via-rhine.c 64 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
/*
	Written 1998-2001 by Donald Becker.

	Current Maintainer: Roger Luethi <rl@hellgate.ch>

	This software may be used and distributed according to the terms of
	the GNU General Public License (GPL), incorporated herein by reference.
	Drivers based on or derived from this code fall under the GPL and must
	retain the authorship, copyright and license notice.  This file is not
	a complete program and may only be used when the entire operating
	system is licensed under the GPL.

	This driver is designed for the VIA VT86C100A Rhine-I.
	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
	and management NIC 6105M).

	The author may be reached as becker@scyld.com, or C/O
	Scyld Computing Corporation
	410 Severn Ave., Suite 210
	Annapolis MD 21403


	This driver contains some changes from the original Donald Becker
	version. He may or may not be interested in bug reports on this
	code. You can find his versions at:
	http://www.scyld.com/network/via-rhine.html
	[link no longer provides useful info -jgarzik]

*/

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#define DRV_NAME	"via-rhine"
#define DRV_VERSION	"1.5.0"
#define DRV_RELDATE	"2010-10-09"


/* A few user-configurable values.
   These may be modified when a driver module is loaded. */

#define DEBUG
static int debug = 1;	/* 1 normal messages, 0 quiet .. 7 verbose. */
static int max_interrupt_work = 20;

/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
   Setting to > 1518 effectively disables this feature. */
#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
	defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
	defined(__sh__) || defined(__mips__)
static int rx_copybreak = 1518;
#else
static int rx_copybreak;
#endif

/* Work-around for broken BIOSes: they are unable to get the chip back out of
   power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
static int avoid_D3;

/*
 * In case you are looking for 'options[]' or 'full_duplex[]', they
 * are gone. Use ethtool(8) instead.
 */

/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
   The Rhine has a 64 element 8390-like hash table. */
static const int multicast_filter_limit = 32;


/* Operational parameters that are set at compile time. */

/* Keep the ring sizes a power of two for compile efficiency.
   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
   Making the Tx ring too large decreases the effectiveness of channel
   bonding and packet priority.
   There are no ill effects from too-large receive rings. */
#define TX_RING_SIZE	16
#define TX_QUEUE_LEN	10	/* Limit ring entries actually used. */
#define RX_RING_SIZE	64

/* Operational parameters that usually are not changed. */

/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT	(2*HZ)

#define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>
#include <linux/if_vlan.h>
#include <linux/bitops.h>
#include <linux/workqueue.h>
#include <asm/processor.h>	/* Processor type for cache alignment. */
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <linux/dmi.h>

/* These identify the driver base version and may not be removed. */
static const char version[] __devinitconst =
	"v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";

/* This driver was written to use PCI memory space. Some early versions
   of the Rhine may only work correctly with I/O space accesses. */
#ifdef CONFIG_VIA_RHINE_MMIO
#define USE_MMIO
#else
#endif

MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
MODULE_LICENSE("GPL");

module_param(max_interrupt_work, int, 0);
module_param(debug, int, 0);
module_param(rx_copybreak, int, 0);
module_param(avoid_D3, bool, 0);
MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");

#define MCAM_SIZE	32
#define VCAM_SIZE	32

/*
		Theory of Operation

I. Board Compatibility

This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
controller.

II. Board-specific settings

Boards with this chip are functional only in a bus-master PCI slot.

Many operational settings are loaded from the EEPROM to the Config word at
offset 0x78. For most of these settings, this driver assumes that they are
correct.
If this driver is compiled to use PCI memory space operations the EEPROM
must be configured to enable memory ops.

III. Driver operation

IIIa. Ring buffers

This driver uses two statically allocated fixed-size descriptor lists
formed into rings by a branch from the final descriptor to the beginning of
the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.

IIIb/c. Transmit/Receive Structure

This driver attempts to use a zero-copy receive and transmit scheme.

Alas, all data buffers are required to start on a 32 bit boundary, so
the driver must often copy transmit packets into bounce buffers.

The driver allocates full frame size skbuffs for the Rx ring buffers at
open() time and passes the skb->data field to the chip as receive data
buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
a fresh skbuff is allocated and the frame is copied to the new skbuff.
When the incoming frame is larger, the skbuff is passed directly up the
protocol stack. Buffers consumed this way are replaced by newly allocated
skbuffs in the last phase of rhine_rx().

The RX_COPYBREAK value is chosen to trade-off the memory wasted by
using a full-sized skbuff for small frames vs. the copying costs of larger
frames. New boards are typically used in generously configured machines
and the underfilled buffers have negligible impact compared to the benefit of
a single allocation size, so the default value of zero results in never
copying packets. When copying is done, the cost is usually mitigated by using
a combined copy/checksum routine. Copying also preloads the cache, which is
most useful with small frames.

Since the VIA chips are only able to transfer data to buffers on 32 bit
boundaries, the IP header at offset 14 in an ethernet frame isn't
longword aligned for further processing. Copying these unaligned buffers
has the beneficial effect of 16-byte aligning the IP header.

IIId. Synchronization

The driver runs as two independent, single-threaded flows of control. One
is the send-packet routine, which enforces single-threaded use by the
netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
which is single threaded by the hardware and interrupt handling software.

The send packet thread has partial control over the Tx ring. It locks the
netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
the ring is not available it stops the transmit queue by
calling netif_stop_queue.

The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring. After reaping the stats, it marks the Tx queue entry as
empty by incrementing the dirty_tx mark. If at least half of the entries in
the Rx ring are available the transmit queue is woken up if it was stopped.

IV. Notes

IVb. References

Preliminary VT86C100A manual from http://www.via.com.tw/
http://www.scyld.com/expert/100mbps.html
http://www.scyld.com/expert/NWay.html
ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF


IVc. Errata

The VT86C100A manual is not reliable information.
The 3043 chip does not handle unaligned transmit or receive buffers, resulting
in significant performance degradation for bounce buffer copies on transmit
and unaligned IP headers on receive.
The chip does not pad to minimum transmit length.

*/


/* This table drives the PCI probe routines. It's mostly boilerplate in all
   of the drivers, and will likely be provided by some future kernel.
   Note the matching code -- the first table entry matchs all 56** cards but
   second only the 1234 card.
*/

enum rhine_revs {
	VT86C100A	= 0x00,
	VTunknown0	= 0x20,
	VT6102		= 0x40,
	VT8231		= 0x50,	/* Integrated MAC */
	VT8233		= 0x60,	/* Integrated MAC */
	VT8235		= 0x74,	/* Integrated MAC */
	VT8237		= 0x78,	/* Integrated MAC */
	VTunknown1	= 0x7C,
	VT6105		= 0x80,
	VT6105_B0	= 0x83,
	VT6105L		= 0x8A,
	VT6107		= 0x8C,
	VTunknown2	= 0x8E,
	VT6105M		= 0x90,	/* Management adapter */
};

enum rhine_quirks {
	rqWOL		= 0x0001,	/* Wake-On-LAN support */
	rqForceReset	= 0x0002,
	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
	rqRhineI	= 0x0100,	/* See comment below */
};
/*
 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
 * MMIO as well as for the collision counter and the Tx FIFO underflow
 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
 */

/* Beware of PCI posted writes */
#define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)

static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */
	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */
	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */
	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */
	{ }	/* terminate list */
};
MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);


/* Offsets to the device registers. */
enum register_offsets {
	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
	ChipCmd1=0x09, TQWake=0x0A,
	IntrStatus=0x0C, IntrEnable=0x0E,
	MulticastFilter0=0x10, MulticastFilter1=0x14,
	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
	StickyHW=0x83, IntrStatus2=0x84,
	CamMask=0x88, CamCon=0x92, CamAddr=0x93,
	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
	WOLcrClr1=0xA6, WOLcgClr=0xA7,
	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
};

/* Bits in ConfigD */
enum backoff_bits {
	BackOptional=0x01, BackModify=0x02,
	BackCaptureEffect=0x04, BackRandom=0x08
};

/* Bits in the TxConfig (TCR) register */
enum tcr_bits {
	TCR_PQEN=0x01,
	TCR_LB0=0x02,		/* loopback[0] */
	TCR_LB1=0x04,		/* loopback[1] */
	TCR_OFSET=0x08,
	TCR_RTGOPT=0x10,
	TCR_RTFT0=0x20,
	TCR_RTFT1=0x40,
	TCR_RTSF=0x80,
};

/* Bits in the CamCon (CAMC) register */
enum camcon_bits {
	CAMC_CAMEN=0x01,
	CAMC_VCAMSL=0x02,
	CAMC_CAMWR=0x04,
	CAMC_CAMRD=0x08,
};

/* Bits in the PCIBusConfig1 (BCR1) register */
enum bcr1_bits {
	BCR1_POT0=0x01,
	BCR1_POT1=0x02,
	BCR1_POT2=0x04,
	BCR1_CTFT0=0x08,
	BCR1_CTFT1=0x10,
	BCR1_CTSF=0x20,
	BCR1_TXQNOBK=0x40,	/* for VT6105 */
	BCR1_VIDFR=0x80,	/* for VT6105 */
	BCR1_MED0=0x40,		/* for VT6102 */
	BCR1_MED1=0x80,		/* for VT6102 */
};

#ifdef USE_MMIO
/* Registers we check that mmio and reg are the same. */
static const int mmio_verify_registers[] = {
	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
	0
};
#endif

/* Bits in the interrupt status/mask registers. */
enum intr_status_bits {
	IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
	IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
	IntrPCIErr=0x0040,
	IntrStatsMax=0x0080, IntrRxEarly=0x0100,
	IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
	IntrTxAborted=0x2000, IntrLinkChange=0x4000,
	IntrRxWakeUp=0x8000,
	IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
	IntrTxDescRace=0x080000,	/* mapped from IntrStatus2 */
	IntrTxErrSummary=0x082218,
};

/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
enum wol_bits {
	WOLucast	= 0x10,
	WOLmagic	= 0x20,
	WOLbmcast	= 0x30,
	WOLlnkon	= 0x40,
	WOLlnkoff	= 0x80,
};

/* The Rx and Tx buffer descriptors. */
struct rx_desc {
	__le32 rx_status;
	__le32 desc_length; /* Chain flag, Buffer/frame length */
	__le32 addr;
	__le32 next_desc;
};
struct tx_desc {
	__le32 tx_status;
	__le32 desc_length; /* Chain flag, Tx Config, Frame length */
	__le32 addr;
	__le32 next_desc;
};

/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
#define TXDESC		0x00e08000

enum rx_status_bits {
	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
};

/* Bits in *_desc.*_status */
enum desc_status_bits {
	DescOwn=0x80000000
};

/* Bits in *_desc.*_length */
enum desc_length_bits {
	DescTag=0x00010000
};

/* Bits in ChipCmd. */
enum chip_cmd_bits {
	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
};

struct rhine_private {
	/* Bit mask for configured VLAN ids */
	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];

	/* Descriptor rings */
	struct rx_desc *rx_ring;
	struct tx_desc *tx_ring;
	dma_addr_t rx_ring_dma;
	dma_addr_t tx_ring_dma;

	/* The addresses of receive-in-place skbuffs. */
	struct sk_buff *rx_skbuff[RX_RING_SIZE];
	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];

	/* The saved address of a sent-in-place packet/buffer, for later free(). */
	struct sk_buff *tx_skbuff[TX_RING_SIZE];
	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];

	/* Tx bounce buffers (Rhine-I only) */
	unsigned char *tx_buf[TX_RING_SIZE];
	unsigned char *tx_bufs;
	dma_addr_t tx_bufs_dma;

	struct pci_dev *pdev;
	long pioaddr;
	struct net_device *dev;
	struct napi_struct napi;
	spinlock_t lock;
	struct work_struct reset_task;

	/* Frequently used values: keep some adjacent for cache effect. */
	u32 quirks;
	struct rx_desc *rx_head_desc;
	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
	unsigned int cur_tx, dirty_tx;
	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
	u8 wolopts;

	u8 tx_thresh, rx_thresh;

	struct mii_if_info mii_if;
	void __iomem *base;
};

#define BYTE_REG_BITS_ON(x, p)      do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
#define WORD_REG_BITS_ON(x, p)      do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
#define DWORD_REG_BITS_ON(x, p)     do { iowrite32((ioread32((p))|(x)), (p)); } while (0)

#define BYTE_REG_BITS_IS_ON(x, p)   (ioread8((p)) & (x))
#define WORD_REG_BITS_IS_ON(x, p)   (ioread16((p)) & (x))
#define DWORD_REG_BITS_IS_ON(x, p)  (ioread32((p)) & (x))

#define BYTE_REG_BITS_OFF(x, p)     do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
#define WORD_REG_BITS_OFF(x, p)     do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
#define DWORD_REG_BITS_OFF(x, p)    do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)

#define BYTE_REG_BITS_SET(x, m, p)   do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
#define WORD_REG_BITS_SET(x, m, p)   do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
#define DWORD_REG_BITS_SET(x, m, p)  do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)


static int  mdio_read(struct net_device *dev, int phy_id, int location);
static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
static int  rhine_open(struct net_device *dev);
static void rhine_reset_task(struct work_struct *work);
static void rhine_tx_timeout(struct net_device *dev);
static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
				  struct net_device *dev);
static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
static void rhine_tx(struct net_device *dev);
static int rhine_rx(struct net_device *dev, int limit);
static void rhine_error(struct net_device *dev, int intr_status);
static void rhine_set_rx_mode(struct net_device *dev);
static struct net_device_stats *rhine_get_stats(struct net_device *dev);
static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static const struct ethtool_ops netdev_ethtool_ops;
static int  rhine_close(struct net_device *dev);
static void rhine_shutdown (struct pci_dev *pdev);
static void rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid);
static void rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid);
static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr);
static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr);
static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask);
static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask);
static void rhine_init_cam_filter(struct net_device *dev);
static void rhine_update_vcam(struct net_device *dev);

#define RHINE_WAIT_FOR(condition)				\
do {								\
	int i = 1024;						\
	while (!(condition) && --i)				\
		;						\
	if (debug > 1 && i < 512)				\
		pr_info("%4d cycles used @ %s:%d\n",		\
			1024 - i, __func__, __LINE__);		\
} while (0)

static inline u32 get_intr_status(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	u32 intr_status;

	intr_status = ioread16(ioaddr + IntrStatus);
	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
	if (rp->quirks & rqStatusWBRace)
		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
	return intr_status;
}

/*
 * Get power related registers into sane state.
 * Notify user about past WOL event.
 */
static void rhine_power_init(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	u16 wolstat;

	if (rp->quirks & rqWOL) {
		/* Make sure chip is in power state D0 */
		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);

		/* Disable "force PME-enable" */
		iowrite8(0x80, ioaddr + WOLcgClr);

		/* Clear power-event config bits (WOL) */
		iowrite8(0xFF, ioaddr + WOLcrClr);
		/* More recent cards can manage two additional patterns */
		if (rp->quirks & rq6patterns)
			iowrite8(0x03, ioaddr + WOLcrClr1);

		/* Save power-event status bits */
		wolstat = ioread8(ioaddr + PwrcsrSet);
		if (rp->quirks & rq6patterns)
			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;

		/* Clear power-event status bits */
		iowrite8(0xFF, ioaddr + PwrcsrClr);
		if (rp->quirks & rq6patterns)
			iowrite8(0x03, ioaddr + PwrcsrClr1);

		if (wolstat) {
			char *reason;
			switch (wolstat) {
			case WOLmagic:
				reason = "Magic packet";
				break;
			case WOLlnkon:
				reason = "Link went up";
				break;
			case WOLlnkoff:
				reason = "Link went down";
				break;
			case WOLucast:
				reason = "Unicast packet";
				break;
			case WOLbmcast:
				reason = "Multicast/broadcast packet";
				break;
			default:
				reason = "Unknown";
			}
			netdev_info(dev, "Woke system up. Reason: %s\n",
				    reason);
		}
	}
}

static void rhine_chip_reset(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
	IOSYNC;

	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
		netdev_info(dev, "Reset not complete yet. Trying harder.\n");

		/* Force reset */
		if (rp->quirks & rqForceReset)
			iowrite8(0x40, ioaddr + MiscCmd);

		/* Reset can take somewhat longer (rare) */
		RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
	}

	if (debug > 1)
		netdev_info(dev, "Reset %s\n",
			    (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
			    "failed" : "succeeded");
}

#ifdef USE_MMIO
static void enable_mmio(long pioaddr, u32 quirks)
{
	int n;
	if (quirks & rqRhineI) {
		/* More recent docs say that this bit is reserved ... */
		n = inb(pioaddr + ConfigA) | 0x20;
		outb(n, pioaddr + ConfigA);
	} else {
		n = inb(pioaddr + ConfigD) | 0x80;
		outb(n, pioaddr + ConfigD);
	}
}
#endif

/*
 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
 * (plus 0x6C for Rhine-I/II)
 */
static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	outb(0x20, pioaddr + MACRegEEcsr);
	RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));

#ifdef USE_MMIO
	/*
	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
	 * MMIO. If reloading EEPROM was done first this could be avoided, but
	 * it is not known if that still works with the "win98-reboot" problem.
	 */
	enable_mmio(pioaddr, rp->quirks);
#endif

	/* Turn off EEPROM-controlled wake-up (magic packet) */
	if (rp->quirks & rqWOL)
		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);

}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void rhine_poll(struct net_device *dev)
{
	disable_irq(dev->irq);
	rhine_interrupt(dev->irq, (void *)dev);
	enable_irq(dev->irq);
}
#endif

static int rhine_napipoll(struct napi_struct *napi, int budget)
{
	struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
	struct net_device *dev = rp->dev;
	void __iomem *ioaddr = rp->base;
	int work_done;

	work_done = rhine_rx(dev, budget);

	if (work_done < budget) {
		napi_complete(napi);

		iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
			  IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
			  IntrTxDone | IntrTxError | IntrTxUnderrun |
			  IntrPCIErr | IntrStatsMax | IntrLinkChange,
			  ioaddr + IntrEnable);
	}
	return work_done;
}

static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
{
	struct rhine_private *rp = netdev_priv(dev);

	/* Reset the chip to erase previous misconfiguration. */
	rhine_chip_reset(dev);

	/* Rhine-I needs extra time to recuperate before EEPROM reload */
	if (rp->quirks & rqRhineI)
		msleep(5);

	/* Reload EEPROM controlled bytes cleared by soft reset */
	rhine_reload_eeprom(pioaddr, dev);
}

static const struct net_device_ops rhine_netdev_ops = {
	.ndo_open		 = rhine_open,
	.ndo_stop		 = rhine_close,
	.ndo_start_xmit		 = rhine_start_tx,
	.ndo_get_stats		 = rhine_get_stats,
	.ndo_set_multicast_list	 = rhine_set_rx_mode,
	.ndo_change_mtu		 = eth_change_mtu,
	.ndo_validate_addr	 = eth_validate_addr,
	.ndo_set_mac_address 	 = eth_mac_addr,
	.ndo_do_ioctl		 = netdev_ioctl,
	.ndo_tx_timeout 	 = rhine_tx_timeout,
	.ndo_vlan_rx_add_vid	 = rhine_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	 = rhine_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	 = rhine_poll,
#endif
};

static int __devinit rhine_init_one(struct pci_dev *pdev,
				    const struct pci_device_id *ent)
{
	struct net_device *dev;
	struct rhine_private *rp;
	int i, rc;
	u32 quirks;
	long pioaddr;
	long memaddr;
	void __iomem *ioaddr;
	int io_size, phy_id;
	const char *name;
#ifdef USE_MMIO
	int bar = 1;
#else
	int bar = 0;
#endif

/* when built into the kernel, we only print version if device is found */
#ifndef MODULE
	pr_info_once("%s\n", version);
#endif

	io_size = 256;
	phy_id = 0;
	quirks = 0;
	name = "Rhine";
	if (pdev->revision < VTunknown0) {
		quirks = rqRhineI;
		io_size = 128;
	}
	else if (pdev->revision >= VT6102) {
		quirks = rqWOL | rqForceReset;
		if (pdev->revision < VT6105) {
			name = "Rhine II";
			quirks |= rqStatusWBRace;	/* Rhine-II exclusive */
		}
		else {
			phy_id = 1;	/* Integrated PHY, phy_id fixed to 1 */
			if (pdev->revision >= VT6105_B0)
				quirks |= rq6patterns;
			if (pdev->revision < VT6105M)
				name = "Rhine III";
			else
				name = "Rhine III (Management Adapter)";
		}
	}

	rc = pci_enable_device(pdev);
	if (rc)
		goto err_out;

	/* this should always be supported */
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
	if (rc) {
		dev_err(&pdev->dev,
			"32-bit PCI DMA addresses not supported by the card!?\n");
		goto err_out;
	}

	/* sanity check */
	if ((pci_resource_len(pdev, 0) < io_size) ||
	    (pci_resource_len(pdev, 1) < io_size)) {
		rc = -EIO;
		dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
		goto err_out;
	}

	pioaddr = pci_resource_start(pdev, 0);
	memaddr = pci_resource_start(pdev, 1);

	pci_set_master(pdev);

	dev = alloc_etherdev(sizeof(struct rhine_private));
	if (!dev) {
		rc = -ENOMEM;
		dev_err(&pdev->dev, "alloc_etherdev failed\n");
		goto err_out;
	}
	SET_NETDEV_DEV(dev, &pdev->dev);

	rp = netdev_priv(dev);
	rp->dev = dev;
	rp->quirks = quirks;
	rp->pioaddr = pioaddr;
	rp->pdev = pdev;

	rc = pci_request_regions(pdev, DRV_NAME);
	if (rc)
		goto err_out_free_netdev;

	ioaddr = pci_iomap(pdev, bar, io_size);
	if (!ioaddr) {
		rc = -EIO;
		dev_err(&pdev->dev,
			"ioremap failed for device %s, region 0x%X @ 0x%lX\n",
			pci_name(pdev), io_size, memaddr);
		goto err_out_free_res;
	}

#ifdef USE_MMIO
	enable_mmio(pioaddr, quirks);

	/* Check that selected MMIO registers match the PIO ones */
	i = 0;
	while (mmio_verify_registers[i]) {
		int reg = mmio_verify_registers[i++];
		unsigned char a = inb(pioaddr+reg);
		unsigned char b = readb(ioaddr+reg);
		if (a != b) {
			rc = -EIO;
			dev_err(&pdev->dev,
				"MMIO do not match PIO [%02x] (%02x != %02x)\n",
				reg, a, b);
			goto err_out_unmap;
		}
	}
#endif /* USE_MMIO */

	dev->base_addr = (unsigned long)ioaddr;
	rp->base = ioaddr;

	/* Get chip registers into a sane state */
	rhine_power_init(dev);
	rhine_hw_init(dev, pioaddr);

	for (i = 0; i < 6; i++)
		dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);

	if (!is_valid_ether_addr(dev->dev_addr)) {
		/* Report it and use a random ethernet address instead */
		netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
		random_ether_addr(dev->dev_addr);
		netdev_info(dev, "Using random MAC address: %pM\n",
			    dev->dev_addr);
	}
	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);

	/* For Rhine-I/II, phy_id is loaded from EEPROM */
	if (!phy_id)
		phy_id = ioread8(ioaddr + 0x6C);

	dev->irq = pdev->irq;

	spin_lock_init(&rp->lock);
	INIT_WORK(&rp->reset_task, rhine_reset_task);

	rp->mii_if.dev = dev;
	rp->mii_if.mdio_read = mdio_read;
	rp->mii_if.mdio_write = mdio_write;
	rp->mii_if.phy_id_mask = 0x1f;
	rp->mii_if.reg_num_mask = 0x1f;

	/* The chip-specific entries in the device structure. */
	dev->netdev_ops = &rhine_netdev_ops;
	dev->ethtool_ops = &netdev_ethtool_ops,
	dev->watchdog_timeo = TX_TIMEOUT;

	netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);

	if (rp->quirks & rqRhineI)
		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;

	if (pdev->revision >= VT6105M)
		dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
		NETIF_F_HW_VLAN_FILTER;

	/* dev->name not defined before register_netdev()! */
	rc = register_netdev(dev);
	if (rc)
		goto err_out_unmap;

	netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
		    name,
#ifdef USE_MMIO
		    memaddr,
#else
		    (long)ioaddr,
#endif
		    dev->dev_addr, pdev->irq);

	pci_set_drvdata(pdev, dev);

	{
		u16 mii_cmd;
		int mii_status = mdio_read(dev, phy_id, 1);
		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
		if (mii_status != 0xffff && mii_status != 0x0000) {
			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
			netdev_info(dev,
				    "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
				    phy_id,
				    mii_status, rp->mii_if.advertising,
				    mdio_read(dev, phy_id, 5));

			/* set IFF_RUNNING */
			if (mii_status & BMSR_LSTATUS)
				netif_carrier_on(dev);
			else
				netif_carrier_off(dev);

		}
	}
	rp->mii_if.phy_id = phy_id;
	if (debug > 1 && avoid_D3)
		netdev_info(dev, "No D3 power state at shutdown\n");

	return 0;

err_out_unmap:
	pci_iounmap(pdev, ioaddr);
err_out_free_res:
	pci_release_regions(pdev);
err_out_free_netdev:
	free_netdev(dev);
err_out:
	return rc;
}

static int alloc_ring(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void *ring;
	dma_addr_t ring_dma;

	ring = pci_alloc_consistent(rp->pdev,
				    RX_RING_SIZE * sizeof(struct rx_desc) +
				    TX_RING_SIZE * sizeof(struct tx_desc),
				    &ring_dma);
	if (!ring) {
		netdev_err(dev, "Could not allocate DMA memory\n");
		return -ENOMEM;
	}
	if (rp->quirks & rqRhineI) {
		rp->tx_bufs = pci_alloc_consistent(rp->pdev,
						   PKT_BUF_SZ * TX_RING_SIZE,
						   &rp->tx_bufs_dma);
		if (rp->tx_bufs == NULL) {
			pci_free_consistent(rp->pdev,
				    RX_RING_SIZE * sizeof(struct rx_desc) +
				    TX_RING_SIZE * sizeof(struct tx_desc),
				    ring, ring_dma);
			return -ENOMEM;
		}
	}

	rp->rx_ring = ring;
	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
	rp->rx_ring_dma = ring_dma;
	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);

	return 0;
}

static void free_ring(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);

	pci_free_consistent(rp->pdev,
			    RX_RING_SIZE * sizeof(struct rx_desc) +
			    TX_RING_SIZE * sizeof(struct tx_desc),
			    rp->rx_ring, rp->rx_ring_dma);
	rp->tx_ring = NULL;

	if (rp->tx_bufs)
		pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
				    rp->tx_bufs, rp->tx_bufs_dma);

	rp->tx_bufs = NULL;

}

static void alloc_rbufs(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	dma_addr_t next;
	int i;

	rp->dirty_rx = rp->cur_rx = 0;

	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
	rp->rx_head_desc = &rp->rx_ring[0];
	next = rp->rx_ring_dma;

	/* Init the ring entries */
	for (i = 0; i < RX_RING_SIZE; i++) {
		rp->rx_ring[i].rx_status = 0;
		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
		next += sizeof(struct rx_desc);
		rp->rx_ring[i].next_desc = cpu_to_le32(next);
		rp->rx_skbuff[i] = NULL;
	}
	/* Mark the last entry as wrapping the ring. */
	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);

	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
		rp->rx_skbuff[i] = skb;
		if (skb == NULL)
			break;
		skb->dev = dev;                 /* Mark as being used by this device. */

		rp->rx_skbuff_dma[i] =
			pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
				       PCI_DMA_FROMDEVICE);

		rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
	}
	rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
}

static void free_rbufs(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	int i;

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		rp->rx_ring[i].rx_status = 0;
		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
		if (rp->rx_skbuff[i]) {
			pci_unmap_single(rp->pdev,
					 rp->rx_skbuff_dma[i],
					 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
			dev_kfree_skb(rp->rx_skbuff[i]);
		}
		rp->rx_skbuff[i] = NULL;
	}
}

static void alloc_tbufs(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	dma_addr_t next;
	int i;

	rp->dirty_tx = rp->cur_tx = 0;
	next = rp->tx_ring_dma;
	for (i = 0; i < TX_RING_SIZE; i++) {
		rp->tx_skbuff[i] = NULL;
		rp->tx_ring[i].tx_status = 0;
		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
		next += sizeof(struct tx_desc);
		rp->tx_ring[i].next_desc = cpu_to_le32(next);
		if (rp->quirks & rqRhineI)
			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
	}
	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);

}

static void free_tbufs(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	int i;

	for (i = 0; i < TX_RING_SIZE; i++) {
		rp->tx_ring[i].tx_status = 0;
		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
		if (rp->tx_skbuff[i]) {
			if (rp->tx_skbuff_dma[i]) {
				pci_unmap_single(rp->pdev,
						 rp->tx_skbuff_dma[i],
						 rp->tx_skbuff[i]->len,
						 PCI_DMA_TODEVICE);
			}
			dev_kfree_skb(rp->tx_skbuff[i]);
		}
		rp->tx_skbuff[i] = NULL;
		rp->tx_buf[i] = NULL;
	}
}

static void rhine_check_media(struct net_device *dev, unsigned int init_media)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	mii_check_media(&rp->mii_if, debug, init_media);

	if (rp->mii_if.full_duplex)
	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
		   ioaddr + ChipCmd1);
	else
	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
		   ioaddr + ChipCmd1);
	if (debug > 1)
		netdev_info(dev, "force_media %d, carrier %d\n",
			    rp->mii_if.force_media, netif_carrier_ok(dev));
}

/* Called after status of force_media possibly changed */
static void rhine_set_carrier(struct mii_if_info *mii)
{
	if (mii->force_media) {
		/* autoneg is off: Link is always assumed to be up */
		if (!netif_carrier_ok(mii->dev))
			netif_carrier_on(mii->dev);
	}
	else	/* Let MMI library update carrier status */
		rhine_check_media(mii->dev, 0);
	if (debug > 1)
		netdev_info(mii->dev, "force_media %d, carrier %d\n",
			    mii->force_media, netif_carrier_ok(mii->dev));
}

/**
 * rhine_set_cam - set CAM multicast filters
 * @ioaddr: register block of this Rhine
 * @idx: multicast CAM index [0..MCAM_SIZE-1]
 * @addr: multicast address (6 bytes)
 *
 * Load addresses into multicast filters.
 */
static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
{
	int i;

	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
	wmb();

	/* Paranoid -- idx out of range should never happen */
	idx &= (MCAM_SIZE - 1);

	iowrite8((u8) idx, ioaddr + CamAddr);

	for (i = 0; i < 6; i++, addr++)
		iowrite8(*addr, ioaddr + MulticastFilter0 + i);
	udelay(10);
	wmb();

	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
	udelay(10);

	iowrite8(0, ioaddr + CamCon);
}

/**
 * rhine_set_vlan_cam - set CAM VLAN filters
 * @ioaddr: register block of this Rhine
 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
 * @addr: VLAN ID (2 bytes)
 *
 * Load addresses into VLAN filters.
 */
static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
{
	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
	wmb();

	/* Paranoid -- idx out of range should never happen */
	idx &= (VCAM_SIZE - 1);

	iowrite8((u8) idx, ioaddr + CamAddr);

	iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
	udelay(10);
	wmb();

	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
	udelay(10);

	iowrite8(0, ioaddr + CamCon);
}

/**
 * rhine_set_cam_mask - set multicast CAM mask
 * @ioaddr: register block of this Rhine
 * @mask: multicast CAM mask
 *
 * Mask sets multicast filters active/inactive.
 */
static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
{
	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
	wmb();

	/* write mask */
	iowrite32(mask, ioaddr + CamMask);

	/* disable CAMEN */
	iowrite8(0, ioaddr + CamCon);
}

/**
 * rhine_set_vlan_cam_mask - set VLAN CAM mask
 * @ioaddr: register block of this Rhine
 * @mask: VLAN CAM mask
 *
 * Mask sets VLAN filters active/inactive.
 */
static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
{
	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
	wmb();

	/* write mask */
	iowrite32(mask, ioaddr + CamMask);

	/* disable CAMEN */
	iowrite8(0, ioaddr + CamCon);
}

/**
 * rhine_init_cam_filter - initialize CAM filters
 * @dev: network device
 *
 * Initialize (disable) hardware VLAN and multicast support on this
 * Rhine.
 */
static void rhine_init_cam_filter(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	/* Disable all CAMs */
	rhine_set_vlan_cam_mask(ioaddr, 0);
	rhine_set_cam_mask(ioaddr, 0);

	/* disable hardware VLAN support */
	BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
	BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
}

/**
 * rhine_update_vcam - update VLAN CAM filters
 * @rp: rhine_private data of this Rhine
 *
 * Update VLAN CAM filters to match configuration change.
 */
static void rhine_update_vcam(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	u16 vid;
	u32 vCAMmask = 0;	/* 32 vCAMs (6105M and better) */
	unsigned int i = 0;

	for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
		rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
		vCAMmask |= 1 << i;
		if (++i >= VCAM_SIZE)
			break;
	}
	rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
}

static void rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
{
	struct rhine_private *rp = netdev_priv(dev);

	spin_lock_irq(&rp->lock);
	set_bit(vid, rp->active_vlans);
	rhine_update_vcam(dev);
	spin_unlock_irq(&rp->lock);
}

static void rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
{
	struct rhine_private *rp = netdev_priv(dev);

	spin_lock_irq(&rp->lock);
	clear_bit(vid, rp->active_vlans);
	rhine_update_vcam(dev);
	spin_unlock_irq(&rp->lock);
}

static void init_registers(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	int i;

	for (i = 0; i < 6; i++)
		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);

	/* Initialize other registers. */
	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
	/* Configure initial FIFO thresholds. */
	iowrite8(0x20, ioaddr + TxConfig);
	rp->tx_thresh = 0x20;
	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */

	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);

	rhine_set_rx_mode(dev);

	if (rp->pdev->revision >= VT6105M)
		rhine_init_cam_filter(dev);

	napi_enable(&rp->napi);

	/* Enable interrupts by setting the interrupt mask. */
	iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
	       IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
	       IntrTxDone | IntrTxError | IntrTxUnderrun |
	       IntrPCIErr | IntrStatsMax | IntrLinkChange,
	       ioaddr + IntrEnable);

	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
	       ioaddr + ChipCmd);
	rhine_check_media(dev, 1);
}

/* Enable MII link status auto-polling (required for IntrLinkChange) */
static void rhine_enable_linkmon(void __iomem *ioaddr)
{
	iowrite8(0, ioaddr + MIICmd);
	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
	iowrite8(0x80, ioaddr + MIICmd);

	RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));

	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
}

/* Disable MII link status auto-polling (required for MDIO access) */
static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
{
	iowrite8(0, ioaddr + MIICmd);

	if (quirks & rqRhineI) {
		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR

		/* Can be called from ISR. Evil. */
		mdelay(1);

		/* 0x80 must be set immediately before turning it off */
		iowrite8(0x80, ioaddr + MIICmd);

		RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);

		/* Heh. Now clear 0x80 again. */
		iowrite8(0, ioaddr + MIICmd);
	}
	else
		RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
}

/* Read and write over the MII Management Data I/O (MDIO) interface. */

static int mdio_read(struct net_device *dev, int phy_id, int regnum)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	int result;

	rhine_disable_linkmon(ioaddr, rp->quirks);

	/* rhine_disable_linkmon already cleared MIICmd */
	iowrite8(phy_id, ioaddr + MIIPhyAddr);
	iowrite8(regnum, ioaddr + MIIRegAddr);
	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
	RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
	result = ioread16(ioaddr + MIIData);

	rhine_enable_linkmon(ioaddr);
	return result;
}

static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	rhine_disable_linkmon(ioaddr, rp->quirks);

	/* rhine_disable_linkmon already cleared MIICmd */
	iowrite8(phy_id, ioaddr + MIIPhyAddr);
	iowrite8(regnum, ioaddr + MIIRegAddr);
	iowrite16(value, ioaddr + MIIData);
	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
	RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));

	rhine_enable_linkmon(ioaddr);
}

static int rhine_open(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	int rc;

	rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
			dev);
	if (rc)
		return rc;

	if (debug > 1)
		netdev_dbg(dev, "%s() irq %d\n", __func__, rp->pdev->irq);

	rc = alloc_ring(dev);
	if (rc) {
		free_irq(rp->pdev->irq, dev);
		return rc;
	}
	alloc_rbufs(dev);
	alloc_tbufs(dev);
	rhine_chip_reset(dev);
	init_registers(dev);
	if (debug > 2)
		netdev_dbg(dev, "%s() Done - status %04x MII status: %04x\n",
			   __func__, ioread16(ioaddr + ChipCmd),
			   mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));

	netif_start_queue(dev);

	return 0;
}

static void rhine_reset_task(struct work_struct *work)
{
	struct rhine_private *rp = container_of(work, struct rhine_private,
						reset_task);
	struct net_device *dev = rp->dev;

	/* protect against concurrent rx interrupts */
	disable_irq(rp->pdev->irq);

	napi_disable(&rp->napi);

	spin_lock_bh(&rp->lock);

	/* clear all descriptors */
	free_tbufs(dev);
	free_rbufs(dev);
	alloc_tbufs(dev);
	alloc_rbufs(dev);

	/* Reinitialize the hardware. */
	rhine_chip_reset(dev);
	init_registers(dev);

	spin_unlock_bh(&rp->lock);
	enable_irq(rp->pdev->irq);

	dev->trans_start = jiffies; /* prevent tx timeout */
	dev->stats.tx_errors++;
	netif_wake_queue(dev);
}

static void rhine_tx_timeout(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
		    ioread16(ioaddr + IntrStatus),
		    mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));

	schedule_work(&rp->reset_task);
}

static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
				  struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	unsigned entry;
	unsigned long flags;

	/* Caution: the write order is important here, set the field
	   with the "ownership" bits last. */

	/* Calculate the next Tx descriptor entry. */
	entry = rp->cur_tx % TX_RING_SIZE;

	if (skb_padto(skb, ETH_ZLEN))
		return NETDEV_TX_OK;

	rp->tx_skbuff[entry] = skb;

	if ((rp->quirks & rqRhineI) &&
	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
		/* Must use alignment buffer. */
		if (skb->len > PKT_BUF_SZ) {
			/* packet too long, drop it */
			dev_kfree_skb(skb);
			rp->tx_skbuff[entry] = NULL;
			dev->stats.tx_dropped++;
			return NETDEV_TX_OK;
		}

		/* Padding is not copied and so must be redone. */
		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
		if (skb->len < ETH_ZLEN)
			memset(rp->tx_buf[entry] + skb->len, 0,
			       ETH_ZLEN - skb->len);
		rp->tx_skbuff_dma[entry] = 0;
		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
						      (rp->tx_buf[entry] -
						       rp->tx_bufs));
	} else {
		rp->tx_skbuff_dma[entry] =
			pci_map_single(rp->pdev, skb->data, skb->len,
				       PCI_DMA_TODEVICE);
		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
	}

	rp->tx_ring[entry].desc_length =
		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));

	if (unlikely(vlan_tx_tag_present(skb))) {
		rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16);
		/* request tagging */
		rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
	}
	else
		rp->tx_ring[entry].tx_status = 0;

	/* lock eth irq */
	spin_lock_irqsave(&rp->lock, flags);
	wmb();
	rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
	wmb();

	rp->cur_tx++;

	/* Non-x86 Todo: explicitly flush cache lines here. */

	if (vlan_tx_tag_present(skb))
		/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
		BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);

	/* Wake the potentially-idle transmit channel */
	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
	       ioaddr + ChipCmd1);
	IOSYNC;

	if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
		netif_stop_queue(dev);

	spin_unlock_irqrestore(&rp->lock, flags);

	if (debug > 4) {
		netdev_dbg(dev, "Transmit frame #%d queued in slot %d\n",
			   rp->cur_tx-1, entry);
	}
	return NETDEV_TX_OK;
}

/* The interrupt handler does all of the Rx thread work and cleans up
   after the Tx thread. */
static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
{
	struct net_device *dev = dev_instance;
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	u32 intr_status;
	int boguscnt = max_interrupt_work;
	int handled = 0;

	while ((intr_status = get_intr_status(dev))) {
		handled = 1;

		/* Acknowledge all of the current interrupt sources ASAP. */
		if (intr_status & IntrTxDescRace)
			iowrite8(0x08, ioaddr + IntrStatus2);
		iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
		IOSYNC;

		if (debug > 4)
			netdev_dbg(dev, "Interrupt, status %08x\n",
				   intr_status);

		if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
				   IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
			iowrite16(IntrTxAborted |
				  IntrTxDone | IntrTxError | IntrTxUnderrun |
				  IntrPCIErr | IntrStatsMax | IntrLinkChange,
				  ioaddr + IntrEnable);

			napi_schedule(&rp->napi);
		}

		if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
			if (intr_status & IntrTxErrSummary) {
				/* Avoid scavenging before Tx engine turned off */
				RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
				if (debug > 2 &&
				    ioread8(ioaddr+ChipCmd) & CmdTxOn)
					netdev_warn(dev,
						    "%s: Tx engine still on\n",
						    __func__);
			}
			rhine_tx(dev);
		}

		/* Abnormal error summary/uncommon events handlers. */
		if (intr_status & (IntrPCIErr | IntrLinkChange |
				   IntrStatsMax | IntrTxError | IntrTxAborted |
				   IntrTxUnderrun | IntrTxDescRace))
			rhine_error(dev, intr_status);

		if (--boguscnt < 0) {
			netdev_warn(dev, "Too much work at interrupt, status=%#08x\n",
				    intr_status);
			break;
		}
	}

	if (debug > 3)
		netdev_dbg(dev, "exiting interrupt, status=%08x\n",
			   ioread16(ioaddr + IntrStatus));
	return IRQ_RETVAL(handled);
}

/* This routine is logically part of the interrupt handler, but isolated
   for clarity. */
static void rhine_tx(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;

	spin_lock(&rp->lock);

	/* find and cleanup dirty tx descriptors */
	while (rp->dirty_tx != rp->cur_tx) {
		txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
		if (debug > 6)
			netdev_dbg(dev, "Tx scavenge %d status %08x\n",
				   entry, txstatus);
		if (txstatus & DescOwn)
			break;
		if (txstatus & 0x8000) {
			if (debug > 1)
				netdev_dbg(dev, "Transmit error, Tx status %08x\n",
					   txstatus);
			dev->stats.tx_errors++;
			if (txstatus & 0x0400)
				dev->stats.tx_carrier_errors++;
			if (txstatus & 0x0200)
				dev->stats.tx_window_errors++;
			if (txstatus & 0x0100)
				dev->stats.tx_aborted_errors++;
			if (txstatus & 0x0080)
				dev->stats.tx_heartbeat_errors++;
			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
				dev->stats.tx_fifo_errors++;
				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
				break; /* Keep the skb - we try again */
			}
			/* Transmitter restarted in 'abnormal' handler. */
		} else {
			if (rp->quirks & rqRhineI)
				dev->stats.collisions += (txstatus >> 3) & 0x0F;
			else
				dev->stats.collisions += txstatus & 0x0F;
			if (debug > 6)
				netdev_dbg(dev, "collisions: %1.1x:%1.1x\n",
					   (txstatus >> 3) & 0xF,
					   txstatus & 0xF);
			dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
			dev->stats.tx_packets++;
		}
		/* Free the original skb. */
		if (rp->tx_skbuff_dma[entry]) {
			pci_unmap_single(rp->pdev,
					 rp->tx_skbuff_dma[entry],
					 rp->tx_skbuff[entry]->len,
					 PCI_DMA_TODEVICE);
		}
		dev_kfree_skb_irq(rp->tx_skbuff[entry]);
		rp->tx_skbuff[entry] = NULL;
		entry = (++rp->dirty_tx) % TX_RING_SIZE;
	}
	if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
		netif_wake_queue(dev);

	spin_unlock(&rp->lock);
}

/**
 * rhine_get_vlan_tci - extract TCI from Rx data buffer
 * @skb: pointer to sk_buff
 * @data_size: used data area of the buffer including CRC
 *
 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
 * aligned following the CRC.
 */
static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
{
	u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
	return be16_to_cpup((__be16 *)trailer);
}

/* Process up to limit frames from receive ring */
static int rhine_rx(struct net_device *dev, int limit)
{
	struct rhine_private *rp = netdev_priv(dev);
	int count;
	int entry = rp->cur_rx % RX_RING_SIZE;

	if (debug > 4) {
		netdev_dbg(dev, "%s(), entry %d status %08x\n",
			   __func__, entry,
			   le32_to_cpu(rp->rx_head_desc->rx_status));
	}

	/* If EOP is set on the next entry, it's a new packet. Send it up. */
	for (count = 0; count < limit; ++count) {
		struct rx_desc *desc = rp->rx_head_desc;
		u32 desc_status = le32_to_cpu(desc->rx_status);
		u32 desc_length = le32_to_cpu(desc->desc_length);
		int data_size = desc_status >> 16;

		if (desc_status & DescOwn)
			break;

		if (debug > 4)
			netdev_dbg(dev, "%s() status is %08x\n",
				   __func__, desc_status);

		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
			if ((desc_status & RxWholePkt) != RxWholePkt) {
				netdev_warn(dev,
	"Oversized Ethernet frame spanned multiple buffers, "
	"entry %#x length %d status %08x!\n",
					    entry, data_size,
					    desc_status);
				netdev_warn(dev,
					    "Oversized Ethernet frame %p vs %p\n",
					    rp->rx_head_desc,
					    &rp->rx_ring[entry]);
				dev->stats.rx_length_errors++;
			} else if (desc_status & RxErr) {
				/* There was a error. */
				if (debug > 2)
					netdev_dbg(dev, "%s() Rx error was %08x\n",
						   __func__, desc_status);
				dev->stats.rx_errors++;
				if (desc_status & 0x0030)
					dev->stats.rx_length_errors++;
				if (desc_status & 0x0048)
					dev->stats.rx_fifo_errors++;
				if (desc_status & 0x0004)
					dev->stats.rx_frame_errors++;
				if (desc_status & 0x0002) {
					/* this can also be updated outside the interrupt handler */
					spin_lock(&rp->lock);
					dev->stats.rx_crc_errors++;
					spin_unlock(&rp->lock);
				}
			}
		} else {
			struct sk_buff *skb = NULL;
			/* Length should omit the CRC */
			int pkt_len = data_size - 4;
			u16 vlan_tci = 0;

			/* Check if the packet is long enough to accept without
			   copying to a minimally-sized skbuff. */
			if (pkt_len < rx_copybreak)
				skb = netdev_alloc_skb_ip_align(dev, pkt_len);
			if (skb) {
				pci_dma_sync_single_for_cpu(rp->pdev,
							    rp->rx_skbuff_dma[entry],
							    rp->rx_buf_sz,
							    PCI_DMA_FROMDEVICE);

				skb_copy_to_linear_data(skb,
						 rp->rx_skbuff[entry]->data,
						 pkt_len);
				skb_put(skb, pkt_len);
				pci_dma_sync_single_for_device(rp->pdev,
							       rp->rx_skbuff_dma[entry],
							       rp->rx_buf_sz,
							       PCI_DMA_FROMDEVICE);
			} else {
				skb = rp->rx_skbuff[entry];
				if (skb == NULL) {
					netdev_err(dev, "Inconsistent Rx descriptor chain\n");
					break;
				}
				rp->rx_skbuff[entry] = NULL;
				skb_put(skb, pkt_len);
				pci_unmap_single(rp->pdev,
						 rp->rx_skbuff_dma[entry],
						 rp->rx_buf_sz,
						 PCI_DMA_FROMDEVICE);
			}

			if (unlikely(desc_length & DescTag))
				vlan_tci = rhine_get_vlan_tci(skb, data_size);

			skb->protocol = eth_type_trans(skb, dev);

			if (unlikely(desc_length & DescTag))
				__vlan_hwaccel_put_tag(skb, vlan_tci);
			netif_receive_skb(skb);
			dev->stats.rx_bytes += pkt_len;
			dev->stats.rx_packets++;
		}
		entry = (++rp->cur_rx) % RX_RING_SIZE;
		rp->rx_head_desc = &rp->rx_ring[entry];
	}

	/* Refill the Rx ring buffers. */
	for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
		struct sk_buff *skb;
		entry = rp->dirty_rx % RX_RING_SIZE;
		if (rp->rx_skbuff[entry] == NULL) {
			skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
			rp->rx_skbuff[entry] = skb;
			if (skb == NULL)
				break;	/* Better luck next round. */
			skb->dev = dev;	/* Mark as being used by this device. */
			rp->rx_skbuff_dma[entry] =
				pci_map_single(rp->pdev, skb->data,
					       rp->rx_buf_sz,
					       PCI_DMA_FROMDEVICE);
			rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
		}
		rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
	}

	return count;
}

/*
 * Clears the "tally counters" for CRC errors and missed frames(?).
 * It has been reported that some chips need a write of 0 to clear
 * these, for others the counters are set to 1 when written to and
 * instead cleared when read. So we clear them both ways ...
 */
static inline void clear_tally_counters(void __iomem *ioaddr)
{
	iowrite32(0, ioaddr + RxMissed);
	ioread16(ioaddr + RxCRCErrs);
	ioread16(ioaddr + RxMissed);
}

static void rhine_restart_tx(struct net_device *dev) {
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	int entry = rp->dirty_tx % TX_RING_SIZE;
	u32 intr_status;

	/*
	 * If new errors occurred, we need to sort them out before doing Tx.
	 * In that case the ISR will be back here RSN anyway.
	 */
	intr_status = get_intr_status(dev);

	if ((intr_status & IntrTxErrSummary) == 0) {

		/* We know better than the chip where it should continue. */
		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
		       ioaddr + TxRingPtr);

		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
		       ioaddr + ChipCmd);

		if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
			/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
			BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);

		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
		       ioaddr + ChipCmd1);
		IOSYNC;
	}
	else {
		/* This should never happen */
		if (debug > 1)
			netdev_warn(dev, "%s() Another error occurred %08x\n",
				   __func__, intr_status);
	}

}

static void rhine_error(struct net_device *dev, int intr_status)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	spin_lock(&rp->lock);

	if (intr_status & IntrLinkChange)
		rhine_check_media(dev, 0);
	if (intr_status & IntrStatsMax) {
		dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
		dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
		clear_tally_counters(ioaddr);
	}
	if (intr_status & IntrTxAborted) {
		if (debug > 1)
			netdev_info(dev, "Abort %08x, frame dropped\n",
				    intr_status);
	}
	if (intr_status & IntrTxUnderrun) {
		if (rp->tx_thresh < 0xE0)
			BYTE_REG_BITS_SET((rp->tx_thresh += 0x20), 0x80, ioaddr + TxConfig);
		if (debug > 1)
			netdev_info(dev, "Transmitter underrun, Tx threshold now %02x\n",
				    rp->tx_thresh);
	}
	if (intr_status & IntrTxDescRace) {
		if (debug > 2)
			netdev_info(dev, "Tx descriptor write-back race\n");
	}
	if ((intr_status & IntrTxError) &&
	    (intr_status & (IntrTxAborted |
	     IntrTxUnderrun | IntrTxDescRace)) == 0) {
		if (rp->tx_thresh < 0xE0) {
			BYTE_REG_BITS_SET((rp->tx_thresh += 0x20), 0x80, ioaddr + TxConfig);
		}
		if (debug > 1)
			netdev_info(dev, "Unspecified error. Tx threshold now %02x\n",
				    rp->tx_thresh);
	}
	if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
			   IntrTxError))
		rhine_restart_tx(dev);

	if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
			    IntrTxError | IntrTxAborted | IntrNormalSummary |
			    IntrTxDescRace)) {
		if (debug > 1)
			netdev_err(dev, "Something Wicked happened! %08x\n",
				   intr_status);
	}

	spin_unlock(&rp->lock);
}

static struct net_device_stats *rhine_get_stats(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	unsigned long flags;

	spin_lock_irqsave(&rp->lock, flags);
	dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
	dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
	clear_tally_counters(ioaddr);
	spin_unlock_irqrestore(&rp->lock, flags);

	return &dev->stats;
}

static void rhine_set_rx_mode(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	u32 mc_filter[2];	/* Multicast hash filter */
	u8 rx_mode = 0x0C;	/* Note: 0x02=accept runt, 0x01=accept errs */
	struct netdev_hw_addr *ha;

	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
		rx_mode = 0x1C;
		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
		   (dev->flags & IFF_ALLMULTI)) {
		/* Too many to match, or accept all multicasts. */
		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
	} else if (rp->pdev->revision >= VT6105M) {
		int i = 0;
		u32 mCAMmask = 0;	/* 32 mCAMs (6105M and better) */
		netdev_for_each_mc_addr(ha, dev) {
			if (i == MCAM_SIZE)
				break;
			rhine_set_cam(ioaddr, i, ha->addr);
			mCAMmask |= 1 << i;
			i++;
		}
		rhine_set_cam_mask(ioaddr, mCAMmask);
	} else {
		memset(mc_filter, 0, sizeof(mc_filter));
		netdev_for_each_mc_addr(ha, dev) {
			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;

			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
		}
		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
	}
	/* enable/disable VLAN receive filtering */
	if (rp->pdev->revision >= VT6105M) {
		if (dev->flags & IFF_PROMISC)
			BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
		else
			BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
	}
	BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
}

static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct rhine_private *rp = netdev_priv(dev);

	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);
	strcpy(info->bus_info, pci_name(rp->pdev));
}

static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct rhine_private *rp = netdev_priv(dev);
	int rc;

	spin_lock_irq(&rp->lock);
	rc = mii_ethtool_gset(&rp->mii_if, cmd);
	spin_unlock_irq(&rp->lock);

	return rc;
}

static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct rhine_private *rp = netdev_priv(dev);
	int rc;

	spin_lock_irq(&rp->lock);
	rc = mii_ethtool_sset(&rp->mii_if, cmd);
	spin_unlock_irq(&rp->lock);
	rhine_set_carrier(&rp->mii_if);

	return rc;
}

static int netdev_nway_reset(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);

	return mii_nway_restart(&rp->mii_if);
}

static u32 netdev_get_link(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);

	return mii_link_ok(&rp->mii_if);
}

static u32 netdev_get_msglevel(struct net_device *dev)
{
	return debug;
}

static void netdev_set_msglevel(struct net_device *dev, u32 value)
{
	debug = value;
}

static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct rhine_private *rp = netdev_priv(dev);

	if (!(rp->quirks & rqWOL))
		return;

	spin_lock_irq(&rp->lock);
	wol->supported = WAKE_PHY | WAKE_MAGIC |
			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
	wol->wolopts = rp->wolopts;
	spin_unlock_irq(&rp->lock);
}

static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct rhine_private *rp = netdev_priv(dev);
	u32 support = WAKE_PHY | WAKE_MAGIC |
		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */

	if (!(rp->quirks & rqWOL))
		return -EINVAL;

	if (wol->wolopts & ~support)
		return -EINVAL;

	spin_lock_irq(&rp->lock);
	rp->wolopts = wol->wolopts;
	spin_unlock_irq(&rp->lock);

	return 0;
}

static const struct ethtool_ops netdev_ethtool_ops = {
	.get_drvinfo		= netdev_get_drvinfo,
	.get_settings		= netdev_get_settings,
	.set_settings		= netdev_set_settings,
	.nway_reset		= netdev_nway_reset,
	.get_link		= netdev_get_link,
	.get_msglevel		= netdev_get_msglevel,
	.set_msglevel		= netdev_set_msglevel,
	.get_wol		= rhine_get_wol,
	.set_wol		= rhine_set_wol,
};

static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct rhine_private *rp = netdev_priv(dev);
	int rc;

	if (!netif_running(dev))
		return -EINVAL;

	spin_lock_irq(&rp->lock);
	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
	spin_unlock_irq(&rp->lock);
	rhine_set_carrier(&rp->mii_if);

	return rc;
}

static int rhine_close(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	napi_disable(&rp->napi);
	cancel_work_sync(&rp->reset_task);
	netif_stop_queue(dev);

	spin_lock_irq(&rp->lock);

	if (debug > 1)
		netdev_dbg(dev, "Shutting down ethercard, status was %04x\n",
			   ioread16(ioaddr + ChipCmd));

	/* Switch to loopback mode to avoid hardware races. */
	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);

	/* Disable interrupts by clearing the interrupt mask. */
	iowrite16(0x0000, ioaddr + IntrEnable);

	/* Stop the chip's Tx and Rx processes. */
	iowrite16(CmdStop, ioaddr + ChipCmd);

	spin_unlock_irq(&rp->lock);

	free_irq(rp->pdev->irq, dev);
	free_rbufs(dev);
	free_tbufs(dev);
	free_ring(dev);

	return 0;
}


static void __devexit rhine_remove_one(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct rhine_private *rp = netdev_priv(dev);

	unregister_netdev(dev);

	pci_iounmap(pdev, rp->base);
	pci_release_regions(pdev);

	free_netdev(dev);
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
}

static void rhine_shutdown (struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	if (!(rp->quirks & rqWOL))
		return; /* Nothing to do for non-WOL adapters */

	rhine_power_init(dev);

	/* Make sure we use pattern 0, 1 and not 4, 5 */
	if (rp->quirks & rq6patterns)
		iowrite8(0x04, ioaddr + WOLcgClr);

	if (rp->wolopts & WAKE_MAGIC) {
		iowrite8(WOLmagic, ioaddr + WOLcrSet);
		/*
		 * Turn EEPROM-controlled wake-up back on -- some hardware may
		 * not cooperate otherwise.
		 */
		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
	}

	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
		iowrite8(WOLbmcast, ioaddr + WOLcgSet);

	if (rp->wolopts & WAKE_PHY)
		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);

	if (rp->wolopts & WAKE_UCAST)
		iowrite8(WOLucast, ioaddr + WOLcrSet);

	if (rp->wolopts) {
		/* Enable legacy WOL (for old motherboards) */
		iowrite8(0x01, ioaddr + PwcfgSet);
		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
	}

	/* Hit power state D3 (sleep) */
	if (!avoid_D3)
		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);

	/* TODO: Check use of pci_enable_wake() */

}

#ifdef CONFIG_PM
static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct rhine_private *rp = netdev_priv(dev);
	unsigned long flags;

	if (!netif_running(dev))
		return 0;

	napi_disable(&rp->napi);

	netif_device_detach(dev);
	pci_save_state(pdev);

	spin_lock_irqsave(&rp->lock, flags);
	rhine_shutdown(pdev);
	spin_unlock_irqrestore(&rp->lock, flags);

	free_irq(dev->irq, dev);
	return 0;
}

static int rhine_resume(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct rhine_private *rp = netdev_priv(dev);
	unsigned long flags;
	int ret;

	if (!netif_running(dev))
		return 0;

	if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
		netdev_err(dev, "request_irq failed\n");

	ret = pci_set_power_state(pdev, PCI_D0);
	if (debug > 1)
		netdev_info(dev, "Entering power state D0 %s (%d)\n",
			    ret ? "failed" : "succeeded", ret);

	pci_restore_state(pdev);

	spin_lock_irqsave(&rp->lock, flags);
#ifdef USE_MMIO
	enable_mmio(rp->pioaddr, rp->quirks);
#endif
	rhine_power_init(dev);
	free_tbufs(dev);
	free_rbufs(dev);
	alloc_tbufs(dev);
	alloc_rbufs(dev);
	init_registers(dev);
	spin_unlock_irqrestore(&rp->lock, flags);

	netif_device_attach(dev);

	return 0;
}
#endif /* CONFIG_PM */

static struct pci_driver rhine_driver = {
	.name		= DRV_NAME,
	.id_table	= rhine_pci_tbl,
	.probe		= rhine_init_one,
	.remove		= __devexit_p(rhine_remove_one),
#ifdef CONFIG_PM
	.suspend	= rhine_suspend,
	.resume		= rhine_resume,
#endif /* CONFIG_PM */
	.shutdown =	rhine_shutdown,
};

static struct dmi_system_id __initdata rhine_dmi_table[] = {
	{
		.ident = "EPIA-M",
		.matches = {
			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
		},
	},
	{
		.ident = "KV7",
		.matches = {
			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
		},
	},
	{ NULL }
};

static int __init rhine_init(void)
{
/* when a module, this is printed whether or not devices are found in probe */
#ifdef MODULE
	pr_info("%s\n", version);
#endif
	if (dmi_check_system(rhine_dmi_table)) {
		/* these BIOSes fail at PXE boot if chip is in D3 */
		avoid_D3 = 1;
		pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
	}
	else if (avoid_D3)
		pr_info("avoid_D3 set\n");

	return pci_register_driver(&rhine_driver);
}


static void __exit rhine_cleanup(void)
{
	pci_unregister_driver(&rhine_driver);
}


module_init(rhine_init);
module_exit(rhine_cleanup);