n2-drv.c 18.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
/* n2-drv.c: Niagara-2 RNG driver.
 *
 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/preempt.h>
#include <linux/hw_random.h>

#include <linux/of.h>
#include <linux/of_device.h>

#include <asm/hypervisor.h>

#include "n2rng.h"

#define DRV_MODULE_NAME		"n2rng"
#define PFX DRV_MODULE_NAME	": "
#define DRV_MODULE_VERSION	"0.2"
#define DRV_MODULE_RELDATE	"July 27, 2011"

static char version[] __devinitdata =
	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";

MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
MODULE_DESCRIPTION("Niagara2 RNG driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);

/* The Niagara2 RNG provides a 64-bit read-only random number
 * register, plus a control register.  Access to the RNG is
 * virtualized through the hypervisor so that both guests and control
 * nodes can access the device.
 *
 * The entropy source consists of raw entropy sources, each
 * constructed from a voltage controlled oscillator whose phase is
 * jittered by thermal noise sources.
 *
 * The oscillator in each of the three raw entropy sources run at
 * different frequencies.  Normally, all three generator outputs are
 * gathered, xored together, and fed into a CRC circuit, the output of
 * which is the 64-bit read-only register.
 *
 * Some time is necessary for all the necessary entropy to build up
 * such that a full 64-bits of entropy are available in the register.
 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
 * an interlock which blocks register reads until sufficient entropy
 * is available.
 *
 * A control register is provided for adjusting various aspects of RNG
 * operation, and to enable diagnostic modes.  Each of the three raw
 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
 * provided are fields for controlling the minimum time in cycles
 * between read accesses to the register (RNG_CTL_WAIT, this controls
 * the interlock described in the previous paragraph).
 *
 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
 * all three entropy sources enabled, and the interlock time set
 * appropriately.
 *
 * The CRC polynomial used by the chip is:
 *
 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
 *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
 *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
 *
 * The RNG_CTL_VCO value of each noise cell must be programmed
 * separately.  This is why 4 control register values must be provided
 * to the hypervisor.  During a write, the hypervisor writes them all,
 * one at a time, to the actual RNG_CTL register.  The first three
 * values are used to setup the desired RNG_CTL_VCO for each entropy
 * source, for example:
 *
 *	control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
 *	control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
 *	control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
 *
 * And then the fourth value sets the final chip state and enables
 * desired.
 */

static int n2rng_hv_err_trans(unsigned long hv_err)
{
	switch (hv_err) {
	case HV_EOK:
		return 0;
	case HV_EWOULDBLOCK:
		return -EAGAIN;
	case HV_ENOACCESS:
		return -EPERM;
	case HV_EIO:
		return -EIO;
	case HV_EBUSY:
		return -EBUSY;
	case HV_EBADALIGN:
	case HV_ENORADDR:
		return -EFAULT;
	default:
		return -EINVAL;
	}
}

static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
						   unsigned long unit)
{
	unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
	int block = 0, busy = 0;

	while (1) {
		hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
					       &ticks,
					       &watchdog_delta,
					       &watchdog_status);
		if (hv_err == HV_EOK)
			break;

		if (hv_err == HV_EBUSY) {
			if (++busy >= N2RNG_BUSY_LIMIT)
				break;

			udelay(1);
		} else if (hv_err == HV_EWOULDBLOCK) {
			if (++block >= N2RNG_BLOCK_LIMIT)
				break;

			__delay(ticks);
		} else
			break;
	}

	return hv_err;
}

/* In multi-socket situations, the hypervisor might need to
 * queue up the RNG control register write if it's for a unit
 * that is on a cpu socket other than the one we are executing on.
 *
 * We poll here waiting for a successful read of that control
 * register to make sure the write has been actually performed.
 */
static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
{
	unsigned long ra = __pa(&np->scratch_control[0]);

	return n2rng_generic_read_control_v2(ra, unit);
}

static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
					 unsigned long state,
					 unsigned long control_ra,
					 unsigned long watchdog_timeout,
					 unsigned long *ticks)
{
	unsigned long hv_err;

	if (np->hvapi_major == 1) {
		hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
						watchdog_timeout, ticks);
	} else {
		hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
						watchdog_timeout, unit);
		if (hv_err == HV_EOK)
			hv_err = n2rng_control_settle_v2(np, unit);
		*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
	}

	return hv_err;
}

static int n2rng_generic_read_data(unsigned long data_ra)
{
	unsigned long ticks, hv_err;
	int block = 0, hcheck = 0;

	while (1) {
		hv_err = sun4v_rng_data_read(data_ra, &ticks);
		if (hv_err == HV_EOK)
			return 0;

		if (hv_err == HV_EWOULDBLOCK) {
			if (++block >= N2RNG_BLOCK_LIMIT)
				return -EWOULDBLOCK;
			__delay(ticks);
		} else if (hv_err == HV_ENOACCESS) {
			return -EPERM;
		} else if (hv_err == HV_EIO) {
			if (++hcheck >= N2RNG_HCHECK_LIMIT)
				return -EIO;
			udelay(10000);
		} else
			return -ENODEV;
	}
}

static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
					      unsigned long unit,
					      unsigned long data_ra,
					      unsigned long data_len,
					      unsigned long *ticks)
{
	unsigned long hv_err;

	if (np->hvapi_major == 1) {
		hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
	} else {
		hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
						     unit, ticks);
		if (!*ticks)
			*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
	}
	return hv_err;
}

static int n2rng_generic_read_diag_data(struct n2rng *np,
					unsigned long unit,
					unsigned long data_ra,
					unsigned long data_len)
{
	unsigned long ticks, hv_err;
	int block = 0;

	while (1) {
		hv_err = n2rng_read_diag_data_one(np, unit,
						  data_ra, data_len,
						  &ticks);
		if (hv_err == HV_EOK)
			return 0;

		if (hv_err == HV_EWOULDBLOCK) {
			if (++block >= N2RNG_BLOCK_LIMIT)
				return -EWOULDBLOCK;
			__delay(ticks);
		} else if (hv_err == HV_ENOACCESS) {
			return -EPERM;
		} else if (hv_err == HV_EIO) {
			return -EIO;
		} else
			return -ENODEV;
	}
}


static int n2rng_generic_write_control(struct n2rng *np,
				       unsigned long control_ra,
				       unsigned long unit,
				       unsigned long state)
{
	unsigned long hv_err, ticks;
	int block = 0, busy = 0;

	while (1) {
		hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
					     np->wd_timeo, &ticks);
		if (hv_err == HV_EOK)
			return 0;

		if (hv_err == HV_EWOULDBLOCK) {
			if (++block >= N2RNG_BLOCK_LIMIT)
				return -EWOULDBLOCK;
			__delay(ticks);
		} else if (hv_err == HV_EBUSY) {
			if (++busy >= N2RNG_BUSY_LIMIT)
				return -EBUSY;
			udelay(1);
		} else
			return -ENODEV;
	}
}

/* Just try to see if we can successfully access the control register
 * of the RNG on the domain on which we are currently executing.
 */
static int n2rng_try_read_ctl(struct n2rng *np)
{
	unsigned long hv_err;
	unsigned long x;

	if (np->hvapi_major == 1) {
		hv_err = sun4v_rng_get_diag_ctl();
	} else {
		/* We purposefully give invalid arguments, HV_NOACCESS
		 * is higher priority than the errors we'd get from
		 * these other cases, and that's the error we are
		 * truly interested in.
		 */
		hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
		switch (hv_err) {
		case HV_EWOULDBLOCK:
		case HV_ENOACCESS:
			break;
		default:
			hv_err = HV_EOK;
			break;
		}
	}

	return n2rng_hv_err_trans(hv_err);
}

#define CONTROL_DEFAULT_BASE		\
	((2 << RNG_CTL_ASEL_SHIFT) |	\
	 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) |	\
	 RNG_CTL_LFSR)

#define CONTROL_DEFAULT_0		\
	(CONTROL_DEFAULT_BASE |		\
	 (1 << RNG_CTL_VCO_SHIFT) |	\
	 RNG_CTL_ES1)
#define CONTROL_DEFAULT_1		\
	(CONTROL_DEFAULT_BASE |		\
	 (2 << RNG_CTL_VCO_SHIFT) |	\
	 RNG_CTL_ES2)
#define CONTROL_DEFAULT_2		\
	(CONTROL_DEFAULT_BASE |		\
	 (3 << RNG_CTL_VCO_SHIFT) |	\
	 RNG_CTL_ES3)
#define CONTROL_DEFAULT_3		\
	(CONTROL_DEFAULT_BASE |		\
	 RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)

static void n2rng_control_swstate_init(struct n2rng *np)
{
	int i;

	np->flags |= N2RNG_FLAG_CONTROL;

	np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
	np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
	np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;

	for (i = 0; i < np->num_units; i++) {
		struct n2rng_unit *up = &np->units[i];

		up->control[0] = CONTROL_DEFAULT_0;
		up->control[1] = CONTROL_DEFAULT_1;
		up->control[2] = CONTROL_DEFAULT_2;
		up->control[3] = CONTROL_DEFAULT_3;
	}

	np->hv_state = HV_RNG_STATE_UNCONFIGURED;
}

static int n2rng_grab_diag_control(struct n2rng *np)
{
	int i, busy_count, err = -ENODEV;

	busy_count = 0;
	for (i = 0; i < 100; i++) {
		err = n2rng_try_read_ctl(np);
		if (err != -EAGAIN)
			break;

		if (++busy_count > 100) {
			dev_err(&np->op->dev,
				"Grab diag control timeout.\n");
			return -ENODEV;
		}

		udelay(1);
	}

	return err;
}

static int n2rng_init_control(struct n2rng *np)
{
	int err = n2rng_grab_diag_control(np);

	/* Not in the control domain, that's OK we are only a consumer
	 * of the RNG data, we don't setup and program it.
	 */
	if (err == -EPERM)
		return 0;
	if (err)
		return err;

	n2rng_control_swstate_init(np);

	return 0;
}

static int n2rng_data_read(struct hwrng *rng, u32 *data)
{
	struct n2rng *np = (struct n2rng *) rng->priv;
	unsigned long ra = __pa(&np->test_data);
	int len;

	if (!(np->flags & N2RNG_FLAG_READY)) {
		len = 0;
	} else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
		np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
		*data = np->buffer;
		len = 4;
	} else {
		int err = n2rng_generic_read_data(ra);
		if (!err) {
			np->buffer = np->test_data >> 32;
			*data = np->test_data & 0xffffffff;
			len = 4;
		} else {
			dev_err(&np->op->dev, "RNG error, restesting\n");
			np->flags &= ~N2RNG_FLAG_READY;
			if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
				schedule_delayed_work(&np->work, 0);
			len = 0;
		}
	}

	return len;
}

/* On a guest node, just make sure we can read random data properly.
 * If a control node reboots or reloads it's n2rng driver, this won't
 * work during that time.  So we have to keep probing until the device
 * becomes usable.
 */
static int n2rng_guest_check(struct n2rng *np)
{
	unsigned long ra = __pa(&np->test_data);

	return n2rng_generic_read_data(ra);
}

static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
				   u64 *pre_control, u64 pre_state,
				   u64 *buffer, unsigned long buf_len,
				   u64 *post_control, u64 post_state)
{
	unsigned long post_ctl_ra = __pa(post_control);
	unsigned long pre_ctl_ra = __pa(pre_control);
	unsigned long buffer_ra = __pa(buffer);
	int err;

	err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
	if (err)
		return err;

	err = n2rng_generic_read_diag_data(np, unit,
					   buffer_ra, buf_len);

	(void) n2rng_generic_write_control(np, post_ctl_ra, unit,
					   post_state);

	return err;
}

static u64 advance_polynomial(u64 poly, u64 val, int count)
{
	int i;

	for (i = 0; i < count; i++) {
		int highbit_set = ((s64)val < 0);

		val <<= 1;
		if (highbit_set)
			val ^= poly;
	}

	return val;
}

static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
{
	int i, count = 0;

	/* Purposefully skip over the first word.  */
	for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
		if (np->test_buffer[i] == val)
			count++;
	}
	return count;
}

static void n2rng_dump_test_buffer(struct n2rng *np)
{
	int i;

	for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
		dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
			i, np->test_buffer[i]);
}

static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
{
	u64 val = SELFTEST_VAL;
	int err, matches, limit;

	matches = 0;
	for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
		matches += n2rng_test_buffer_find(np, val);
		if (matches >= SELFTEST_MATCH_GOAL)
			break;
		val = advance_polynomial(SELFTEST_POLY, val, 1);
	}

	err = 0;
	if (limit >= SELFTEST_LOOPS_MAX) {
		err = -ENODEV;
		dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
		n2rng_dump_test_buffer(np);
	} else
		dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);

	return err;
}

static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
{
	int err;

	np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
	np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
	np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
	np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
			       RNG_CTL_LFSR |
			       ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));


	err = n2rng_entropy_diag_read(np, unit, np->test_control,
				      HV_RNG_STATE_HEALTHCHECK,
				      np->test_buffer,
				      sizeof(np->test_buffer),
				      &np->units[unit].control[0],
				      np->hv_state);
	if (err)
		return err;

	return n2rng_check_selftest_buffer(np, unit);
}

static int n2rng_control_check(struct n2rng *np)
{
	int i;

	for (i = 0; i < np->num_units; i++) {
		int err = n2rng_control_selftest(np, i);
		if (err)
			return err;
	}
	return 0;
}

/* The sanity checks passed, install the final configuration into the
 * chip, it's ready to use.
 */
static int n2rng_control_configure_units(struct n2rng *np)
{
	int unit, err;

	err = 0;
	for (unit = 0; unit < np->num_units; unit++) {
		struct n2rng_unit *up = &np->units[unit];
		unsigned long ctl_ra = __pa(&up->control[0]);
		int esrc;
		u64 base;

		base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
			(2 << RNG_CTL_ASEL_SHIFT) |
			RNG_CTL_LFSR);

		/* XXX This isn't the best.  We should fetch a bunch
		 * XXX of words using each entropy source combined XXX
		 * with each VCO setting, and see which combinations
		 * XXX give the best random data.
		 */
		for (esrc = 0; esrc < 3; esrc++)
			up->control[esrc] = base |
				(esrc << RNG_CTL_VCO_SHIFT) |
				(RNG_CTL_ES1 << esrc);

		up->control[3] = base |
			(RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);

		err = n2rng_generic_write_control(np, ctl_ra, unit,
						  HV_RNG_STATE_CONFIGURED);
		if (err)
			break;
	}

	return err;
}

static void n2rng_work(struct work_struct *work)
{
	struct n2rng *np = container_of(work, struct n2rng, work.work);
	int err = 0;

	if (!(np->flags & N2RNG_FLAG_CONTROL)) {
		err = n2rng_guest_check(np);
	} else {
		preempt_disable();
		err = n2rng_control_check(np);
		preempt_enable();

		if (!err)
			err = n2rng_control_configure_units(np);
	}

	if (!err) {
		np->flags |= N2RNG_FLAG_READY;
		dev_info(&np->op->dev, "RNG ready\n");
	}

	if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
		schedule_delayed_work(&np->work, HZ * 2);
}

static void __devinit n2rng_driver_version(void)
{
	static int n2rng_version_printed;

	if (n2rng_version_printed++ == 0)
		pr_info("%s", version);
}

static const struct of_device_id n2rng_match[];
static int __devinit n2rng_probe(struct platform_device *op)
{
	const struct of_device_id *match;
	int multi_capable;
	int err = -ENOMEM;
	struct n2rng *np;

	match = of_match_device(n2rng_match, &op->dev);
	if (!match)
		return -EINVAL;
	multi_capable = (match->data != NULL);

	n2rng_driver_version();
	np = kzalloc(sizeof(*np), GFP_KERNEL);
	if (!np)
		goto out;
	np->op = op;

	INIT_DELAYED_WORK(&np->work, n2rng_work);

	if (multi_capable)
		np->flags |= N2RNG_FLAG_MULTI;

	err = -ENODEV;
	np->hvapi_major = 2;
	if (sun4v_hvapi_register(HV_GRP_RNG,
				 np->hvapi_major,
				 &np->hvapi_minor)) {
		np->hvapi_major = 1;
		if (sun4v_hvapi_register(HV_GRP_RNG,
					 np->hvapi_major,
					 &np->hvapi_minor)) {
			dev_err(&op->dev, "Cannot register suitable "
				"HVAPI version.\n");
			goto out_free;
		}
	}

	if (np->flags & N2RNG_FLAG_MULTI) {
		if (np->hvapi_major < 2) {
			dev_err(&op->dev, "multi-unit-capable RNG requires "
				"HVAPI major version 2 or later, got %lu\n",
				np->hvapi_major);
			goto out_hvapi_unregister;
		}
		np->num_units = of_getintprop_default(op->dev.of_node,
						      "rng-#units", 0);
		if (!np->num_units) {
			dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
			goto out_hvapi_unregister;
		}
	} else
		np->num_units = 1;

	dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
		 np->hvapi_major, np->hvapi_minor);

	np->units = kzalloc(sizeof(struct n2rng_unit) * np->num_units,
			    GFP_KERNEL);
	err = -ENOMEM;
	if (!np->units)
		goto out_hvapi_unregister;

	err = n2rng_init_control(np);
	if (err)
		goto out_free_units;

	dev_info(&op->dev, "Found %s RNG, units: %d\n",
		 ((np->flags & N2RNG_FLAG_MULTI) ?
		  "multi-unit-capable" : "single-unit"),
		 np->num_units);

	np->hwrng.name = "n2rng";
	np->hwrng.data_read = n2rng_data_read;
	np->hwrng.priv = (unsigned long) np;

	err = hwrng_register(&np->hwrng);
	if (err)
		goto out_free_units;

	dev_set_drvdata(&op->dev, np);

	schedule_delayed_work(&np->work, 0);

	return 0;

out_free_units:
	kfree(np->units);
	np->units = NULL;

out_hvapi_unregister:
	sun4v_hvapi_unregister(HV_GRP_RNG);

out_free:
	kfree(np);
out:
	return err;
}

static int __devexit n2rng_remove(struct platform_device *op)
{
	struct n2rng *np = dev_get_drvdata(&op->dev);

	np->flags |= N2RNG_FLAG_SHUTDOWN;

	cancel_delayed_work_sync(&np->work);

	hwrng_unregister(&np->hwrng);

	sun4v_hvapi_unregister(HV_GRP_RNG);

	kfree(np->units);
	np->units = NULL;

	kfree(np);

	dev_set_drvdata(&op->dev, NULL);

	return 0;
}

static const struct of_device_id n2rng_match[] = {
	{
		.name		= "random-number-generator",
		.compatible	= "SUNW,n2-rng",
	},
	{
		.name		= "random-number-generator",
		.compatible	= "SUNW,vf-rng",
		.data		= (void *) 1,
	},
	{
		.name		= "random-number-generator",
		.compatible	= "SUNW,kt-rng",
		.data		= (void *) 1,
	},
	{},
};
MODULE_DEVICE_TABLE(of, n2rng_match);

static struct platform_driver n2rng_driver = {
	.driver = {
		.name = "n2rng",
		.owner = THIS_MODULE,
		.of_match_table = n2rng_match,
	},
	.probe		= n2rng_probe,
	.remove		= __devexit_p(n2rng_remove),
};

module_platform_driver(n2rng_driver);