machine_kexec_64.c 15.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/*
 * handle transition of Linux booting another kernel
 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2.  See the file COPYING for more details.
 */

#define pr_fmt(fmt)	"kexec: " fmt

#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/string.h>
#include <linux/gfp.h>
#include <linux/reboot.h>
#include <linux/numa.h>
#include <linux/ftrace.h>
#include <linux/io.h>
#include <linux/suspend.h>
#include <linux/vmalloc.h>

#include <asm/init.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/io_apic.h>
#include <asm/debugreg.h>
#include <asm/kexec-bzimage64.h>
#include <asm/setup.h>
#include <asm/set_memory.h>

#ifdef CONFIG_KEXEC_FILE
static struct kexec_file_ops *kexec_file_loaders[] = {
		&kexec_bzImage64_ops,
};
#endif

static void free_transition_pgtable(struct kimage *image)
{
	free_page((unsigned long)image->arch.p4d);
	image->arch.p4d = NULL;
	free_page((unsigned long)image->arch.pud);
	image->arch.pud = NULL;
	free_page((unsigned long)image->arch.pmd);
	image->arch.pmd = NULL;
	free_page((unsigned long)image->arch.pte);
	image->arch.pte = NULL;
}

static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
{
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	unsigned long vaddr, paddr;
	int result = -ENOMEM;

	vaddr = (unsigned long)relocate_kernel;
	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
	pgd += pgd_index(vaddr);
	if (!pgd_present(*pgd)) {
		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
		if (!p4d)
			goto err;
		image->arch.p4d = p4d;
		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
	}
	p4d = p4d_offset(pgd, vaddr);
	if (!p4d_present(*p4d)) {
		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
		if (!pud)
			goto err;
		image->arch.pud = pud;
		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
	}
	pud = pud_offset(p4d, vaddr);
	if (!pud_present(*pud)) {
		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
		if (!pmd)
			goto err;
		image->arch.pmd = pmd;
		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
	}
	pmd = pmd_offset(pud, vaddr);
	if (!pmd_present(*pmd)) {
		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
		if (!pte)
			goto err;
		image->arch.pte = pte;
		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
	}
	pte = pte_offset_kernel(pmd, vaddr);
	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC));
	return 0;
err:
	return result;
}

static void *alloc_pgt_page(void *data)
{
	struct kimage *image = (struct kimage *)data;
	struct page *page;
	void *p = NULL;

	page = kimage_alloc_control_pages(image, 0);
	if (page) {
		p = page_address(page);
		clear_page(p);
	}

	return p;
}

static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
{
	struct x86_mapping_info info = {
		.alloc_pgt_page	= alloc_pgt_page,
		.context	= image,
		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
		.kernpg_flag	= _KERNPG_TABLE_NOENC,
	};
	unsigned long mstart, mend;
	pgd_t *level4p;
	int result;
	int i;

	level4p = (pgd_t *)__va(start_pgtable);
	clear_page(level4p);

	if (direct_gbpages)
		info.direct_gbpages = true;

	for (i = 0; i < nr_pfn_mapped; i++) {
		mstart = pfn_mapped[i].start << PAGE_SHIFT;
		mend   = pfn_mapped[i].end << PAGE_SHIFT;

		result = kernel_ident_mapping_init(&info,
						 level4p, mstart, mend);
		if (result)
			return result;
	}

	/*
	 * segments's mem ranges could be outside 0 ~ max_pfn,
	 * for example when jump back to original kernel from kexeced kernel.
	 * or first kernel is booted with user mem map, and second kernel
	 * could be loaded out of that range.
	 */
	for (i = 0; i < image->nr_segments; i++) {
		mstart = image->segment[i].mem;
		mend   = mstart + image->segment[i].memsz;

		result = kernel_ident_mapping_init(&info,
						 level4p, mstart, mend);

		if (result)
			return result;
	}

	return init_transition_pgtable(image, level4p);
}

static void set_idt(void *newidt, u16 limit)
{
	struct desc_ptr curidt;

	/* x86-64 supports unaliged loads & stores */
	curidt.size    = limit;
	curidt.address = (unsigned long)newidt;

	__asm__ __volatile__ (
		"lidtq %0\n"
		: : "m" (curidt)
		);
};


static void set_gdt(void *newgdt, u16 limit)
{
	struct desc_ptr curgdt;

	/* x86-64 supports unaligned loads & stores */
	curgdt.size    = limit;
	curgdt.address = (unsigned long)newgdt;

	__asm__ __volatile__ (
		"lgdtq %0\n"
		: : "m" (curgdt)
		);
};

static void load_segments(void)
{
	__asm__ __volatile__ (
		"\tmovl %0,%%ds\n"
		"\tmovl %0,%%es\n"
		"\tmovl %0,%%ss\n"
		"\tmovl %0,%%fs\n"
		"\tmovl %0,%%gs\n"
		: : "a" (__KERNEL_DS) : "memory"
		);
}

#ifdef CONFIG_KEXEC_FILE
/* Update purgatory as needed after various image segments have been prepared */
static int arch_update_purgatory(struct kimage *image)
{
	int ret = 0;

	if (!image->file_mode)
		return 0;

	/* Setup copying of backup region */
	if (image->type == KEXEC_TYPE_CRASH) {
		ret = kexec_purgatory_get_set_symbol(image,
				"purgatory_backup_dest",
				&image->arch.backup_load_addr,
				sizeof(image->arch.backup_load_addr), 0);
		if (ret)
			return ret;

		ret = kexec_purgatory_get_set_symbol(image,
				"purgatory_backup_src",
				&image->arch.backup_src_start,
				sizeof(image->arch.backup_src_start), 0);
		if (ret)
			return ret;

		ret = kexec_purgatory_get_set_symbol(image,
				"purgatory_backup_sz",
				&image->arch.backup_src_sz,
				sizeof(image->arch.backup_src_sz), 0);
		if (ret)
			return ret;
	}

	return ret;
}
#else /* !CONFIG_KEXEC_FILE */
static inline int arch_update_purgatory(struct kimage *image)
{
	return 0;
}
#endif /* CONFIG_KEXEC_FILE */

int machine_kexec_prepare(struct kimage *image)
{
	unsigned long start_pgtable;
	int result;

	/* Calculate the offsets */
	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;

	/* Setup the identity mapped 64bit page table */
	result = init_pgtable(image, start_pgtable);
	if (result)
		return result;

	/* update purgatory as needed */
	result = arch_update_purgatory(image);
	if (result)
		return result;

	return 0;
}

void machine_kexec_cleanup(struct kimage *image)
{
	free_transition_pgtable(image);
}

/*
 * Do not allocate memory (or fail in any way) in machine_kexec().
 * We are past the point of no return, committed to rebooting now.
 */
void machine_kexec(struct kimage *image)
{
	unsigned long page_list[PAGES_NR];
	void *control_page;
	int save_ftrace_enabled;

#ifdef CONFIG_KEXEC_JUMP
	if (image->preserve_context)
		save_processor_state();
#endif

	save_ftrace_enabled = __ftrace_enabled_save();

	/* Interrupts aren't acceptable while we reboot */
	local_irq_disable();
	hw_breakpoint_disable();

	if (image->preserve_context) {
#ifdef CONFIG_X86_IO_APIC
		/*
		 * We need to put APICs in legacy mode so that we can
		 * get timer interrupts in second kernel. kexec/kdump
		 * paths already have calls to disable_IO_APIC() in
		 * one form or other. kexec jump path also need
		 * one.
		 */
		disable_IO_APIC();
#endif
	}

	control_page = page_address(image->control_code_page) + PAGE_SIZE;
	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);

	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
	page_list[PA_TABLE_PAGE] =
	  (unsigned long)__pa(page_address(image->control_code_page));

	if (image->type == KEXEC_TYPE_DEFAULT)
		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
						<< PAGE_SHIFT);

	/*
	 * The segment registers are funny things, they have both a
	 * visible and an invisible part.  Whenever the visible part is
	 * set to a specific selector, the invisible part is loaded
	 * with from a table in memory.  At no other time is the
	 * descriptor table in memory accessed.
	 *
	 * I take advantage of this here by force loading the
	 * segments, before I zap the gdt with an invalid value.
	 */
	load_segments();
	/*
	 * The gdt & idt are now invalid.
	 * If you want to load them you must set up your own idt & gdt.
	 */
	set_gdt(phys_to_virt(0), 0);
	set_idt(phys_to_virt(0), 0);

	/* now call it */
	image->start = relocate_kernel((unsigned long)image->head,
				       (unsigned long)page_list,
				       image->start,
				       image->preserve_context,
				       sme_active());

#ifdef CONFIG_KEXEC_JUMP
	if (image->preserve_context)
		restore_processor_state();
#endif

	__ftrace_enabled_restore(save_ftrace_enabled);
}

void arch_crash_save_vmcoreinfo(void)
{
	VMCOREINFO_NUMBER(phys_base);
	VMCOREINFO_SYMBOL(init_top_pgt);

#ifdef CONFIG_NUMA
	VMCOREINFO_SYMBOL(node_data);
	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
#endif
	vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
			      kaslr_offset());
	VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
}

/* arch-dependent functionality related to kexec file-based syscall */

#ifdef CONFIG_KEXEC_FILE
int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
				  unsigned long buf_len)
{
	int i, ret = -ENOEXEC;
	struct kexec_file_ops *fops;

	for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
		fops = kexec_file_loaders[i];
		if (!fops || !fops->probe)
			continue;

		ret = fops->probe(buf, buf_len);
		if (!ret) {
			image->fops = fops;
			return ret;
		}
	}

	return ret;
}

void *arch_kexec_kernel_image_load(struct kimage *image)
{
	vfree(image->arch.elf_headers);
	image->arch.elf_headers = NULL;

	if (!image->fops || !image->fops->load)
		return ERR_PTR(-ENOEXEC);

	return image->fops->load(image, image->kernel_buf,
				 image->kernel_buf_len, image->initrd_buf,
				 image->initrd_buf_len, image->cmdline_buf,
				 image->cmdline_buf_len);
}

int arch_kimage_file_post_load_cleanup(struct kimage *image)
{
	if (!image->fops || !image->fops->cleanup)
		return 0;

	return image->fops->cleanup(image->image_loader_data);
}

#ifdef CONFIG_KEXEC_VERIFY_SIG
int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
				 unsigned long kernel_len)
{
	if (!image->fops || !image->fops->verify_sig) {
		pr_debug("kernel loader does not support signature verification.");
		return -EKEYREJECTED;
	}

	return image->fops->verify_sig(kernel, kernel_len);
}
#endif

/*
 * Apply purgatory relocations.
 *
 * ehdr: Pointer to elf headers
 * sechdrs: Pointer to section headers.
 * relsec: section index of SHT_RELA section.
 *
 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
 */
int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
				     Elf64_Shdr *sechdrs, unsigned int relsec)
{
	unsigned int i;
	Elf64_Rela *rel;
	Elf64_Sym *sym;
	void *location;
	Elf64_Shdr *section, *symtabsec;
	unsigned long address, sec_base, value;
	const char *strtab, *name, *shstrtab;

	/*
	 * ->sh_offset has been modified to keep the pointer to section
	 * contents in memory
	 */
	rel = (void *)sechdrs[relsec].sh_offset;

	/* Section to which relocations apply */
	section = &sechdrs[sechdrs[relsec].sh_info];

	pr_debug("Applying relocate section %u to %u\n", relsec,
		 sechdrs[relsec].sh_info);

	/* Associated symbol table */
	symtabsec = &sechdrs[sechdrs[relsec].sh_link];

	/* String table */
	if (symtabsec->sh_link >= ehdr->e_shnum) {
		/* Invalid strtab section number */
		pr_err("Invalid string table section index %d\n",
		       symtabsec->sh_link);
		return -ENOEXEC;
	}

	strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;

	/* section header string table */
	shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;

	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {

		/*
		 * rel[i].r_offset contains byte offset from beginning
		 * of section to the storage unit affected.
		 *
		 * This is location to update (->sh_offset). This is temporary
		 * buffer where section is currently loaded. This will finally
		 * be loaded to a different address later, pointed to by
		 * ->sh_addr. kexec takes care of moving it
		 *  (kexec_load_segment()).
		 */
		location = (void *)(section->sh_offset + rel[i].r_offset);

		/* Final address of the location */
		address = section->sh_addr + rel[i].r_offset;

		/*
		 * rel[i].r_info contains information about symbol table index
		 * w.r.t which relocation must be made and type of relocation
		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
		 * these respectively.
		 */
		sym = (Elf64_Sym *)symtabsec->sh_offset +
				ELF64_R_SYM(rel[i].r_info);

		if (sym->st_name)
			name = strtab + sym->st_name;
		else
			name = shstrtab + sechdrs[sym->st_shndx].sh_name;

		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
			 name, sym->st_info, sym->st_shndx, sym->st_value,
			 sym->st_size);

		if (sym->st_shndx == SHN_UNDEF) {
			pr_err("Undefined symbol: %s\n", name);
			return -ENOEXEC;
		}

		if (sym->st_shndx == SHN_COMMON) {
			pr_err("symbol '%s' in common section\n", name);
			return -ENOEXEC;
		}

		if (sym->st_shndx == SHN_ABS)
			sec_base = 0;
		else if (sym->st_shndx >= ehdr->e_shnum) {
			pr_err("Invalid section %d for symbol %s\n",
			       sym->st_shndx, name);
			return -ENOEXEC;
		} else
			sec_base = sechdrs[sym->st_shndx].sh_addr;

		value = sym->st_value;
		value += sec_base;
		value += rel[i].r_addend;

		switch (ELF64_R_TYPE(rel[i].r_info)) {
		case R_X86_64_NONE:
			break;
		case R_X86_64_64:
			*(u64 *)location = value;
			break;
		case R_X86_64_32:
			*(u32 *)location = value;
			if (value != *(u32 *)location)
				goto overflow;
			break;
		case R_X86_64_32S:
			*(s32 *)location = value;
			if ((s64)value != *(s32 *)location)
				goto overflow;
			break;
		case R_X86_64_PC32:
		case R_X86_64_PLT32:
			value -= (u64)address;
			*(u32 *)location = value;
			break;
		default:
			pr_err("Unknown rela relocation: %llu\n",
			       ELF64_R_TYPE(rel[i].r_info));
			return -ENOEXEC;
		}
	}
	return 0;

overflow:
	pr_err("Overflow in relocation type %d value 0x%lx\n",
	       (int)ELF64_R_TYPE(rel[i].r_info), value);
	return -ENOEXEC;
}
#endif /* CONFIG_KEXEC_FILE */

static int
kexec_mark_range(unsigned long start, unsigned long end, bool protect)
{
	struct page *page;
	unsigned int nr_pages;

	/*
	 * For physical range: [start, end]. We must skip the unassigned
	 * crashk resource with zero-valued "end" member.
	 */
	if (!end || start > end)
		return 0;

	page = pfn_to_page(start >> PAGE_SHIFT);
	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
	if (protect)
		return set_pages_ro(page, nr_pages);
	else
		return set_pages_rw(page, nr_pages);
}

static void kexec_mark_crashkres(bool protect)
{
	unsigned long control;

	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);

	/* Don't touch the control code page used in crash_kexec().*/
	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
	/* Control code page is located in the 2nd page. */
	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
	control += KEXEC_CONTROL_PAGE_SIZE;
	kexec_mark_range(control, crashk_res.end, protect);
}

void arch_kexec_protect_crashkres(void)
{
	kexec_mark_crashkres(true);
}

void arch_kexec_unprotect_crashkres(void)
{
	kexec_mark_crashkres(false);
}

int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
{
	/*
	 * If SME is active we need to be sure that kexec pages are
	 * not encrypted because when we boot to the new kernel the
	 * pages won't be accessed encrypted (initially).
	 */
	return set_memory_decrypted((unsigned long)vaddr, pages);
}

void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
{
	/*
	 * If SME is active we need to reset the pages back to being
	 * an encrypted mapping before freeing them.
	 */
	set_memory_encrypted((unsigned long)vaddr, pages);
}