intel_pstate.c 30.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/*
 * intel_pstate.c: Native P state management for Intel processors
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
#include <linux/acpi.h>
#include <linux/vmalloc.h>
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
#include <asm/cpufeature.h>

#define BYT_RATIOS		0x66a
#define BYT_VIDS		0x66b
#define BYT_TURBO_RATIOS	0x66c
#define BYT_TURBO_VIDS		0x66d

#define FRAC_BITS 8
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)


static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

static inline int32_t div_fp(s64 x, s64 y)
{
	return div64_s64((int64_t)x << FRAC_BITS, y);
}

static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

struct sample {
	int32_t core_pct_busy;
	u64 aperf;
	u64 mperf;
	u64 tsc;
	int freq;
	ktime_t time;
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
	int	scaling;
	int	turbo_pstate;
};

struct vid_data {
	int min;
	int max;
	int turbo;
	int32_t ratio;
};

struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
	int32_t last_err;
};

struct cpudata {
	int cpu;

	struct timer_list timer;

	struct pstate_data pstate;
	struct vid_data vid;
	struct _pid pid;

	ktime_t last_sample_time;
	u64	prev_aperf;
	u64	prev_mperf;
	u64	prev_tsc;
	struct sample sample;
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

struct pstate_funcs {
	int (*get_max)(void);
	int (*get_min)(void);
	int (*get_turbo)(void);
	int (*get_scaling)(void);
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
};

struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
};

static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
static int hwp_active;

struct perf_limits {
	int no_turbo;
	int turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
	int max_policy_pct;
	int max_sysfs_pct;
	int min_policy_pct;
	int min_sysfs_pct;
};

static struct perf_limits limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
			     int deadband, int integral) {
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static signed int pid_calc(struct _pid *pid, int32_t busy)
{
	signed int result;
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

	fp_error = int_tofp(pid->setpoint) - busy;

	if (abs(fp_error) <= int_tofp(pid->deadband))
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
	result = result + (1 << (FRAC_BITS-1));
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);

	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;

	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
	limits.turbo_disabled =
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

static void intel_pstate_hwp_set(void)
{
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;

	get_online_cpus();

	for_each_online_cpu(cpu) {
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
		adj_range = limits.min_perf_pct * range / 100;
		min = hw_min + adj_range;
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

		adj_range = limits.max_perf_pct * range / 100;
		max = hw_min + adj_range;
		if (limits.no_turbo) {
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}

	put_online_cpus();
}

/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}

static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
	{NULL, NULL}
};

static void __init intel_pstate_debug_expose_params(void)
{
	struct dentry *debugfs_parent;
	int i = 0;

	if (hwp_active)
		return;
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
		return sprintf(buf, "%u\n", limits.object);		\
	}

static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
	if (limits.turbo_disabled)
		ret = sprintf(buf, "%u\n", limits.turbo_disabled);
	else
		ret = sprintf(buf, "%u\n", limits.no_turbo);

	return ret;
}

static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
			      const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

	update_turbo_state();
	if (limits.turbo_disabled) {
		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
		return -EPERM;
	}

	limits.no_turbo = clamp_t(int, input, 0, 1);

	if (hwp_active)
		intel_pstate_hwp_set();

	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
				  const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
	limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);
	limits.max_perf_pct = max(limits.min_perf_pct, limits.max_perf_pct);
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));

	if (hwp_active)
		intel_pstate_hwp_set();
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
				  const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

	limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
	limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
	limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

	if (hwp_active)
		intel_pstate_hwp_set();
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
define_one_global_ro(turbo_pct);
define_one_global_ro(num_pstates);

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
	&turbo_pct.attr,
	&num_pstates.attr,
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

static void __init intel_pstate_sysfs_expose_params(void)
{
	struct kobject *intel_pstate_kobject;
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
	BUG_ON(rc);
}
/************************** sysfs end ************************/

static void intel_pstate_hwp_enable(struct cpudata *cpudata)
{
	pr_info("intel_pstate: HWP enabled\n");

	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
}

static int byt_get_min_pstate(void)
{
	u64 value;

	rdmsrl(BYT_RATIOS, value);
	return (value >> 8) & 0x7F;
}

static int byt_get_max_pstate(void)
{
	u64 value;

	rdmsrl(BYT_RATIOS, value);
	return (value >> 16) & 0x7F;
}

static int byt_get_turbo_pstate(void)
{
	u64 value;

	rdmsrl(BYT_TURBO_RATIOS, value);
	return value & 0x7F;
}

static void byt_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

	val = (u64)pstate << 8;
	if (limits.no_turbo && !limits.turbo_disabled)
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
	vid = ceiling_fp(vid_fp);

	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

	val |= vid;

	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
}

#define BYT_BCLK_FREQS 5
static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};

static int byt_get_scaling(void)
{
	u64 value;
	int i;

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0x3;

	BUG_ON(i > BYT_BCLK_FREQS);

	return byt_freq_table[i] * 100;
}

static void byt_get_vid(struct cpudata *cpudata)
{
	u64 value;

	rdmsrl(BYT_VIDS, value);
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));

	rdmsrl(BYT_TURBO_VIDS, value);
	cpudata->vid.turbo = value & 0x7f;
}

static int core_get_min_pstate(void)
{
	u64 value;

	rdmsrl(MSR_PLATFORM_INFO, value);
	return (value >> 40) & 0xFF;
}

static int core_get_max_pstate(void)
{
	u64 value;

	rdmsrl(MSR_PLATFORM_INFO, value);
	return (value >> 8) & 0xFF;
}

static int core_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (value) & 255;
	if (ret <= nont)
		ret = nont;
	return ret;
}

static inline int core_get_scaling(void)
{
	return 100000;
}

static void core_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;

	val = (u64)pstate << 8;
	if (limits.no_turbo && !limits.turbo_disabled)
		val |= (u64)1 << 32;

	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
}

static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.set = core_set_pstate,
	},
};

static struct cpu_defaults byt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = byt_get_max_pstate,
		.get_min = byt_get_min_pstate,
		.get_turbo = byt_get_turbo_pstate,
		.set = byt_set_pstate,
		.get_scaling = byt_get_scaling,
		.get_vid = byt_get_vid,
	},
};

static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.set = core_set_pstate,
	},
};

static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
	int max_perf_adj;
	int min_perf;

	if (limits.no_turbo || limits.turbo_disabled)
		max_perf = cpu->pstate.max_pstate;

	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);

	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
}

static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
{
	int max_perf, min_perf;

	if (force) {
		update_turbo_state();

		intel_pstate_get_min_max(cpu, &min_perf, &max_perf);

		pstate = clamp_t(int, pstate, min_perf, max_perf);

		if (pstate == cpu->pstate.current_pstate)
			return;
	}
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);

	cpu->pstate.current_pstate = pstate;

	pstate_funcs.set(cpu, pstate);
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
	cpu->pstate.scaling = pstate_funcs.get_scaling();

	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
}

static inline void intel_pstate_calc_busy(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
	int64_t core_pct;

	core_pct = int_tofp(sample->aperf) * int_tofp(100);
	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));

	sample->freq = fp_toint(
		mul_fp(int_tofp(
			cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
			core_pct));

	sample->core_pct_busy = (int32_t)core_pct;
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;
	unsigned long flags;
	u64 tsc;

	local_irq_save(flags);
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
	tsc = rdtsc();
	local_irq_restore(flags);

	cpu->last_sample_time = cpu->sample.time;
	cpu->sample.time = ktime_get();
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
	cpu->sample.tsc =  tsc;
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
	cpu->sample.tsc -= cpu->prev_tsc;

	intel_pstate_calc_busy(cpu);

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
	cpu->prev_tsc = tsc;
}

static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
{
	int delay;

	delay = msecs_to_jiffies(50);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
	int delay;

	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
{
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
	s64 duration_us;
	u32 sample_time;

	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
	core_busy = cpu->sample.core_pct_busy;
	max_pstate = int_tofp(cpu->pstate.max_pstate);
	current_pstate = int_tofp(cpu->pstate.current_pstate);
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));

	/*
	 * Since we have a deferred timer, it will not fire unless
	 * we are in C0.  So, determine if the actual elapsed time
	 * is significantly greater (3x) than our sample interval.  If it
	 * is, then we were idle for a long enough period of time
	 * to adjust our busyness.
	 */
	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
	duration_us = ktime_us_delta(cpu->sample.time,
				     cpu->last_sample_time);
	if (duration_us > sample_time * 3) {
		sample_ratio = div_fp(int_tofp(sample_time),
				      int_tofp(duration_us));
		core_busy = mul_fp(core_busy, sample_ratio);
	}

	return core_busy;
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
	int32_t busy_scaled;
	struct _pid *pid;
	signed int ctl;
	int from;
	struct sample *sample;

	from = cpu->pstate.current_pstate;

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

	/* Negative values of ctl increase the pstate and vice versa */
	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
		fp_toint(busy_scaled),
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		sample->freq);
}

static void intel_hwp_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
	intel_hwp_set_sample_time(cpu);
}

static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);

	intel_pstate_adjust_busy_pstate(cpu);

	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
	ICPU(0x37, byt_params),
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
	ICPU(0x3d, core_params),
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
	ICPU(0x47, core_params),
	ICPU(0x4c, byt_params),
	ICPU(0x4e, core_params),
	ICPU(0x4f, core_params),
	ICPU(0x5e, core_params),
	ICPU(0x56, core_params),
	ICPU(0x57, knl_params),
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;

	if (hwp_active)
		intel_pstate_hwp_enable(cpu);

	intel_pstate_get_cpu_pstates(cpu);

	init_timer_deferrable(&cpu->timer);
	cpu->timer.data = (unsigned long)cpu;
	cpu->timer.expires = jiffies + HZ/100;

	if (!hwp_active)
		cpu->timer.function = intel_pstate_timer_func;
	else
		cpu->timer.function = intel_hwp_timer_func;

	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);

	add_timer_on(&cpu->timer, cpunum);

	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
	sample = &cpu->sample;
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
	    policy->max >= policy->cpuinfo.max_freq) {
		limits.min_policy_pct = 100;
		limits.min_perf_pct = 100;
		limits.min_perf = int_tofp(1);
		limits.max_policy_pct = 100;
		limits.max_perf_pct = 100;
		limits.max_perf = int_tofp(1);
		limits.no_turbo = 0;
		return 0;
	}

	limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
	limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
	limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
	limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);

	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));

	if (hwp_active)
		intel_pstate_hwp_set();

	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
	cpufreq_verify_within_cpu_limits(policy);

	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
		return -EINVAL;

	return 0;
}

static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
{
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];

	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);

	del_timer_sync(&all_cpu_data[cpu_num]->timer);
	if (hwp_active)
		return;

	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
}

static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int rc;

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

	if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;

	/* cpuinfo and default policy values */
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
	.stop_cpu	= intel_pstate_stop_cpu,
	.name		= "intel_pstate",
};

static int __initdata no_load;
static int __initdata no_hwp;
static int __initdata hwp_only;
static unsigned int force_load;

static int intel_pstate_msrs_not_valid(void)
{
	if (!pstate_funcs.get_max() ||
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
		return -ENODEV;

	return 0;
}

static void copy_pid_params(struct pstate_adjust_policy *policy)
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

static void copy_cpu_funcs(struct pstate_funcs *funcs)
{
	pstate_funcs.get_max   = funcs->get_max;
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
	pstate_funcs.get_scaling = funcs->get_scaling;
	pstate_funcs.set       = funcs->set;
	pstate_funcs.get_vid   = funcs->get_vid;
}

#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
	int  oem_pwr_table;
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}

	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
			}
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
#endif /* CONFIG_ACPI */

static int __init intel_pstate_init(void)
{
	int cpu, rc = 0;
	const struct x86_cpu_id *id;
	struct cpu_defaults *cpu_def;

	if (no_load)
		return -ENODEV;

	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

	cpu_def = (struct cpu_defaults *)id->driver_data;

	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);

	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

	pr_info("Intel P-state driver initializing.\n");

	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
	if (!all_cpu_data)
		return -ENOMEM;

	if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
		hwp_active++;

	if (!hwp_active && hwp_only)
		goto out;

	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();

	return rc;
out:
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
	return -ENODEV;
}
device_initcall(intel_pstate_init);

static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
	if (!strcmp(str, "no_hwp"))
		no_hwp = 1;
	if (!strcmp(str, "force"))
		force_load = 1;
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");