seqlock.h 38 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_SEQLOCK_H
#define __LINUX_SEQLOCK_H

/*
 * seqcount_t / seqlock_t - a reader-writer consistency mechanism with
 * lockless readers (read-only retry loops), and no writer starvation.
 *
 * See Documentation/locking/seqlock.rst
 *
 * Copyrights:
 * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli
 * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH
 */

#include <linux/compiler.h>
#include <linux/kcsan-checks.h>
#include <linux/lockdep.h>
#include <linux/mutex.h>
#include <linux/ww_mutex.h>
#include <linux/preempt.h>
#include <linux/spinlock.h>

#include <asm/processor.h>

/*
 * The seqlock seqcount_t interface does not prescribe a precise sequence of
 * read begin/retry/end. For readers, typically there is a call to
 * read_seqcount_begin() and read_seqcount_retry(), however, there are more
 * esoteric cases which do not follow this pattern.
 *
 * As a consequence, we take the following best-effort approach for raw usage
 * via seqcount_t under KCSAN: upon beginning a seq-reader critical section,
 * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as
 * atomics; if there is a matching read_seqcount_retry() call, no following
 * memory operations are considered atomic. Usage of the seqlock_t interface
 * is not affected.
 */
#define KCSAN_SEQLOCK_REGION_MAX 1000

/*
 * Sequence counters (seqcount_t)
 *
 * This is the raw counting mechanism, without any writer protection.
 *
 * Write side critical sections must be serialized and non-preemptible.
 *
 * If readers can be invoked from hardirq or softirq contexts,
 * interrupts or bottom halves must also be respectively disabled before
 * entering the write section.
 *
 * This mechanism can't be used if the protected data contains pointers,
 * as the writer can invalidate a pointer that a reader is following.
 *
 * If the write serialization mechanism is one of the common kernel
 * locking primitives, use a sequence counter with associated lock
 * (seqcount_LOCKNAME_t) instead.
 *
 * If it's desired to automatically handle the sequence counter writer
 * serialization and non-preemptibility requirements, use a sequential
 * lock (seqlock_t) instead.
 *
 * See Documentation/locking/seqlock.rst
 */
typedef struct seqcount {
	unsigned sequence;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	struct lockdep_map dep_map;
#endif
} seqcount_t;

static inline void __seqcount_init(seqcount_t *s, const char *name,
					  struct lock_class_key *key)
{
	/*
	 * Make sure we are not reinitializing a held lock:
	 */
	lockdep_init_map(&s->dep_map, name, key, 0);
	s->sequence = 0;
}

#ifdef CONFIG_DEBUG_LOCK_ALLOC

# define SEQCOUNT_DEP_MAP_INIT(lockname)				\
		.dep_map = { .name = #lockname }

/**
 * seqcount_init() - runtime initializer for seqcount_t
 * @s: Pointer to the seqcount_t instance
 */
# define seqcount_init(s)						\
	do {								\
		static struct lock_class_key __key;			\
		__seqcount_init((s), #s, &__key);			\
	} while (0)

static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
{
	seqcount_t *l = (seqcount_t *)s;
	unsigned long flags;

	local_irq_save(flags);
	seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
	seqcount_release(&l->dep_map, _RET_IP_);
	local_irq_restore(flags);
}

#else
# define SEQCOUNT_DEP_MAP_INIT(lockname)
# define seqcount_init(s) __seqcount_init(s, NULL, NULL)
# define seqcount_lockdep_reader_access(x)
#endif

/**
 * SEQCNT_ZERO() - static initializer for seqcount_t
 * @name: Name of the seqcount_t instance
 */
#define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) }

/*
 * Sequence counters with associated locks (seqcount_LOCKNAME_t)
 *
 * A sequence counter which associates the lock used for writer
 * serialization at initialization time. This enables lockdep to validate
 * that the write side critical section is properly serialized.
 *
 * For associated locks which do not implicitly disable preemption,
 * preemption protection is enforced in the write side function.
 *
 * Lockdep is never used in any for the raw write variants.
 *
 * See Documentation/locking/seqlock.rst
 */

/*
 * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot
 * disable preemption. It can lead to higher latencies, and the write side
 * sections will not be able to acquire locks which become sleeping locks
 * (e.g. spinlock_t).
 *
 * To remain preemptible while avoiding a possible livelock caused by the
 * reader preempting the writer, use a different technique: let the reader
 * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the
 * case, acquire then release the associated LOCKNAME writer serialization
 * lock. This will allow any possibly-preempted writer to make progress
 * until the end of its writer serialization lock critical section.
 *
 * This lock-unlock technique must be implemented for all of PREEMPT_RT
 * sleeping locks.  See Documentation/locking/locktypes.rst
 */
#if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT)
#define __SEQ_LOCK(expr)	expr
#else
#define __SEQ_LOCK(expr)
#endif

/*
 * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated
 * @seqcount:	The real sequence counter
 * @lock:	Pointer to the associated lock
 *
 * A plain sequence counter with external writer synchronization by
 * LOCKNAME @lock. The lock is associated to the sequence counter in the
 * static initializer or init function. This enables lockdep to validate
 * that the write side critical section is properly serialized.
 *
 * LOCKNAME:	raw_spinlock, spinlock, rwlock, mutex, or ww_mutex.
 */

/*
 * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t
 * @s:		Pointer to the seqcount_LOCKNAME_t instance
 * @lock:	Pointer to the associated lock
 */

#define seqcount_LOCKNAME_init(s, _lock, lockname)			\
	do {								\
		seqcount_##lockname##_t *____s = (s);			\
		seqcount_init(&____s->seqcount);			\
		__SEQ_LOCK(____s->lock = (_lock));			\
	} while (0)

#define seqcount_raw_spinlock_init(s, lock)	seqcount_LOCKNAME_init(s, lock, raw_spinlock)
#define seqcount_spinlock_init(s, lock)		seqcount_LOCKNAME_init(s, lock, spinlock)
#define seqcount_rwlock_init(s, lock)		seqcount_LOCKNAME_init(s, lock, rwlock);
#define seqcount_mutex_init(s, lock)		seqcount_LOCKNAME_init(s, lock, mutex);
#define seqcount_ww_mutex_init(s, lock)		seqcount_LOCKNAME_init(s, lock, ww_mutex);

/*
 * SEQCOUNT_LOCKNAME()	- Instantiate seqcount_LOCKNAME_t and helpers
 * seqprop_LOCKNAME_*()	- Property accessors for seqcount_LOCKNAME_t
 *
 * @lockname:		"LOCKNAME" part of seqcount_LOCKNAME_t
 * @locktype:		LOCKNAME canonical C data type
 * @preemptible:	preemptibility of above locktype
 * @lockmember:		argument for lockdep_assert_held()
 * @lockbase:		associated lock release function (prefix only)
 * @lock_acquire:	associated lock acquisition function (full call)
 */
#define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockmember, lockbase, lock_acquire) \
typedef struct seqcount_##lockname {					\
	seqcount_t		seqcount;				\
	__SEQ_LOCK(locktype	*lock);					\
} seqcount_##lockname##_t;						\
									\
static __always_inline seqcount_t *					\
__seqprop_##lockname##_ptr(seqcount_##lockname##_t *s)			\
{									\
	return &s->seqcount;						\
}									\
									\
static __always_inline unsigned						\
__seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s)	\
{									\
	unsigned seq = READ_ONCE(s->seqcount.sequence);			\
									\
	if (!IS_ENABLED(CONFIG_PREEMPT_RT))				\
		return seq;						\
									\
	if (preemptible && unlikely(seq & 1)) {				\
		__SEQ_LOCK(lock_acquire);				\
		__SEQ_LOCK(lockbase##_unlock(s->lock));			\
									\
		/*							\
		 * Re-read the sequence counter since the (possibly	\
		 * preempted) writer made progress.			\
		 */							\
		seq = READ_ONCE(s->seqcount.sequence);			\
	}								\
									\
	return seq;							\
}									\
									\
static __always_inline bool						\
__seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s)	\
{									\
	if (!IS_ENABLED(CONFIG_PREEMPT_RT))				\
		return preemptible;					\
									\
	/* PREEMPT_RT relies on the above LOCK+UNLOCK */		\
	return false;							\
}									\
									\
static __always_inline void						\
__seqprop_##lockname##_assert(const seqcount_##lockname##_t *s)		\
{									\
	__SEQ_LOCK(lockdep_assert_held(lockmember));			\
}

/*
 * __seqprop() for seqcount_t
 */

static inline seqcount_t *__seqprop_ptr(seqcount_t *s)
{
	return s;
}

static inline unsigned __seqprop_sequence(const seqcount_t *s)
{
	return READ_ONCE(s->sequence);
}

static inline bool __seqprop_preemptible(const seqcount_t *s)
{
	return false;
}

static inline void __seqprop_assert(const seqcount_t *s)
{
	lockdep_assert_preemption_disabled();
}

#define __SEQ_RT	IS_ENABLED(CONFIG_PREEMPT_RT)

SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t,  false,    s->lock,        raw_spin, raw_spin_lock(s->lock))
SEQCOUNT_LOCKNAME(spinlock,     spinlock_t,      __SEQ_RT, s->lock,        spin,     spin_lock(s->lock))
SEQCOUNT_LOCKNAME(rwlock,       rwlock_t,        __SEQ_RT, s->lock,        read,     read_lock(s->lock))
SEQCOUNT_LOCKNAME(mutex,        struct mutex,    true,     s->lock,        mutex,    mutex_lock(s->lock))
SEQCOUNT_LOCKNAME(ww_mutex,     struct ww_mutex, true,     &s->lock->base, ww_mutex, ww_mutex_lock(s->lock, NULL))

/*
 * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t
 * @name:	Name of the seqcount_LOCKNAME_t instance
 * @lock:	Pointer to the associated LOCKNAME
 */

#define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) {			\
	.seqcount		= SEQCNT_ZERO(seq_name.seqcount),	\
	__SEQ_LOCK(.lock	= (assoc_lock))				\
}

#define SEQCNT_RAW_SPINLOCK_ZERO(name, lock)	SEQCOUNT_LOCKNAME_ZERO(name, lock)
#define SEQCNT_SPINLOCK_ZERO(name, lock)	SEQCOUNT_LOCKNAME_ZERO(name, lock)
#define SEQCNT_RWLOCK_ZERO(name, lock)		SEQCOUNT_LOCKNAME_ZERO(name, lock)
#define SEQCNT_MUTEX_ZERO(name, lock)		SEQCOUNT_LOCKNAME_ZERO(name, lock)
#define SEQCNT_WW_MUTEX_ZERO(name, lock) 	SEQCOUNT_LOCKNAME_ZERO(name, lock)

#define __seqprop_case(s, lockname, prop)				\
	seqcount_##lockname##_t: __seqprop_##lockname##_##prop((void *)(s))

#define __seqprop(s, prop) _Generic(*(s),				\
	seqcount_t:		__seqprop_##prop((void *)(s)),		\
	__seqprop_case((s),	raw_spinlock,	prop),			\
	__seqprop_case((s),	spinlock,	prop),			\
	__seqprop_case((s),	rwlock,		prop),			\
	__seqprop_case((s),	mutex,		prop),			\
	__seqprop_case((s),	ww_mutex,	prop))

#define __seqcount_ptr(s)		__seqprop(s, ptr)
#define __seqcount_sequence(s)		__seqprop(s, sequence)
#define __seqcount_lock_preemptible(s)	__seqprop(s, preemptible)
#define __seqcount_assert_lock_held(s)	__seqprop(s, assert)

/**
 * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier
 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
 *
 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
 * provided before actually loading any of the variables that are to be
 * protected in this critical section.
 *
 * Use carefully, only in critical code, and comment how the barrier is
 * provided.
 *
 * Return: count to be passed to read_seqcount_retry()
 */
#define __read_seqcount_begin(s)					\
({									\
	unsigned seq;							\
									\
	while ((seq = __seqcount_sequence(s)) & 1)			\
		cpu_relax();						\
									\
	kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);			\
	seq;								\
})

/**
 * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep
 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
 *
 * Return: count to be passed to read_seqcount_retry()
 */
#define raw_read_seqcount_begin(s)					\
({									\
	unsigned seq = __read_seqcount_begin(s);			\
									\
	smp_rmb();							\
	seq;								\
})

/**
 * read_seqcount_begin() - begin a seqcount_t read critical section
 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
 *
 * Return: count to be passed to read_seqcount_retry()
 */
#define read_seqcount_begin(s)						\
({									\
	seqcount_lockdep_reader_access(__seqcount_ptr(s));		\
	raw_read_seqcount_begin(s);					\
})

/**
 * raw_read_seqcount() - read the raw seqcount_t counter value
 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
 *
 * raw_read_seqcount opens a read critical section of the given
 * seqcount_t, without any lockdep checking, and without checking or
 * masking the sequence counter LSB. Calling code is responsible for
 * handling that.
 *
 * Return: count to be passed to read_seqcount_retry()
 */
#define raw_read_seqcount(s)						\
({									\
	unsigned seq = __seqcount_sequence(s);				\
									\
	smp_rmb();							\
	kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);			\
	seq;								\
})

/**
 * raw_seqcount_begin() - begin a seqcount_t read critical section w/o
 *                        lockdep and w/o counter stabilization
 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
 *
 * raw_seqcount_begin opens a read critical section of the given
 * seqcount_t. Unlike read_seqcount_begin(), this function will not wait
 * for the count to stabilize. If a writer is active when it begins, it
 * will fail the read_seqcount_retry() at the end of the read critical
 * section instead of stabilizing at the beginning of it.
 *
 * Use this only in special kernel hot paths where the read section is
 * small and has a high probability of success through other external
 * means. It will save a single branching instruction.
 *
 * Return: count to be passed to read_seqcount_retry()
 */
#define raw_seqcount_begin(s)						\
({									\
	/*								\
	 * If the counter is odd, let read_seqcount_retry() fail	\
	 * by decrementing the counter.					\
	 */								\
	raw_read_seqcount(s) & ~1;					\
})

/**
 * __read_seqcount_retry() - end a seqcount_t read section w/o barrier
 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
 * @start: count, from read_seqcount_begin()
 *
 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
 * provided before actually loading any of the variables that are to be
 * protected in this critical section.
 *
 * Use carefully, only in critical code, and comment how the barrier is
 * provided.
 *
 * Return: true if a read section retry is required, else false
 */
#define __read_seqcount_retry(s, start)					\
	__read_seqcount_t_retry(__seqcount_ptr(s), start)

static inline int __read_seqcount_t_retry(const seqcount_t *s, unsigned start)
{
	kcsan_atomic_next(0);
	return unlikely(READ_ONCE(s->sequence) != start);
}

/**
 * read_seqcount_retry() - end a seqcount_t read critical section
 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
 * @start: count, from read_seqcount_begin()
 *
 * read_seqcount_retry closes the read critical section of given
 * seqcount_t.  If the critical section was invalid, it must be ignored
 * (and typically retried).
 *
 * Return: true if a read section retry is required, else false
 */
#define read_seqcount_retry(s, start)					\
	read_seqcount_t_retry(__seqcount_ptr(s), start)

static inline int read_seqcount_t_retry(const seqcount_t *s, unsigned start)
{
	smp_rmb();
	return __read_seqcount_t_retry(s, start);
}

/**
 * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep
 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
 */
#define raw_write_seqcount_begin(s)					\
do {									\
	if (__seqcount_lock_preemptible(s))				\
		preempt_disable();					\
									\
	raw_write_seqcount_t_begin(__seqcount_ptr(s));			\
} while (0)

static inline void raw_write_seqcount_t_begin(seqcount_t *s)
{
	kcsan_nestable_atomic_begin();
	s->sequence++;
	smp_wmb();
}

/**
 * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep
 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
 */
#define raw_write_seqcount_end(s)					\
do {									\
	raw_write_seqcount_t_end(__seqcount_ptr(s));			\
									\
	if (__seqcount_lock_preemptible(s))				\
		preempt_enable();					\
} while (0)

static inline void raw_write_seqcount_t_end(seqcount_t *s)
{
	smp_wmb();
	s->sequence++;
	kcsan_nestable_atomic_end();
}

/**
 * write_seqcount_begin_nested() - start a seqcount_t write section with
 *                                 custom lockdep nesting level
 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
 * @subclass: lockdep nesting level
 *
 * See Documentation/locking/lockdep-design.rst
 */
#define write_seqcount_begin_nested(s, subclass)			\
do {									\
	__seqcount_assert_lock_held(s);					\
									\
	if (__seqcount_lock_preemptible(s))				\
		preempt_disable();					\
									\
	write_seqcount_t_begin_nested(__seqcount_ptr(s), subclass);	\
} while (0)

static inline void write_seqcount_t_begin_nested(seqcount_t *s, int subclass)
{
	raw_write_seqcount_t_begin(s);
	seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
}

/**
 * write_seqcount_begin() - start a seqcount_t write side critical section
 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
 *
 * write_seqcount_begin opens a write side critical section of the given
 * seqcount_t.
 *
 * Context: seqcount_t write side critical sections must be serialized and
 * non-preemptible. If readers can be invoked from hardirq or softirq
 * context, interrupts or bottom halves must be respectively disabled.
 */
#define write_seqcount_begin(s)						\
do {									\
	__seqcount_assert_lock_held(s);					\
									\
	if (__seqcount_lock_preemptible(s))				\
		preempt_disable();					\
									\
	write_seqcount_t_begin(__seqcount_ptr(s));			\
} while (0)

static inline void write_seqcount_t_begin(seqcount_t *s)
{
	write_seqcount_t_begin_nested(s, 0);
}

/**
 * write_seqcount_end() - end a seqcount_t write side critical section
 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
 *
 * The write section must've been opened with write_seqcount_begin().
 */
#define write_seqcount_end(s)						\
do {									\
	write_seqcount_t_end(__seqcount_ptr(s));			\
									\
	if (__seqcount_lock_preemptible(s))				\
		preempt_enable();					\
} while (0)

static inline void write_seqcount_t_end(seqcount_t *s)
{
	seqcount_release(&s->dep_map, _RET_IP_);
	raw_write_seqcount_t_end(s);
}

/**
 * raw_write_seqcount_barrier() - do a seqcount_t write barrier
 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
 *
 * This can be used to provide an ordering guarantee instead of the usual
 * consistency guarantee. It is one wmb cheaper, because it can collapse
 * the two back-to-back wmb()s.
 *
 * Note that writes surrounding the barrier should be declared atomic (e.g.
 * via WRITE_ONCE): a) to ensure the writes become visible to other threads
 * atomically, avoiding compiler optimizations; b) to document which writes are
 * meant to propagate to the reader critical section. This is necessary because
 * neither writes before and after the barrier are enclosed in a seq-writer
 * critical section that would ensure readers are aware of ongoing writes::
 *
 *	seqcount_t seq;
 *	bool X = true, Y = false;
 *
 *	void read(void)
 *	{
 *		bool x, y;
 *
 *		do {
 *			int s = read_seqcount_begin(&seq);
 *
 *			x = X; y = Y;
 *
 *		} while (read_seqcount_retry(&seq, s));
 *
 *		BUG_ON(!x && !y);
 *      }
 *
 *      void write(void)
 *      {
 *		WRITE_ONCE(Y, true);
 *
 *		raw_write_seqcount_barrier(seq);
 *
 *		WRITE_ONCE(X, false);
 *      }
 */
#define raw_write_seqcount_barrier(s)					\
	raw_write_seqcount_t_barrier(__seqcount_ptr(s))

static inline void raw_write_seqcount_t_barrier(seqcount_t *s)
{
	kcsan_nestable_atomic_begin();
	s->sequence++;
	smp_wmb();
	s->sequence++;
	kcsan_nestable_atomic_end();
}

/**
 * write_seqcount_invalidate() - invalidate in-progress seqcount_t read
 *                               side operations
 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
 *
 * After write_seqcount_invalidate, no seqcount_t read side operations
 * will complete successfully and see data older than this.
 */
#define write_seqcount_invalidate(s)					\
	write_seqcount_t_invalidate(__seqcount_ptr(s))

static inline void write_seqcount_t_invalidate(seqcount_t *s)
{
	smp_wmb();
	kcsan_nestable_atomic_begin();
	s->sequence+=2;
	kcsan_nestable_atomic_end();
}

/*
 * Latch sequence counters (seqcount_latch_t)
 *
 * A sequence counter variant where the counter even/odd value is used to
 * switch between two copies of protected data. This allows the read path,
 * typically NMIs, to safely interrupt the write side critical section.
 *
 * As the write sections are fully preemptible, no special handling for
 * PREEMPT_RT is needed.
 */
typedef struct {
	seqcount_t seqcount;
} seqcount_latch_t;

/**
 * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t
 * @seq_name: Name of the seqcount_latch_t instance
 */
#define SEQCNT_LATCH_ZERO(seq_name) {					\
	.seqcount		= SEQCNT_ZERO(seq_name.seqcount),	\
}

/**
 * seqcount_latch_init() - runtime initializer for seqcount_latch_t
 * @s: Pointer to the seqcount_latch_t instance
 */
static inline void seqcount_latch_init(seqcount_latch_t *s)
{
	seqcount_init(&s->seqcount);
}

/**
 * raw_read_seqcount_latch() - pick even/odd latch data copy
 * @s: Pointer to seqcount_latch_t
 *
 * See raw_write_seqcount_latch() for details and a full reader/writer
 * usage example.
 *
 * Return: sequence counter raw value. Use the lowest bit as an index for
 * picking which data copy to read. The full counter must then be checked
 * with read_seqcount_latch_retry().
 */
static inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s)
{
	/*
	 * Pairs with the first smp_wmb() in raw_write_seqcount_latch().
	 * Due to the dependent load, a full smp_rmb() is not needed.
	 */
	return READ_ONCE(s->seqcount.sequence);
}

/**
 * read_seqcount_latch_retry() - end a seqcount_latch_t read section
 * @s:		Pointer to seqcount_latch_t
 * @start:	count, from raw_read_seqcount_latch()
 *
 * Return: true if a read section retry is required, else false
 */
static inline int
read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start)
{
	return read_seqcount_retry(&s->seqcount, start);
}

/**
 * raw_write_seqcount_latch() - redirect latch readers to even/odd copy
 * @s: Pointer to seqcount_latch_t
 *
 * The latch technique is a multiversion concurrency control method that allows
 * queries during non-atomic modifications. If you can guarantee queries never
 * interrupt the modification -- e.g. the concurrency is strictly between CPUs
 * -- you most likely do not need this.
 *
 * Where the traditional RCU/lockless data structures rely on atomic
 * modifications to ensure queries observe either the old or the new state the
 * latch allows the same for non-atomic updates. The trade-off is doubling the
 * cost of storage; we have to maintain two copies of the entire data
 * structure.
 *
 * Very simply put: we first modify one copy and then the other. This ensures
 * there is always one copy in a stable state, ready to give us an answer.
 *
 * The basic form is a data structure like::
 *
 *	struct latch_struct {
 *		seqcount_latch_t	seq;
 *		struct data_struct	data[2];
 *	};
 *
 * Where a modification, which is assumed to be externally serialized, does the
 * following::
 *
 *	void latch_modify(struct latch_struct *latch, ...)
 *	{
 *		smp_wmb();	// Ensure that the last data[1] update is visible
 *		latch->seq.sequence++;
 *		smp_wmb();	// Ensure that the seqcount update is visible
 *
 *		modify(latch->data[0], ...);
 *
 *		smp_wmb();	// Ensure that the data[0] update is visible
 *		latch->seq.sequence++;
 *		smp_wmb();	// Ensure that the seqcount update is visible
 *
 *		modify(latch->data[1], ...);
 *	}
 *
 * The query will have a form like::
 *
 *	struct entry *latch_query(struct latch_struct *latch, ...)
 *	{
 *		struct entry *entry;
 *		unsigned seq, idx;
 *
 *		do {
 *			seq = raw_read_seqcount_latch(&latch->seq);
 *
 *			idx = seq & 0x01;
 *			entry = data_query(latch->data[idx], ...);
 *
 *		// This includes needed smp_rmb()
 *		} while (read_seqcount_latch_retry(&latch->seq, seq));
 *
 *		return entry;
 *	}
 *
 * So during the modification, queries are first redirected to data[1]. Then we
 * modify data[0]. When that is complete, we redirect queries back to data[0]
 * and we can modify data[1].
 *
 * NOTE:
 *
 *	The non-requirement for atomic modifications does _NOT_ include
 *	the publishing of new entries in the case where data is a dynamic
 *	data structure.
 *
 *	An iteration might start in data[0] and get suspended long enough
 *	to miss an entire modification sequence, once it resumes it might
 *	observe the new entry.
 *
 * NOTE2:
 *
 *	When data is a dynamic data structure; one should use regular RCU
 *	patterns to manage the lifetimes of the objects within.
 */
static inline void raw_write_seqcount_latch(seqcount_latch_t *s)
{
	smp_wmb();	/* prior stores before incrementing "sequence" */
	s->seqcount.sequence++;
	smp_wmb();      /* increment "sequence" before following stores */
}

/*
 * Sequential locks (seqlock_t)
 *
 * Sequence counters with an embedded spinlock for writer serialization
 * and non-preemptibility.
 *
 * For more info, see:
 *    - Comments on top of seqcount_t
 *    - Documentation/locking/seqlock.rst
 */
typedef struct {
	/*
	 * Make sure that readers don't starve writers on PREEMPT_RT: use
	 * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK().
	 */
	seqcount_spinlock_t seqcount;
	spinlock_t lock;
} seqlock_t;

#define __SEQLOCK_UNLOCKED(lockname)					\
	{								\
		.seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \
		.lock =	__SPIN_LOCK_UNLOCKED(lockname)			\
	}

/**
 * seqlock_init() - dynamic initializer for seqlock_t
 * @sl: Pointer to the seqlock_t instance
 */
#define seqlock_init(sl)						\
	do {								\
		spin_lock_init(&(sl)->lock);				\
		seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock);	\
	} while (0)

/**
 * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t
 * @sl: Name of the seqlock_t instance
 */
#define DEFINE_SEQLOCK(sl) \
		seqlock_t sl = __SEQLOCK_UNLOCKED(sl)

/**
 * read_seqbegin() - start a seqlock_t read side critical section
 * @sl: Pointer to seqlock_t
 *
 * Return: count, to be passed to read_seqretry()
 */
static inline unsigned read_seqbegin(const seqlock_t *sl)
{
	unsigned ret = read_seqcount_begin(&sl->seqcount);

	kcsan_atomic_next(0);  /* non-raw usage, assume closing read_seqretry() */
	kcsan_flat_atomic_begin();
	return ret;
}

/**
 * read_seqretry() - end a seqlock_t read side section
 * @sl: Pointer to seqlock_t
 * @start: count, from read_seqbegin()
 *
 * read_seqretry closes the read side critical section of given seqlock_t.
 * If the critical section was invalid, it must be ignored (and typically
 * retried).
 *
 * Return: true if a read section retry is required, else false
 */
static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
{
	/*
	 * Assume not nested: read_seqretry() may be called multiple times when
	 * completing read critical section.
	 */
	kcsan_flat_atomic_end();

	return read_seqcount_retry(&sl->seqcount, start);
}

/*
 * For all seqlock_t write side functions, use write_seqcount_*t*_begin()
 * instead of the generic write_seqcount_begin(). This way, no redundant
 * lockdep_assert_held() checks are added.
 */

/**
 * write_seqlock() - start a seqlock_t write side critical section
 * @sl: Pointer to seqlock_t
 *
 * write_seqlock opens a write side critical section for the given
 * seqlock_t.  It also implicitly acquires the spinlock_t embedded inside
 * that sequential lock. All seqlock_t write side sections are thus
 * automatically serialized and non-preemptible.
 *
 * Context: if the seqlock_t read section, or other write side critical
 * sections, can be invoked from hardirq or softirq contexts, use the
 * _irqsave or _bh variants of this function instead.
 */
static inline void write_seqlock(seqlock_t *sl)
{
	spin_lock(&sl->lock);
	write_seqcount_t_begin(&sl->seqcount.seqcount);
}

/**
 * write_sequnlock() - end a seqlock_t write side critical section
 * @sl: Pointer to seqlock_t
 *
 * write_sequnlock closes the (serialized and non-preemptible) write side
 * critical section of given seqlock_t.
 */
static inline void write_sequnlock(seqlock_t *sl)
{
	write_seqcount_t_end(&sl->seqcount.seqcount);
	spin_unlock(&sl->lock);
}

/**
 * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section
 * @sl: Pointer to seqlock_t
 *
 * _bh variant of write_seqlock(). Use only if the read side section, or
 * other write side sections, can be invoked from softirq contexts.
 */
static inline void write_seqlock_bh(seqlock_t *sl)
{
	spin_lock_bh(&sl->lock);
	write_seqcount_t_begin(&sl->seqcount.seqcount);
}

/**
 * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section
 * @sl: Pointer to seqlock_t
 *
 * write_sequnlock_bh closes the serialized, non-preemptible, and
 * softirqs-disabled, seqlock_t write side critical section opened with
 * write_seqlock_bh().
 */
static inline void write_sequnlock_bh(seqlock_t *sl)
{
	write_seqcount_t_end(&sl->seqcount.seqcount);
	spin_unlock_bh(&sl->lock);
}

/**
 * write_seqlock_irq() - start a non-interruptible seqlock_t write section
 * @sl: Pointer to seqlock_t
 *
 * _irq variant of write_seqlock(). Use only if the read side section, or
 * other write sections, can be invoked from hardirq contexts.
 */
static inline void write_seqlock_irq(seqlock_t *sl)
{
	spin_lock_irq(&sl->lock);
	write_seqcount_t_begin(&sl->seqcount.seqcount);
}

/**
 * write_sequnlock_irq() - end a non-interruptible seqlock_t write section
 * @sl: Pointer to seqlock_t
 *
 * write_sequnlock_irq closes the serialized and non-interruptible
 * seqlock_t write side section opened with write_seqlock_irq().
 */
static inline void write_sequnlock_irq(seqlock_t *sl)
{
	write_seqcount_t_end(&sl->seqcount.seqcount);
	spin_unlock_irq(&sl->lock);
}

static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
{
	unsigned long flags;

	spin_lock_irqsave(&sl->lock, flags);
	write_seqcount_t_begin(&sl->seqcount.seqcount);
	return flags;
}

/**
 * write_seqlock_irqsave() - start a non-interruptible seqlock_t write
 *                           section
 * @lock:  Pointer to seqlock_t
 * @flags: Stack-allocated storage for saving caller's local interrupt
 *         state, to be passed to write_sequnlock_irqrestore().
 *
 * _irqsave variant of write_seqlock(). Use it only if the read side
 * section, or other write sections, can be invoked from hardirq context.
 */
#define write_seqlock_irqsave(lock, flags)				\
	do { flags = __write_seqlock_irqsave(lock); } while (0)

/**
 * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write
 *                                section
 * @sl:    Pointer to seqlock_t
 * @flags: Caller's saved interrupt state, from write_seqlock_irqsave()
 *
 * write_sequnlock_irqrestore closes the serialized and non-interruptible
 * seqlock_t write section previously opened with write_seqlock_irqsave().
 */
static inline void
write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
{
	write_seqcount_t_end(&sl->seqcount.seqcount);
	spin_unlock_irqrestore(&sl->lock, flags);
}

/**
 * read_seqlock_excl() - begin a seqlock_t locking reader section
 * @sl:	Pointer to seqlock_t
 *
 * read_seqlock_excl opens a seqlock_t locking reader critical section.  A
 * locking reader exclusively locks out *both* other writers *and* other
 * locking readers, but it does not update the embedded sequence number.
 *
 * Locking readers act like a normal spin_lock()/spin_unlock().
 *
 * Context: if the seqlock_t write section, *or other read sections*, can
 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
 * variant of this function instead.
 *
 * The opened read section must be closed with read_sequnlock_excl().
 */
static inline void read_seqlock_excl(seqlock_t *sl)
{
	spin_lock(&sl->lock);
}

/**
 * read_sequnlock_excl() - end a seqlock_t locking reader critical section
 * @sl: Pointer to seqlock_t
 */
static inline void read_sequnlock_excl(seqlock_t *sl)
{
	spin_unlock(&sl->lock);
}

/**
 * read_seqlock_excl_bh() - start a seqlock_t locking reader section with
 *			    softirqs disabled
 * @sl: Pointer to seqlock_t
 *
 * _bh variant of read_seqlock_excl(). Use this variant only if the
 * seqlock_t write side section, *or other read sections*, can be invoked
 * from softirq contexts.
 */
static inline void read_seqlock_excl_bh(seqlock_t *sl)
{
	spin_lock_bh(&sl->lock);
}

/**
 * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking
 *			      reader section
 * @sl: Pointer to seqlock_t
 */
static inline void read_sequnlock_excl_bh(seqlock_t *sl)
{
	spin_unlock_bh(&sl->lock);
}

/**
 * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking
 *			     reader section
 * @sl: Pointer to seqlock_t
 *
 * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t
 * write side section, *or other read sections*, can be invoked from a
 * hardirq context.
 */
static inline void read_seqlock_excl_irq(seqlock_t *sl)
{
	spin_lock_irq(&sl->lock);
}

/**
 * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t
 *                             locking reader section
 * @sl: Pointer to seqlock_t
 */
static inline void read_sequnlock_excl_irq(seqlock_t *sl)
{
	spin_unlock_irq(&sl->lock);
}

static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
{
	unsigned long flags;

	spin_lock_irqsave(&sl->lock, flags);
	return flags;
}

/**
 * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t
 *				 locking reader section
 * @lock:  Pointer to seqlock_t
 * @flags: Stack-allocated storage for saving caller's local interrupt
 *         state, to be passed to read_sequnlock_excl_irqrestore().
 *
 * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t
 * write side section, *or other read sections*, can be invoked from a
 * hardirq context.
 */
#define read_seqlock_excl_irqsave(lock, flags)				\
	do { flags = __read_seqlock_excl_irqsave(lock); } while (0)

/**
 * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t
 *				      locking reader section
 * @sl:    Pointer to seqlock_t
 * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave()
 */
static inline void
read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
{
	spin_unlock_irqrestore(&sl->lock, flags);
}

/**
 * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader
 * @lock: Pointer to seqlock_t
 * @seq : Marker and return parameter. If the passed value is even, the
 * reader will become a *lockless* seqlock_t reader as in read_seqbegin().
 * If the passed value is odd, the reader will become a *locking* reader
 * as in read_seqlock_excl().  In the first call to this function, the
 * caller *must* initialize and pass an even value to @seq; this way, a
 * lockless read can be optimistically tried first.
 *
 * read_seqbegin_or_lock is an API designed to optimistically try a normal
 * lockless seqlock_t read section first.  If an odd counter is found, the
 * lockless read trial has failed, and the next read iteration transforms
 * itself into a full seqlock_t locking reader.
 *
 * This is typically used to avoid seqlock_t lockless readers starvation
 * (too much retry loops) in the case of a sharp spike in write side
 * activity.
 *
 * Context: if the seqlock_t write section, *or other read sections*, can
 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
 * variant of this function instead.
 *
 * Check Documentation/locking/seqlock.rst for template example code.
 *
 * Return: the encountered sequence counter value, through the @seq
 * parameter, which is overloaded as a return parameter. This returned
 * value must be checked with need_seqretry(). If the read section need to
 * be retried, this returned value must also be passed as the @seq
 * parameter of the next read_seqbegin_or_lock() iteration.
 */
static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
{
	if (!(*seq & 1))	/* Even */
		*seq = read_seqbegin(lock);
	else			/* Odd */
		read_seqlock_excl(lock);
}

/**
 * need_seqretry() - validate seqlock_t "locking or lockless" read section
 * @lock: Pointer to seqlock_t
 * @seq: sequence count, from read_seqbegin_or_lock()
 *
 * Return: true if a read section retry is required, false otherwise
 */
static inline int need_seqretry(seqlock_t *lock, int seq)
{
	return !(seq & 1) && read_seqretry(lock, seq);
}

/**
 * done_seqretry() - end seqlock_t "locking or lockless" reader section
 * @lock: Pointer to seqlock_t
 * @seq: count, from read_seqbegin_or_lock()
 *
 * done_seqretry finishes the seqlock_t read side critical section started
 * with read_seqbegin_or_lock() and validated by need_seqretry().
 */
static inline void done_seqretry(seqlock_t *lock, int seq)
{
	if (seq & 1)
		read_sequnlock_excl(lock);
}

/**
 * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or
 *                                   a non-interruptible locking reader
 * @lock: Pointer to seqlock_t
 * @seq:  Marker and return parameter. Check read_seqbegin_or_lock().
 *
 * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if
 * the seqlock_t write section, *or other read sections*, can be invoked
 * from hardirq context.
 *
 * Note: Interrupts will be disabled only for "locking reader" mode.
 *
 * Return:
 *
 *   1. The saved local interrupts state in case of a locking reader, to
 *      be passed to done_seqretry_irqrestore().
 *
 *   2. The encountered sequence counter value, returned through @seq
 *      overloaded as a return parameter. Check read_seqbegin_or_lock().
 */
static inline unsigned long
read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
{
	unsigned long flags = 0;

	if (!(*seq & 1))	/* Even */
		*seq = read_seqbegin(lock);
	else			/* Odd */
		read_seqlock_excl_irqsave(lock, flags);

	return flags;
}

/**
 * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a
 *				non-interruptible locking reader section
 * @lock:  Pointer to seqlock_t
 * @seq:   Count, from read_seqbegin_or_lock_irqsave()
 * @flags: Caller's saved local interrupt state in case of a locking
 *	   reader, also from read_seqbegin_or_lock_irqsave()
 *
 * This is the _irqrestore variant of done_seqretry(). The read section
 * must've been opened with read_seqbegin_or_lock_irqsave(), and validated
 * by need_seqretry().
 */
static inline void
done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
{
	if (seq & 1)
		read_sequnlock_excl_irqrestore(lock, flags);
}
#endif /* __LINUX_SEQLOCK_H */