idr.c 14.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
#include <linux/bitmap.h>
#include <linux/export.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
static DEFINE_SPINLOCK(simple_ida_lock);

int idr_alloc_cmn(struct idr *idr, void *ptr, unsigned long *index,
		  unsigned long start, unsigned long end, gfp_t gfp,
		  bool ext)
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
		return -EINVAL;

	radix_tree_iter_init(&iter, start);
	if (ext)
		slot = idr_get_free_ext(&idr->idr_rt, &iter, gfp, end);
	else
		slot = idr_get_free(&idr->idr_rt, &iter, gfp, end);
	if (IS_ERR(slot))
		return PTR_ERR(slot);

	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);

	if (index)
		*index = iter.index;
	return 0;
}
EXPORT_SYMBOL_GPL(idr_alloc_cmn);

/**
 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
 * @idr: idr handle
 * @ptr: pointer to be associated with the new id
 * @start: the minimum id (inclusive)
 * @end: the maximum id (exclusive)
 * @gfp: memory allocation flags
 *
 * Allocates an ID larger than the last ID allocated if one is available.
 * If not, it will attempt to allocate the smallest ID that is larger or
 * equal to @start.
 */
int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
{
	int id, curr = idr->idr_next;

	if (curr < start)
		curr = start;

	id = idr_alloc(idr, ptr, curr, end, gfp);
	if ((id == -ENOSPC) && (curr > start))
		id = idr_alloc(idr, ptr, start, curr, gfp);

	if (id >= 0)
		idr->idr_next = id + 1U;

	return id;
}
EXPORT_SYMBOL(idr_alloc_cyclic);

/**
 * idr_for_each - iterate through all stored pointers
 * @idr: idr handle
 * @fn: function to be called for each pointer
 * @data: data passed to callback function
 *
 * The callback function will be called for each entry in @idr, passing
 * the id, the pointer and the data pointer passed to this function.
 *
 * If @fn returns anything other than %0, the iteration stops and that
 * value is returned from this function.
 *
 * idr_for_each() can be called concurrently with idr_alloc() and
 * idr_remove() if protected by RCU.  Newly added entries may not be
 * seen and deleted entries may be seen, but adding and removing entries
 * will not cause other entries to be skipped, nor spurious ones to be seen.
 */
int idr_for_each(const struct idr *idr,
		int (*fn)(int id, void *p, void *data), void *data)
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
		int ret = fn(iter.index, rcu_dereference_raw(*slot), data);
		if (ret)
			return ret;
	}

	return 0;
}
EXPORT_SYMBOL(idr_for_each);

/**
 * idr_get_next - Find next populated entry
 * @idr: idr handle
 * @nextid: Pointer to lowest possible ID to return
 *
 * Returns the next populated entry in the tree with an ID greater than
 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 * to the ID of the found value.  To use in a loop, the value pointed to by
 * nextid must be incremented by the user.
 */
void *idr_get_next(struct idr *idr, int *nextid)
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
	if (!slot)
		return NULL;

	*nextid = iter.index;
	return rcu_dereference_raw(*slot);
}
EXPORT_SYMBOL(idr_get_next);

void *idr_get_next_ext(struct idr *idr, unsigned long *nextid)
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
	if (!slot)
		return NULL;

	*nextid = iter.index;
	return rcu_dereference_raw(*slot);
}
EXPORT_SYMBOL(idr_get_next_ext);

/**
 * idr_replace - replace pointer for given id
 * @idr: idr handle
 * @ptr: New pointer to associate with the ID
 * @id: Lookup key
 *
 * Replace the pointer registered with an ID and return the old value.
 * This function can be called under the RCU read lock concurrently with
 * idr_alloc() and idr_remove() (as long as the ID being removed is not
 * the one being replaced!).
 *
 * Returns: the old value on success.  %-ENOENT indicates that @id was not
 * found.  %-EINVAL indicates that @id or @ptr were not valid.
 */
void *idr_replace(struct idr *idr, void *ptr, int id)
{
	if (id < 0)
		return ERR_PTR(-EINVAL);

	return idr_replace_ext(idr, ptr, id);
}
EXPORT_SYMBOL(idr_replace);

void *idr_replace_ext(struct idr *idr, void *ptr, unsigned long id)
{
	struct radix_tree_node *node;
	void __rcu **slot = NULL;
	void *entry;

	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
		return ERR_PTR(-EINVAL);

	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
		return ERR_PTR(-ENOENT);

	__radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL, NULL);

	return entry;
}
EXPORT_SYMBOL(idr_replace_ext);

/**
 * DOC: IDA description
 *
 * The IDA is an ID allocator which does not provide the ability to
 * associate an ID with a pointer.  As such, it only needs to store one
 * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
 * then initialise it using ida_init()).  To allocate a new ID, call
 * ida_simple_get().  To free an ID, call ida_simple_remove().
 *
 * If you have more complex locking requirements, use a loop around
 * ida_pre_get() and ida_get_new() to allocate a new ID.  Then use
 * ida_remove() to free an ID.  You must make sure that ida_get_new() and
 * ida_remove() cannot be called at the same time as each other for the
 * same IDA.
 *
 * You can also use ida_get_new_above() if you need an ID to be allocated
 * above a particular number.  ida_destroy() can be used to dispose of an
 * IDA without needing to free the individual IDs in it.  You can use
 * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
 *
 * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
 * limitation, it should be quite straightforward to raise the maximum.
 */

/*
 * Developer's notes:
 *
 * The IDA uses the functionality provided by the IDR & radix tree to store
 * bitmaps in each entry.  The IDR_FREE tag means there is at least one bit
 * free, unlike the IDR where it means at least one entry is free.
 *
 * I considered telling the radix tree that each slot is an order-10 node
 * and storing the bit numbers in the radix tree, but the radix tree can't
 * allow a single multiorder entry at index 0, which would significantly
 * increase memory consumption for the IDA.  So instead we divide the index
 * by the number of bits in the leaf bitmap before doing a radix tree lookup.
 *
 * As an optimisation, if there are only a few low bits set in any given
 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
 * directly in the entry.  By being really tricksy, we could store
 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
 * for 0-3 allocated IDs.
 *
 * We allow the radix tree 'exceptional' count to get out of date.  Nothing
 * in the IDA nor the radix tree code checks it.  If it becomes important
 * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
 * calls to radix_tree_iter_replace() which will correct the exceptional
 * count.
 *
 * The IDA always requires a lock to alloc/free.  If we add a 'test_bit'
 * equivalent, it will still need locking.  Going to RCU lookup would require
 * using RCU to free bitmaps, and that's not trivial without embedding an
 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
 * bitmap, which is excessive.
 */

#define IDA_MAX (0x80000000U / IDA_BITMAP_BITS)

/**
 * ida_get_new_above - allocate new ID above or equal to a start id
 * @ida: ida handle
 * @start: id to start search at
 * @id: pointer to the allocated handle
 *
 * Allocate new ID above or equal to @start.  It should be called
 * with any required locks to ensure that concurrent calls to
 * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
 * Consider using ida_simple_get() if you do not have complex locking
 * requirements.
 *
 * If memory is required, it will return %-EAGAIN, you should unlock
 * and go back to the ida_pre_get() call.  If the ida is full, it will
 * return %-ENOSPC.  On success, it will return 0.
 *
 * @id returns a value in the range @start ... %0x7fffffff.
 */
int ida_get_new_above(struct ida *ida, int start, int *id)
{
	struct radix_tree_root *root = &ida->ida_rt;
	void __rcu **slot;
	struct radix_tree_iter iter;
	struct ida_bitmap *bitmap;
	unsigned long index;
	unsigned bit, ebit;
	int new;

	index = start / IDA_BITMAP_BITS;
	bit = start % IDA_BITMAP_BITS;
	ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;

	slot = radix_tree_iter_init(&iter, index);
	for (;;) {
		if (slot)
			slot = radix_tree_next_slot(slot, &iter,
						RADIX_TREE_ITER_TAGGED);
		if (!slot) {
			slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
			if (IS_ERR(slot)) {
				if (slot == ERR_PTR(-ENOMEM))
					return -EAGAIN;
				return PTR_ERR(slot);
			}
		}
		if (iter.index > index) {
			bit = 0;
			ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
		}
		new = iter.index * IDA_BITMAP_BITS;
		bitmap = rcu_dereference_raw(*slot);
		if (radix_tree_exception(bitmap)) {
			unsigned long tmp = (unsigned long)bitmap;
			ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
			if (ebit < BITS_PER_LONG) {
				tmp |= 1UL << ebit;
				rcu_assign_pointer(*slot, (void *)tmp);
				*id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT;
				return 0;
			}
			bitmap = this_cpu_xchg(ida_bitmap, NULL);
			if (!bitmap)
				return -EAGAIN;
			memset(bitmap, 0, sizeof(*bitmap));
			bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
			rcu_assign_pointer(*slot, bitmap);
		}

		if (bitmap) {
			bit = find_next_zero_bit(bitmap->bitmap,
							IDA_BITMAP_BITS, bit);
			new += bit;
			if (new < 0)
				return -ENOSPC;
			if (bit == IDA_BITMAP_BITS)
				continue;

			__set_bit(bit, bitmap->bitmap);
			if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
				radix_tree_iter_tag_clear(root, &iter,
								IDR_FREE);
		} else {
			new += bit;
			if (new < 0)
				return -ENOSPC;
			if (ebit < BITS_PER_LONG) {
				bitmap = (void *)((1UL << ebit) |
						RADIX_TREE_EXCEPTIONAL_ENTRY);
				radix_tree_iter_replace(root, &iter, slot,
						bitmap);
				*id = new;
				return 0;
			}
			bitmap = this_cpu_xchg(ida_bitmap, NULL);
			if (!bitmap)
				return -EAGAIN;
			memset(bitmap, 0, sizeof(*bitmap));
			__set_bit(bit, bitmap->bitmap);
			radix_tree_iter_replace(root, &iter, slot, bitmap);
		}

		*id = new;
		return 0;
	}
}
EXPORT_SYMBOL(ida_get_new_above);

/**
 * ida_remove - Free the given ID
 * @ida: ida handle
 * @id: ID to free
 *
 * This function should not be called at the same time as ida_get_new_above().
 */
void ida_remove(struct ida *ida, int id)
{
	unsigned long index = id / IDA_BITMAP_BITS;
	unsigned offset = id % IDA_BITMAP_BITS;
	struct ida_bitmap *bitmap;
	unsigned long *btmp;
	struct radix_tree_iter iter;
	void __rcu **slot;

	slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
	if (!slot)
		goto err;

	bitmap = rcu_dereference_raw(*slot);
	if (radix_tree_exception(bitmap)) {
		btmp = (unsigned long *)slot;
		offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
		if (offset >= BITS_PER_LONG)
			goto err;
	} else {
		btmp = bitmap->bitmap;
	}
	if (!test_bit(offset, btmp))
		goto err;

	__clear_bit(offset, btmp);
	radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
	if (radix_tree_exception(bitmap)) {
		if (rcu_dereference_raw(*slot) ==
					(void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
			radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
	} else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
		kfree(bitmap);
		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
	}
	return;
 err:
	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
}
EXPORT_SYMBOL(ida_remove);

/**
 * ida_destroy - Free the contents of an ida
 * @ida: ida handle
 *
 * Calling this function releases all resources associated with an IDA.  When
 * this call returns, the IDA is empty and can be reused or freed.  The caller
 * should not allow ida_remove() or ida_get_new_above() to be called at the
 * same time.
 */
void ida_destroy(struct ida *ida)
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
		struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
		if (!radix_tree_exception(bitmap))
			kfree(bitmap);
		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
	}
}
EXPORT_SYMBOL(ida_destroy);

/**
 * ida_simple_get - get a new id.
 * @ida: the (initialized) ida.
 * @start: the minimum id (inclusive, < 0x8000000)
 * @end: the maximum id (exclusive, < 0x8000000 or 0)
 * @gfp_mask: memory allocation flags
 *
 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
 * On memory allocation failure, returns -ENOMEM.
 *
 * Compared to ida_get_new_above() this function does its own locking, and
 * should be used unless there are special requirements.
 *
 * Use ida_simple_remove() to get rid of an id.
 */
int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
		   gfp_t gfp_mask)
{
	int ret, id;
	unsigned int max;
	unsigned long flags;

	BUG_ON((int)start < 0);
	BUG_ON((int)end < 0);

	if (end == 0)
		max = 0x80000000;
	else {
		BUG_ON(end < start);
		max = end - 1;
	}

again:
	if (!ida_pre_get(ida, gfp_mask))
		return -ENOMEM;

	spin_lock_irqsave(&simple_ida_lock, flags);
	ret = ida_get_new_above(ida, start, &id);
	if (!ret) {
		if (id > max) {
			ida_remove(ida, id);
			ret = -ENOSPC;
		} else {
			ret = id;
		}
	}
	spin_unlock_irqrestore(&simple_ida_lock, flags);

	if (unlikely(ret == -EAGAIN))
		goto again;

	return ret;
}
EXPORT_SYMBOL(ida_simple_get);

/**
 * ida_simple_remove - remove an allocated id.
 * @ida: the (initialized) ida.
 * @id: the id returned by ida_simple_get.
 *
 * Use to release an id allocated with ida_simple_get().
 *
 * Compared to ida_remove() this function does its own locking, and should be
 * used unless there are special requirements.
 */
void ida_simple_remove(struct ida *ida, unsigned int id)
{
	unsigned long flags;

	BUG_ON((int)id < 0);
	spin_lock_irqsave(&simple_ida_lock, flags);
	ida_remove(ida, id);
	spin_unlock_irqrestore(&simple_ida_lock, flags);
}
EXPORT_SYMBOL(ida_simple_remove);