kexec_prepare_cpus(void)
{
	wake_offline_cpus();
	smp_call_function(kexec_smp_down, NULL, /* wait */0);
	local_irq_disable();
	mb(); /* make sure IRQs are disabled before we say they are */
	get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;

	kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
	/* we are sure every CPU has IRQs off at this point */
	kexec_all_irq_disabled = 1;

	/* after we tell the others to go down */
	if (ppc_md.kexec_cpu_down)
		ppc_md.kexec_cpu_down(0, 0);

	/*
	 * Before removing MMU mappings make sure all CPUs have entered real
	 * mode:
	 */
	kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);

	put_cpu();
}

#else /* ! SMP */

static void kexec_prepare_cpus(void)
{
	/*
	 * move the secondarys to us so that we can copy
	 * the new kernel 0-0x100 safely
	 *
	 * do this if kexec in setup.c ?
	 *
	 * We need to release the cpus if we are ever going from an
	 * UP to an SMP kernel.
	 */
	smp_release_cpus();
	if (ppc_md.kexec_cpu_down)
		ppc_md.kexec_cpu_down(0, 0);
	local_irq_disable();
}

#endif /* SMP */

/*
 * kexec thread structure and stack.
 *
 * We need to make sure that this is 16384-byte aligned due to the
 * way process stacks are handled.  It also must be statically allocated
 * or allocated as part of the kimage, because everything else may be
 * overwritten when we copy the kexec image.  We piggyback on the
 * "init_task" linker section here to statically allocate a stack.
 *
 * We could use a smaller stack if we don't care about anything using
 * current, but that audit has not been performed.
 */
static union thread_union kexec_stack __init_task_data =
	{ };

/*
 * For similar reasons to the stack above, the kexecing CPU needs to be on a
 * static PACA; we switch to kexec_paca.
 */
struct paca_struct kexec_paca;

/* Our assembly helper, in kexec_stub.S */
extern void kexec_sequence(void *newstack, unsigned long start,
			   void *image, void *control,
			   void (*clear_all)(void)) __noreturn;

/* too late to fail here */
void default_machine_kexec(struct kimage *image)
{
	/* prepare control code if any */

	/*
        * If the kexec boot is the normal one, need to shutdown other cpus
        * into our wait loop and quiesce interrupts.
        * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
        * stopping other CPUs and collecting their pt_regs is done before
        * using debugger IPI.
        */

	if (crashing_cpu == -1)
		kexec_prepare_cpus();

	pr_debug("kexec: Starting switchover sequence.\n");

	/* switch to a staticly allocated stack.  Based on irq stack code.
	 * XXX: the task struct will likely be invalid once we do the copy!
	 */
	kexec_stack.thread_info.task = current_thread_info()->task;
	kexec_stack.thread_info.flags = 0;

	/* We need a static PACA, too; copy this CPU's PACA over and switch to
	 * it.  Also poison per_cpu_offset to catch anyone using non-static
	 * data.
	 */
	memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
	kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
	paca = (struct paca_struct *)RELOC_HIDE(&kexec_paca, 0) -
		kexec_paca.paca_index;
	setup_paca(&kexec_paca);

	/* XXX: If anyone does 'dynamic lppacas' this will also need to be
	 * switched to a static version!
	 */

	/* Some things are best done in assembly.  Finding globals with
	 * a toc is easier in C, so pass in what we can.
	 */
	kexec_sequence(&kexec_stack, image->start, image,
			page_address(image->control_code_page),
			ppc_md.hpte_clear_all);
	/* NOTREACHED */
}

/* Values we need to export to the second kernel via the device tree. */
static unsigned long htab_base;

static struct property htab_base_prop = {
	.name = "linux,htab-base",
	.length = sizeof(unsigned long),
	.value = &htab_base,
};

static struct property htab_size_prop = {
	.name = "linux,htab-size",
	.length = sizeof(unsigned long),
	.value = &htab_size_bytes,
};

static int __init export_htab_values(void)
{
	struct device_node *node;
	struct property *prop;

	/* On machines with no htab htab_address is NULL */
	if (!htab_address)
		return -ENODEV;

	node = of_find_node_by_path("/chosen");
	if (!node)
		return -ENODEV;

	/* remove any stale propertys so ours can be found */
	prop = of_find_property(node, htab_base_prop.name, NULL);
	if (prop)
		prom_remove_property(node, prop);
	prop = of_find_property(node, htab_size_prop.name, NULL);
	if (prop)
		prom_remove_property(node, prop);

	htab_base = __pa(htab_address);
	prom_add_property(node, &htab_base_prop);
	prom_add_property(node, &htab_size_prop);

	of_node_put(node);
	return 0;
}
late_initcall(export_htab_values);