arch_topology.c 11.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
/*
 * Arch specific cpu topology information
 *
 * Copyright (C) 2016, ARM Ltd.
 * Written by: Juri Lelli, ARM Ltd.
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Released under the GPLv2 only.
 * SPDX-License-Identifier: GPL-2.0
 */

#include <linux/acpi.h>
#include <linux/arch_topology.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/sched/topology.h>
#include <linux/sched/energy.h>
#include <linux/cpuset.h>

DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
DEFINE_PER_CPU(unsigned long, max_cpu_freq);
DEFINE_PER_CPU(unsigned long, max_freq_scale) = SCHED_CAPACITY_SCALE;

void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
			 unsigned long max_freq)
{
	unsigned long scale;
	int i;

	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;

	for_each_cpu(i, cpus) {
		per_cpu(freq_scale, i) = scale;
		per_cpu(max_cpu_freq, i) = max_freq;
	}
}

void arch_set_max_freq_scale(struct cpumask *cpus,
			     unsigned long policy_max_freq)
{
	unsigned long scale, max_freq;
	int cpu = cpumask_first(cpus);

	if (cpu > nr_cpu_ids)
		return;

	max_freq = per_cpu(max_cpu_freq, cpu);
	if (!max_freq)
		return;

	scale = (policy_max_freq << SCHED_CAPACITY_SHIFT) / max_freq;

	for_each_cpu(cpu, cpus)
		per_cpu(max_freq_scale, cpu) = scale;
}

static DEFINE_MUTEX(cpu_scale_mutex);
DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;

void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
{
	per_cpu(cpu_scale, cpu) = capacity;
}

static ssize_t cpu_capacity_show(struct device *dev,
				 struct device_attribute *attr,
				 char *buf)
{
	struct cpu *cpu = container_of(dev, struct cpu, dev);

	return sprintf(buf, "%lu\n", topology_get_cpu_scale(NULL, cpu->dev.id));
}

static void update_topology_flags_workfn(struct work_struct *work);
static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);

static ssize_t cpu_capacity_store(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf,
				  size_t count)
{
	struct cpu *cpu = container_of(dev, struct cpu, dev);
	int this_cpu = cpu->dev.id;
	int i;
	unsigned long new_capacity;
	ssize_t ret;
	cpumask_var_t mask;

	if (!count)
		return 0;

	ret = kstrtoul(buf, 0, &new_capacity);
	if (ret)
		return ret;
	if (new_capacity > SCHED_CAPACITY_SCALE)
		return -EINVAL;

	mutex_lock(&cpu_scale_mutex);

	if (new_capacity < SCHED_CAPACITY_SCALE) {
		int highest_score_cpu = 0;

		if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
			mutex_unlock(&cpu_scale_mutex);
			return -ENOMEM;
		}

		cpumask_andnot(mask, cpu_online_mask,
				topology_core_cpumask(this_cpu));

		for_each_cpu(i, mask) {
			if (topology_get_cpu_scale(NULL, i) ==
					SCHED_CAPACITY_SCALE) {
				highest_score_cpu = 1;
				break;
			}
		}

		free_cpumask_var(mask);

		if (!highest_score_cpu) {
			mutex_unlock(&cpu_scale_mutex);
			return -EINVAL;
		}
	}

	for_each_cpu(i, topology_core_cpumask(this_cpu))
		topology_set_cpu_scale(i, new_capacity);
	mutex_unlock(&cpu_scale_mutex);

	if (topology_detect_flags())
		schedule_work(&update_topology_flags_work);

	return count;
}

static DEVICE_ATTR_RW(cpu_capacity);

static int register_cpu_capacity_sysctl(void)
{
	int i;
	struct device *cpu;

	for_each_possible_cpu(i) {
		cpu = get_cpu_device(i);
		if (!cpu) {
			pr_err("%s: too early to get CPU%d device!\n",
			       __func__, i);
			continue;
		}
		device_create_file(cpu, &dev_attr_cpu_capacity);
	}

	return 0;
}
subsys_initcall(register_cpu_capacity_sysctl);

enum asym_cpucap_type { no_asym, asym_thread, asym_core, asym_die };
static enum asym_cpucap_type asym_cpucap = no_asym;
enum share_cap_type { no_share_cap, share_cap_thread, share_cap_core, share_cap_die};
static enum share_cap_type share_cap = no_share_cap;

#ifdef CONFIG_CPU_FREQ
int detect_share_cap_flag(void)
{
	int cpu;
	enum share_cap_type share_cap_level = no_share_cap;
	struct cpufreq_policy *policy;

	for_each_possible_cpu(cpu) {
		policy = cpufreq_cpu_get(cpu);

		if (!policy)
			return 0;

		if (cpumask_equal(topology_sibling_cpumask(cpu),
				  policy->related_cpus)) {
			share_cap_level = share_cap_thread;
			continue;
		}

		if (cpumask_equal(topology_core_cpumask(cpu),
				  policy->related_cpus)) {
			share_cap_level = share_cap_core;
			continue;
		}

		if (cpumask_equal(cpu_cpu_mask(cpu),
				  policy->related_cpus)) {
			share_cap_level = share_cap_die;
			continue;
		}
	}

	if (share_cap != share_cap_level) {
		share_cap = share_cap_level;
		return 1;
	}

	return 0;
}
#else
int detect_share_cap_flag(void) { return 0; }
#endif

/*
 * Walk cpu topology to determine sched_domain flags.
 *
 * SD_ASYM_CPUCAPACITY: Indicates the lowest level that spans all cpu
 * capacities found in the system for all cpus, i.e. the flag is set
 * at the same level for all systems. The current algorithm implements
 * this by looking for higher capacities, which doesn't work for all
 * conceivable topology, but don't complicate things until it is
 * necessary.
 */
int topology_detect_flags(void)
{
	unsigned long max_capacity, capacity;
	enum asym_cpucap_type asym_level = no_asym;
	int cpu, die_cpu, core, thread, flags_changed = 0;

	for_each_possible_cpu(cpu) {
		max_capacity = 0;

		if (asym_level >= asym_thread)
			goto check_core;

		for_each_cpu(thread, topology_sibling_cpumask(cpu)) {
			capacity = topology_get_cpu_scale(NULL, thread);

			if (capacity > max_capacity) {
				if (max_capacity != 0)
					asym_level = asym_thread;

				max_capacity = capacity;
			}
		}

check_core:
		if (asym_level >= asym_core)
			goto check_die;

		for_each_cpu(core, topology_core_cpumask(cpu)) {
			capacity = topology_get_cpu_scale(NULL, core);

			if (capacity > max_capacity) {
				if (max_capacity != 0)
					asym_level = asym_core;

				max_capacity = capacity;
			}
		}
check_die:
		for_each_possible_cpu(die_cpu) {
			capacity = topology_get_cpu_scale(NULL, die_cpu);

			if (capacity > max_capacity) {
				if (max_capacity != 0) {
					asym_level = asym_die;
					goto done;
				}
			}
		}
	}

done:
	if (asym_cpucap != asym_level) {
		asym_cpucap = asym_level;
		flags_changed = 1;
		pr_debug("topology flag change detected\n");
	}

	if (detect_share_cap_flag())
		flags_changed = 1;

	return flags_changed;
}

int topology_smt_flags(void)
{
	int flags = 0;

	if (asym_cpucap == asym_thread)
		flags |= SD_ASYM_CPUCAPACITY;

	if (share_cap == share_cap_thread)
		flags |= SD_SHARE_CAP_STATES;

	return flags;
}

int topology_core_flags(void)
{
	int flags = 0;

	if (asym_cpucap == asym_core)
		flags |= SD_ASYM_CPUCAPACITY;

	if (share_cap == share_cap_core)
		flags |= SD_SHARE_CAP_STATES;

	return flags;
}

int topology_cpu_flags(void)
{
	int flags = 0;

	if (asym_cpucap == asym_die)
		flags |= SD_ASYM_CPUCAPACITY;

	if (share_cap == share_cap_die)
		flags |= SD_SHARE_CAP_STATES;

	return flags;
}

static int update_topology = 0;

int topology_update_cpu_topology(void)
{
	return update_topology;
}

/*
 * Updating the sched_domains can't be done directly from cpufreq callbacks
 * due to locking, so queue the work for later.
 */
static void update_topology_flags_workfn(struct work_struct *work)
{
	update_topology = 1;
	rebuild_sched_domains();
	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
	update_topology = 0;
}

static u32 capacity_scale;
static u32 *raw_capacity;

static int __init free_raw_capacity(void)
{
	kfree(raw_capacity);
	raw_capacity = NULL;

	return 0;
}

void topology_normalize_cpu_scale(void)
{
	u64 capacity;
	int cpu;

	if (!raw_capacity)
		return;

	pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
	mutex_lock(&cpu_scale_mutex);
	for_each_possible_cpu(cpu) {
		capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
			/ capacity_scale;
		topology_set_cpu_scale(cpu, capacity);
		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu raw_capacity=%u\n",
			cpu, topology_get_cpu_scale(NULL, cpu),
			raw_capacity[cpu]);
	}
	mutex_unlock(&cpu_scale_mutex);
}

bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
{
	static bool cap_parsing_failed;
	int ret;
	u32 cpu_capacity;

	if (cap_parsing_failed)
		return false;

	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
				   &cpu_capacity);
	if (!ret) {
		if (!raw_capacity) {
			raw_capacity = kcalloc(num_possible_cpus(),
					       sizeof(*raw_capacity),
					       GFP_KERNEL);
			if (!raw_capacity) {
				pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
				cap_parsing_failed = true;
				return false;
			}
		}
		capacity_scale = max(cpu_capacity, capacity_scale);
		raw_capacity[cpu] = cpu_capacity;
		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
			cpu_node, raw_capacity[cpu]);
	} else {
		if (raw_capacity) {
			pr_err("cpu_capacity: missing %pOF raw capacity\n",
				cpu_node);
			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
		}
		cap_parsing_failed = true;
		free_raw_capacity();
	}

	return !ret;
}

#ifdef CONFIG_CPU_FREQ
static cpumask_var_t cpus_to_visit;
static void parsing_done_workfn(struct work_struct *work);
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);

static int
init_cpu_capacity_callback(struct notifier_block *nb,
			   unsigned long val,
			   void *data)
{
	struct cpufreq_policy *policy = data;
	int cpu;

	if (!raw_capacity)
		return 0;

	if (val != CPUFREQ_NOTIFY)
		return 0;

	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
		 cpumask_pr_args(policy->related_cpus),
		 cpumask_pr_args(cpus_to_visit));

	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);

	for_each_cpu(cpu, policy->related_cpus) {
		raw_capacity[cpu] = topology_get_cpu_scale(NULL, cpu) *
				    policy->cpuinfo.max_freq / 1000UL;
		capacity_scale = max(raw_capacity[cpu], capacity_scale);
	}

	if (cpumask_empty(cpus_to_visit)) {
		topology_normalize_cpu_scale();
		init_sched_energy_costs();
		if (topology_detect_flags())
			schedule_work(&update_topology_flags_work);
		free_raw_capacity();
		pr_debug("cpu_capacity: parsing done\n");
		schedule_work(&parsing_done_work);
	}

	return 0;
}

static struct notifier_block init_cpu_capacity_notifier = {
	.notifier_call = init_cpu_capacity_callback,
};

static int __init register_cpufreq_notifier(void)
{
	int ret;

	/*
	 * on ACPI-based systems we need to use the default cpu capacity
	 * until we have the necessary code to parse the cpu capacity, so
	 * skip registering cpufreq notifier.
	 */
	if (!acpi_disabled || !raw_capacity)
		return -EINVAL;

	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
		pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
		return -ENOMEM;
	}

	cpumask_copy(cpus_to_visit, cpu_possible_mask);

	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
					CPUFREQ_POLICY_NOTIFIER);

	if (ret)
		free_cpumask_var(cpus_to_visit);

	return ret;
}
core_initcall(register_cpufreq_notifier);

static void parsing_done_workfn(struct work_struct *work)
{
	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
					 CPUFREQ_POLICY_NOTIFIER);
	free_cpumask_var(cpus_to_visit);
}

#else
core_initcall(free_raw_capacity);
#endif