Kconfig 40.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
config ARCH
	string
	option env="ARCH"

config KERNELVERSION
	string
	option env="KERNELVERSION"

config DEFCONFIG_LIST
	string
	depends on !UML
	option defconfig_list
	default "/lib/modules/$UNAME_RELEASE/.config"
	default "/etc/kernel-config"
	default "/boot/config-$UNAME_RELEASE"
	default "$ARCH_DEFCONFIG"
	default "arch/$ARCH/defconfig"

config CONSTRUCTORS
	bool
	depends on !UML
	default y

config HAVE_IRQ_WORK
	bool

config IRQ_WORK
	bool
	depends on HAVE_IRQ_WORK

menu "General setup"

config EXPERIMENTAL
	bool "Prompt for development and/or incomplete code/drivers"
	---help---
	  Some of the various things that Linux supports (such as network
	  drivers, file systems, network protocols, etc.) can be in a state
	  of development where the functionality, stability, or the level of
	  testing is not yet high enough for general use. This is usually
	  known as the "alpha-test" phase among developers. If a feature is
	  currently in alpha-test, then the developers usually discourage
	  uninformed widespread use of this feature by the general public to
	  avoid "Why doesn't this work?" type mail messages. However, active
	  testing and use of these systems is welcomed. Just be aware that it
	  may not meet the normal level of reliability or it may fail to work
	  in some special cases. Detailed bug reports from people familiar
	  with the kernel internals are usually welcomed by the developers
	  (before submitting bug reports, please read the documents
	  <file:README>, <file:MAINTAINERS>, <file:REPORTING-BUGS>,
	  <file:Documentation/BUG-HUNTING>, and
	  <file:Documentation/oops-tracing.txt> in the kernel source).

	  This option will also make obsoleted drivers available. These are
	  drivers that have been replaced by something else, and/or are
	  scheduled to be removed in a future kernel release.

	  Unless you intend to help test and develop a feature or driver that
	  falls into this category, or you have a situation that requires
	  using these features, you should probably say N here, which will
	  cause the configurator to present you with fewer choices. If
	  you say Y here, you will be offered the choice of using features or
	  drivers that are currently considered to be in the alpha-test phase.

config BROKEN
	bool

config BROKEN_ON_SMP
	bool
	depends on BROKEN || !SMP
	default y

config LOCK_KERNEL
	bool
	depends on (SMP || PREEMPT) && BKL
	default y

config INIT_ENV_ARG_LIMIT
	int
	default 32 if !UML
	default 128 if UML
	help
	  Maximum of each of the number of arguments and environment
	  variables passed to init from the kernel command line.


config CROSS_COMPILE
	string "Cross-compiler tool prefix"
	help
	  Same as running 'make CROSS_COMPILE=prefix-' but stored for
	  default make runs in this kernel build directory.  You don't
	  need to set this unless you want the configured kernel build
	  directory to select the cross-compiler automatically.

config LOCALVERSION
	string "Local version - append to kernel release"
	help
	  Append an extra string to the end of your kernel version.
	  This will show up when you type uname, for example.
	  The string you set here will be appended after the contents of
	  any files with a filename matching localversion* in your
	  object and source tree, in that order.  Your total string can
	  be a maximum of 64 characters.

config LOCALVERSION_AUTO
	bool "Automatically append version information to the version string"
	default y
	help
	  This will try to automatically determine if the current tree is a
	  release tree by looking for git tags that belong to the current
	  top of tree revision.

	  A string of the format -gxxxxxxxx will be added to the localversion
	  if a git-based tree is found.  The string generated by this will be
	  appended after any matching localversion* files, and after the value
	  set in CONFIG_LOCALVERSION.

	  (The actual string used here is the first eight characters produced
	  by running the command:

	    $ git rev-parse --verify HEAD

	  which is done within the script "scripts/setlocalversion".)

config HAVE_KERNEL_GZIP
	bool

config HAVE_KERNEL_BZIP2
	bool

config HAVE_KERNEL_LZMA
	bool

config HAVE_KERNEL_LZO
	bool

choice
	prompt "Kernel compression mode"
	default KERNEL_GZIP
	depends on HAVE_KERNEL_GZIP || HAVE_KERNEL_BZIP2 || HAVE_KERNEL_LZMA || HAVE_KERNEL_LZO
	help
	  The linux kernel is a kind of self-extracting executable.
	  Several compression algorithms are available, which differ
	  in efficiency, compression and decompression speed.
	  Compression speed is only relevant when building a kernel.
	  Decompression speed is relevant at each boot.

	  If you have any problems with bzip2 or lzma compressed
	  kernels, mail me (Alain Knaff) <alain@knaff.lu>. (An older
	  version of this functionality (bzip2 only), for 2.4, was
	  supplied by Christian Ludwig)

	  High compression options are mostly useful for users, who
	  are low on disk space (embedded systems), but for whom ram
	  size matters less.

	  If in doubt, select 'gzip'

config KERNEL_GZIP
	bool "Gzip"
	depends on HAVE_KERNEL_GZIP
	help
	  The old and tried gzip compression. It provides a good balance
	  between compression ratio and decompression speed.

config KERNEL_BZIP2
	bool "Bzip2"
	depends on HAVE_KERNEL_BZIP2
	help
	  Its compression ratio and speed is intermediate.
	  Decompression speed is slowest among the three.  The kernel
	  size is about 10% smaller with bzip2, in comparison to gzip.
	  Bzip2 uses a large amount of memory. For modern kernels you
	  will need at least 8MB RAM or more for booting.

config KERNEL_LZMA
	bool "LZMA"
	depends on HAVE_KERNEL_LZMA
	help
	  The most recent compression algorithm.
	  Its ratio is best, decompression speed is between the other
	  two. Compression is slowest.	The kernel size is about 33%
	  smaller with LZMA in comparison to gzip.

config KERNEL_LZO
	bool "LZO"
	depends on HAVE_KERNEL_LZO
	help
	  Its compression ratio is the poorest among the 4. The kernel
	  size is about 10% bigger than gzip; however its speed
	  (both compression and decompression) is the fastest.

endchoice

config SWAP
	bool "Support for paging of anonymous memory (swap)"
	depends on MMU && BLOCK
	default y
	help
	  This option allows you to choose whether you want to have support
	  for so called swap devices or swap files in your kernel that are
	  used to provide more virtual memory than the actual RAM present
	  in your computer.  If unsure say Y.

config SYSVIPC
	bool "System V IPC"
	---help---
	  Inter Process Communication is a suite of library functions and
	  system calls which let processes (running programs) synchronize and
	  exchange information. It is generally considered to be a good thing,
	  and some programs won't run unless you say Y here. In particular, if
	  you want to run the DOS emulator dosemu under Linux (read the
	  DOSEMU-HOWTO, available from <http://www.tldp.org/docs.html#howto>),
	  you'll need to say Y here.

	  You can find documentation about IPC with "info ipc" and also in
	  section 6.4 of the Linux Programmer's Guide, available from
	  <http://www.tldp.org/guides.html>.

config SYSVIPC_SYSCTL
	bool
	depends on SYSVIPC
	depends on SYSCTL
	default y

config POSIX_MQUEUE
	bool "POSIX Message Queues"
	depends on NET && EXPERIMENTAL
	---help---
	  POSIX variant of message queues is a part of IPC. In POSIX message
	  queues every message has a priority which decides about succession
	  of receiving it by a process. If you want to compile and run
	  programs written e.g. for Solaris with use of its POSIX message
	  queues (functions mq_*) say Y here.

	  POSIX message queues are visible as a filesystem called 'mqueue'
	  and can be mounted somewhere if you want to do filesystem
	  operations on message queues.

	  If unsure, say Y.

config POSIX_MQUEUE_SYSCTL
	bool
	depends on POSIX_MQUEUE
	depends on SYSCTL
	default y

config BSD_PROCESS_ACCT
	bool "BSD Process Accounting"
	help
	  If you say Y here, a user level program will be able to instruct the
	  kernel (via a special system call) to write process accounting
	  information to a file: whenever a process exits, information about
	  that process will be appended to the file by the kernel.  The
	  information includes things such as creation time, owning user,
	  command name, memory usage, controlling terminal etc. (the complete
	  list is in the struct acct in <file:include/linux/acct.h>).  It is
	  up to the user level program to do useful things with this
	  information.  This is generally a good idea, so say Y.

config BSD_PROCESS_ACCT_V3
	bool "BSD Process Accounting version 3 file format"
	depends on BSD_PROCESS_ACCT
	default n
	help
	  If you say Y here, the process accounting information is written
	  in a new file format that also logs the process IDs of each
	  process and it's parent. Note that this file format is incompatible
	  with previous v0/v1/v2 file formats, so you will need updated tools
	  for processing it. A preliminary version of these tools is available
	  at <http://www.gnu.org/software/acct/>.

config TASKSTATS
	bool "Export task/process statistics through netlink (EXPERIMENTAL)"
	depends on NET
	default n
	help
	  Export selected statistics for tasks/processes through the
	  generic netlink interface. Unlike BSD process accounting, the
	  statistics are available during the lifetime of tasks/processes as
	  responses to commands. Like BSD accounting, they are sent to user
	  space on task exit.

	  Say N if unsure.

config TASK_DELAY_ACCT
	bool "Enable per-task delay accounting (EXPERIMENTAL)"
	depends on TASKSTATS
	help
	  Collect information on time spent by a task waiting for system
	  resources like cpu, synchronous block I/O completion and swapping
	  in pages. Such statistics can help in setting a task's priorities
	  relative to other tasks for cpu, io, rss limits etc.

	  Say N if unsure.

config TASK_XACCT
	bool "Enable extended accounting over taskstats (EXPERIMENTAL)"
	depends on TASKSTATS
	help
	  Collect extended task accounting data and send the data
	  to userland for processing over the taskstats interface.

	  Say N if unsure.

config TASK_IO_ACCOUNTING
	bool "Enable per-task storage I/O accounting (EXPERIMENTAL)"
	depends on TASK_XACCT
	help
	  Collect information on the number of bytes of storage I/O which this
	  task has caused.

	  Say N if unsure.

config AUDIT
	bool "Auditing support"
	depends on NET
	help
	  Enable auditing infrastructure that can be used with another
	  kernel subsystem, such as SELinux (which requires this for
	  logging of avc messages output).  Does not do system-call
	  auditing without CONFIG_AUDITSYSCALL.

config AUDITSYSCALL
	bool "Enable system-call auditing support"
	depends on AUDIT && (X86 || PPC || S390 || IA64 || UML || SPARC64 || SUPERH)
	default y if SECURITY_SELINUX
	help
	  Enable low-overhead system-call auditing infrastructure that
	  can be used independently or with another kernel subsystem,
	  such as SELinux.

config AUDIT_WATCH
	def_bool y
	depends on AUDITSYSCALL
	select FSNOTIFY

config AUDIT_TREE
	def_bool y
	depends on AUDITSYSCALL
	select FSNOTIFY

source "kernel/irq/Kconfig"

menu "RCU Subsystem"

choice
	prompt "RCU Implementation"
	default TREE_RCU

config TREE_RCU
	bool "Tree-based hierarchical RCU"
	depends on !PREEMPT && SMP
	help
	  This option selects the RCU implementation that is
	  designed for very large SMP system with hundreds or
	  thousands of CPUs.  It also scales down nicely to
	  smaller systems.

config TREE_PREEMPT_RCU
	bool "Preemptible tree-based hierarchical RCU"
	depends on PREEMPT
	help
	  This option selects the RCU implementation that is
	  designed for very large SMP systems with hundreds or
	  thousands of CPUs, but for which real-time response
	  is also required.  It also scales down nicely to
	  smaller systems.

config TINY_RCU
	bool "UP-only small-memory-footprint RCU"
	depends on !SMP
	help
	  This option selects the RCU implementation that is
	  designed for UP systems from which real-time response
	  is not required.  This option greatly reduces the
	  memory footprint of RCU.

config TINY_PREEMPT_RCU
	bool "Preemptible UP-only small-memory-footprint RCU"
	depends on !SMP && PREEMPT
	help
	  This option selects the RCU implementation that is designed
	  for real-time UP systems.  This option greatly reduces the
	  memory footprint of RCU.

endchoice

config PREEMPT_RCU
	def_bool ( TREE_PREEMPT_RCU || TINY_PREEMPT_RCU )
	help
	  This option enables preemptible-RCU code that is common between
	  the TREE_PREEMPT_RCU and TINY_PREEMPT_RCU implementations.

config RCU_TRACE
	bool "Enable tracing for RCU"
	depends on TREE_RCU || TREE_PREEMPT_RCU
	help
	  This option provides tracing in RCU which presents stats
	  in debugfs for debugging RCU implementation.

	  Say Y here if you want to enable RCU tracing
	  Say N if you are unsure.

config RCU_FANOUT
	int "Tree-based hierarchical RCU fanout value"
	range 2 64 if 64BIT
	range 2 32 if !64BIT
	depends on TREE_RCU || TREE_PREEMPT_RCU
	default 64 if 64BIT
	default 32 if !64BIT
	help
	  This option controls the fanout of hierarchical implementations
	  of RCU, allowing RCU to work efficiently on machines with
	  large numbers of CPUs.  This value must be at least the fourth
	  root of NR_CPUS, which allows NR_CPUS to be insanely large.
	  The default value of RCU_FANOUT should be used for production
	  systems, but if you are stress-testing the RCU implementation
	  itself, small RCU_FANOUT values allow you to test large-system
	  code paths on small(er) systems.

	  Select a specific number if testing RCU itself.
	  Take the default if unsure.

config RCU_FANOUT_EXACT
	bool "Disable tree-based hierarchical RCU auto-balancing"
	depends on TREE_RCU || TREE_PREEMPT_RCU
	default n
	help
	  This option forces use of the exact RCU_FANOUT value specified,
	  regardless of imbalances in the hierarchy.  This is useful for
	  testing RCU itself, and might one day be useful on systems with
	  strong NUMA behavior.

	  Without RCU_FANOUT_EXACT, the code will balance the hierarchy.

	  Say N if unsure.

config RCU_FAST_NO_HZ
	bool "Accelerate last non-dyntick-idle CPU's grace periods"
	depends on TREE_RCU && NO_HZ && SMP
	default n
	help
	  This option causes RCU to attempt to accelerate grace periods
	  in order to allow the final CPU to enter dynticks-idle state
	  more quickly.  On the other hand, this option increases the
	  overhead of the dynticks-idle checking, particularly on systems
	  with large numbers of CPUs.

	  Say Y if energy efficiency is critically important, particularly
	  	if you have relatively few CPUs.

	  Say N if you are unsure.

config TREE_RCU_TRACE
	def_bool RCU_TRACE && ( TREE_RCU || TREE_PREEMPT_RCU )
	select DEBUG_FS
	help
	  This option provides tracing for the TREE_RCU and
	  TREE_PREEMPT_RCU implementations, permitting Makefile to
	  trivially select kernel/rcutree_trace.c.

endmenu # "RCU Subsystem"

config IKCONFIG
	tristate "Kernel .config support"
	---help---
	  This option enables the complete Linux kernel ".config" file
	  contents to be saved in the kernel. It provides documentation
	  of which kernel options are used in a running kernel or in an
	  on-disk kernel.  This information can be extracted from the kernel
	  image file with the script scripts/extract-ikconfig and used as
	  input to rebuild the current kernel or to build another kernel.
	  It can also be extracted from a running kernel by reading
	  /proc/config.gz if enabled (below).

config IKCONFIG_PROC
	bool "Enable access to .config through /proc/config.gz"
	depends on IKCONFIG && PROC_FS
	---help---
	  This option enables access to the kernel configuration file
	  through /proc/config.gz.

config LOG_BUF_SHIFT
	int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
	range 12 21
	default 17
	help
	  Select kernel log buffer size as a power of 2.
	  Examples:
	  	     17 => 128 KB
		     16 => 64 KB
	             15 => 32 KB
	             14 => 16 KB
		     13 =>  8 KB
		     12 =>  4 KB

#
# Architectures with an unreliable sched_clock() should select this:
#
config HAVE_UNSTABLE_SCHED_CLOCK
	bool

menuconfig CGROUPS
	boolean "Control Group support"
	depends on EVENTFD
	help
	  This option adds support for grouping sets of processes together, for
	  use with process control subsystems such as Cpusets, CFS, memory
	  controls or device isolation.
	  See
		- Documentation/scheduler/sched-design-CFS.txt	(CFS)
		- Documentation/cgroups/ (features for grouping, isolation
					  and resource control)

	  Say N if unsure.

if CGROUPS

config CGROUP_DEBUG
	bool "Example debug cgroup subsystem"
	default n
	help
	  This option enables a simple cgroup subsystem that
	  exports useful debugging information about the cgroups
	  framework.

	  Say N if unsure.

config CGROUP_NS
	bool "Namespace cgroup subsystem"
	help
	  Provides a simple namespace cgroup subsystem to
	  provide hierarchical naming of sets of namespaces,
	  for instance virtual servers and checkpoint/restart
	  jobs.

config CGROUP_FREEZER
	bool "Freezer cgroup subsystem"
	help
	  Provides a way to freeze and unfreeze all tasks in a
	  cgroup.

config CGROUP_DEVICE
	bool "Device controller for cgroups"
	help
	  Provides a cgroup implementing whitelists for devices which
	  a process in the cgroup can mknod or open.

config CPUSETS
	bool "Cpuset support"
	help
	  This option will let you create and manage CPUSETs which
	  allow dynamically partitioning a system into sets of CPUs and
	  Memory Nodes and assigning tasks to run only within those sets.
	  This is primarily useful on large SMP or NUMA systems.

	  Say N if unsure.

config PROC_PID_CPUSET
	bool "Include legacy /proc/<pid>/cpuset file"
	depends on CPUSETS
	default y

config CGROUP_CPUACCT
	bool "Simple CPU accounting cgroup subsystem"
	help
	  Provides a simple Resource Controller for monitoring the
	  total CPU consumed by the tasks in a cgroup.

config RESOURCE_COUNTERS
	bool "Resource counters"
	help
	  This option enables controller independent resource accounting
	  infrastructure that works with cgroups.

config CGROUP_MEM_RES_CTLR
	bool "Memory Resource Controller for Control Groups"
	depends on RESOURCE_COUNTERS
	select MM_OWNER
	help
	  Provides a memory resource controller that manages both anonymous
	  memory and page cache. (See Documentation/cgroups/memory.txt)

	  Note that setting this option increases fixed memory overhead
	  associated with each page of memory in the system. By this,
	  20(40)bytes/PAGE_SIZE on 32(64)bit system will be occupied by memory
	  usage tracking struct at boot. Total amount of this is printed out
	  at boot.

	  Only enable when you're ok with these trade offs and really
	  sure you need the memory resource controller. Even when you enable
	  this, you can set "cgroup_disable=memory" at your boot option to
	  disable memory resource controller and you can avoid overheads.
	  (and lose benefits of memory resource controller)

	  This config option also selects MM_OWNER config option, which
	  could in turn add some fork/exit overhead.

config CGROUP_MEM_RES_CTLR_SWAP
	bool "Memory Resource Controller Swap Extension"
	depends on CGROUP_MEM_RES_CTLR && SWAP
	help
	  Add swap management feature to memory resource controller. When you
	  enable this, you can limit mem+swap usage per cgroup. In other words,
	  when you disable this, memory resource controller has no cares to
	  usage of swap...a process can exhaust all of the swap. This extension
	  is useful when you want to avoid exhaustion swap but this itself
	  adds more overheads and consumes memory for remembering information.
	  Especially if you use 32bit system or small memory system, please
	  be careful about enabling this. When memory resource controller
	  is disabled by boot option, this will be automatically disabled and
	  there will be no overhead from this. Even when you set this config=y,
	  if boot option "noswapaccount" is set, swap will not be accounted.
	  Now, memory usage of swap_cgroup is 2 bytes per entry. If swap page
	  size is 4096bytes, 512k per 1Gbytes of swap.
config CGROUP_MEM_RES_CTLR_SWAP_ENABLED
	bool "Memory Resource Controller Swap Extension enabled by default"
	depends on CGROUP_MEM_RES_CTLR_SWAP
	default y
	help
	  Memory Resource Controller Swap Extension comes with its price in
	  a bigger memory consumption. General purpose distribution kernels
	  which want to enable the feautre but keep it disabled by default
	  and let the user enable it by swapaccount boot command line
	  parameter should have this option unselected.
	  For those who want to have the feature enabled by default should
	  select this option (if, for some reason, they need to disable it
	  then noswapaccount does the trick).

menuconfig CGROUP_SCHED
	bool "Group CPU scheduler"
	depends on EXPERIMENTAL
	default n
	help
	  This feature lets CPU scheduler recognize task groups and control CPU
	  bandwidth allocation to such task groups. It uses cgroups to group
	  tasks.

if CGROUP_SCHED
config FAIR_GROUP_SCHED
	bool "Group scheduling for SCHED_OTHER"
	depends on CGROUP_SCHED
	default CGROUP_SCHED

config RT_GROUP_SCHED
	bool "Group scheduling for SCHED_RR/FIFO"
	depends on EXPERIMENTAL
	depends on CGROUP_SCHED
	default n
	help
	  This feature lets you explicitly allocate real CPU bandwidth
	  to task groups. If enabled, it will also make it impossible to
	  schedule realtime tasks for non-root users until you allocate
	  realtime bandwidth for them.
	  See Documentation/scheduler/sched-rt-group.txt for more information.

endif #CGROUP_SCHED

config BLK_CGROUP
	tristate "Block IO controller"
	depends on BLOCK
	default n
	---help---
	Generic block IO controller cgroup interface. This is the common
	cgroup interface which should be used by various IO controlling
	policies.

	Currently, CFQ IO scheduler uses it to recognize task groups and
	control disk bandwidth allocation (proportional time slice allocation)
	to such task groups. It is also used by bio throttling logic in
	block layer to implement upper limit in IO rates on a device.

	This option only enables generic Block IO controller infrastructure.
	One needs to also enable actual IO controlling logic/policy. For
	enabling proportional weight division of disk bandwidth in CFQ seti
	CONFIG_CFQ_GROUP_IOSCHED=y and for enabling throttling policy set
	CONFIG_BLK_THROTTLE=y.

	See Documentation/cgroups/blkio-controller.txt for more information.

config DEBUG_BLK_CGROUP
	bool "Enable Block IO controller debugging"
	depends on BLK_CGROUP
	default n
	---help---
	Enable some debugging help. Currently it exports additional stat
	files in a cgroup which can be useful for debugging.

endif # CGROUPS

menuconfig NAMESPACES
	bool "Namespaces support" if EMBEDDED
	default !EMBEDDED
	help
	  Provides the way to make tasks work with different objects using
	  the same id. For example same IPC id may refer to different objects
	  or same user id or pid may refer to different tasks when used in
	  different namespaces.

if NAMESPACES

config UTS_NS
	bool "UTS namespace"
	default y
	help
	  In this namespace tasks see different info provided with the
	  uname() system call

config IPC_NS
	bool "IPC namespace"
	depends on (SYSVIPC || POSIX_MQUEUE)
	default y
	help
	  In this namespace tasks work with IPC ids which correspond to
	  different IPC objects in different namespaces.

config USER_NS
	bool "User namespace (EXPERIMENTAL)"
	depends on EXPERIMENTAL
	default y
	help
	  This allows containers, i.e. vservers, to use user namespaces
	  to provide different user info for different servers.
	  If unsure, say N.

config PID_NS
	bool "PID Namespaces"
	default y
	help
	  Support process id namespaces.  This allows having multiple
	  processes with the same pid as long as they are in different
	  pid namespaces.  This is a building block of containers.

config NET_NS
	bool "Network namespace"
	depends on NET
	default y
	help
	  Allow user space to create what appear to be multiple instances
	  of the network stack.

endif # NAMESPACES

config MM_OWNER
	bool

config SYSFS_DEPRECATED
	bool "enable deprecated sysfs features to support old userspace tools"
	depends on SYSFS
	default n
	help
	  This option adds code that switches the layout of the "block" class
	  devices, to not show up in /sys/class/block/, but only in
	  /sys/block/.

	  This switch is only active when the sysfs.deprecated=1 boot option is
	  passed or the SYSFS_DEPRECATED_V2 option is set.

	  This option allows new kernels to run on old distributions and tools,
	  which might get confused by /sys/class/block/. Since 2007/2008 all
	  major distributions and tools handle this just fine.

	  Recent distributions and userspace tools after 2009/2010 depend on
	  the existence of /sys/class/block/, and will not work with this
	  option enabled.

	  Only if you are using a new kernel on an old distribution, you might
	  need to say Y here.

config SYSFS_DEPRECATED_V2
	bool "enabled deprecated sysfs features by default"
	default n
	depends on SYSFS
	depends on SYSFS_DEPRECATED
	help
	  Enable deprecated sysfs by default.

	  See the CONFIG_SYSFS_DEPRECATED option for more details about this
	  option.

	  Only if you are using a new kernel on an old distribution, you might
	  need to say Y here. Even then, odds are you would not need it
	  enabled, you can always pass the boot option if absolutely necessary.

config RELAY
	bool "Kernel->user space relay support (formerly relayfs)"
	help
	  This option enables support for relay interface support in
	  certain file systems (such as debugfs).
	  It is designed to provide an efficient mechanism for tools and
	  facilities to relay large amounts of data from kernel space to
	  user space.

	  If unsure, say N.

config BLK_DEV_INITRD
	bool "Initial RAM filesystem and RAM disk (initramfs/initrd) support"
	depends on BROKEN || !FRV
	help
	  The initial RAM filesystem is a ramfs which is loaded by the
	  boot loader (loadlin or lilo) and that is mounted as root
	  before the normal boot procedure. It is typically used to
	  load modules needed to mount the "real" root file system,
	  etc. See <file:Documentation/initrd.txt> for details.

	  If RAM disk support (BLK_DEV_RAM) is also included, this
	  also enables initial RAM disk (initrd) support and adds
	  15 Kbytes (more on some other architectures) to the kernel size.

	  If unsure say Y.

if BLK_DEV_INITRD

source "usr/Kconfig"

endif

config CC_OPTIMIZE_FOR_SIZE
	bool "Optimize for size"
	default y
	help
	  Enabling this option will pass "-Os" instead of "-O2" to gcc
	  resulting in a smaller kernel.

	  If unsure, say Y.

config SYSCTL
	bool

config ANON_INODES
	bool

menuconfig EMBEDDED
	bool "Configure standard kernel features (for small systems)"
	help
	  This option allows certain base kernel options and settings
          to be disabled or tweaked. This is for specialized
          environments which can tolerate a "non-standard" kernel.
          Only use this if you really know what you are doing.

config UID16
	bool "Enable 16-bit UID system calls" if EMBEDDED
	depends on ARM || BLACKFIN || CRIS || FRV || H8300 || X86_32 || M68K || (S390 && !64BIT) || SUPERH || SPARC32 || (SPARC64 && COMPAT) || UML || (X86_64 && IA32_EMULATION)
	default y
	help
	  This enables the legacy 16-bit UID syscall wrappers.

config SYSCTL_SYSCALL
	bool "Sysctl syscall support" if EMBEDDED
	depends on PROC_SYSCTL
	default y
	select SYSCTL
	---help---
	  sys_sysctl uses binary paths that have been found challenging
	  to properly maintain and use.  The interface in /proc/sys
	  using paths with ascii names is now the primary path to this
	  information.

	  Almost nothing using the binary sysctl interface so if you are
	  trying to save some space it is probably safe to disable this,
	  making your kernel marginally smaller.

	  If unsure say Y here.

config KALLSYMS
	 bool "Load all symbols for debugging/ksymoops" if EMBEDDED
	 default y
	 help
	   Say Y here to let the kernel print out symbolic crash information and
	   symbolic stack backtraces. This increases the size of the kernel
	   somewhat, as all symbols have to be loaded into the kernel image.

config KALLSYMS_ALL
	bool "Include all symbols in kallsyms"
	depends on DEBUG_KERNEL && KALLSYMS
	help
	   Normally kallsyms only contains the symbols of functions, for nicer
	   OOPS messages.  Some debuggers can use kallsyms for other
	   symbols too: say Y here to include all symbols, if you need them 
	   and you don't care about adding 300k to the size of your kernel.

	   Say N.

config KALLSYMS_EXTRA_PASS
	bool "Do an extra kallsyms pass"
	depends on KALLSYMS
	help
	   If kallsyms is not working correctly, the build will fail with
	   inconsistent kallsyms data.  If that occurs, log a bug report and
	   turn on KALLSYMS_EXTRA_PASS which should result in a stable build.
	   Always say N here unless you find a bug in kallsyms, which must be
	   reported.  KALLSYMS_EXTRA_PASS is only a temporary workaround while
	   you wait for kallsyms to be fixed.


config HOTPLUG
	bool "Support for hot-pluggable devices" if EMBEDDED
	default y
	help
	  This option is provided for the case where no hotplug or uevent
	  capabilities is wanted by the kernel.  You should only consider
	  disabling this option for embedded systems that do not use modules, a
	  dynamic /dev tree, or dynamic device discovery.  Just say Y.

config PRINTK
	default y
	bool "Enable support for printk" if EMBEDDED
	help
	  This option enables normal printk support. Removing it
	  eliminates most of the message strings from the kernel image
	  and makes the kernel more or less silent. As this makes it
	  very difficult to diagnose system problems, saying N here is
	  strongly discouraged.

config BUG
	bool "BUG() support" if EMBEDDED
	default y
	help
          Disabling this option eliminates support for BUG and WARN, reducing
          the size of your kernel image and potentially quietly ignoring
          numerous fatal conditions. You should only consider disabling this
          option for embedded systems with no facilities for reporting errors.
          Just say Y.

config ELF_CORE
	default y
	bool "Enable ELF core dumps" if EMBEDDED
	help
	  Enable support for generating core dumps. Disabling saves about 4k.

config PCSPKR_PLATFORM
	bool "Enable PC-Speaker support" if EMBEDDED
	depends on ALPHA || X86 || MIPS || PPC_PREP || PPC_CHRP || PPC_PSERIES
	default y
	help
          This option allows to disable the internal PC-Speaker
          support, saving some memory.

config BASE_FULL
	default y
	bool "Enable full-sized data structures for core" if EMBEDDED
	help
	  Disabling this option reduces the size of miscellaneous core
	  kernel data structures. This saves memory on small machines,
	  but may reduce performance.

config FUTEX
	bool "Enable futex support" if EMBEDDED
	default y
	select RT_MUTEXES
	help
	  Disabling this option will cause the kernel to be built without
	  support for "fast userspace mutexes".  The resulting kernel may not
	  run glibc-based applications correctly.

config EPOLL
	bool "Enable eventpoll support" if EMBEDDED
	default y
	select ANON_INODES
	help
	  Disabling this option will cause the kernel to be built without
	  support for epoll family of system calls.

config SIGNALFD
	bool "Enable signalfd() system call" if EMBEDDED
	select ANON_INODES
	default y
	help
	  Enable the signalfd() system call that allows to receive signals
	  on a file descriptor.

	  If unsure, say Y.

config TIMERFD
	bool "Enable timerfd() system call" if EMBEDDED
	select ANON_INODES
	default y
	help
	  Enable the timerfd() system call that allows to receive timer
	  events on a file descriptor.

	  If unsure, say Y.

config EVENTFD
	bool "Enable eventfd() system call" if EMBEDDED
	select ANON_INODES
	default y
	help
	  Enable the eventfd() system call that allows to receive both
	  kernel notification (ie. KAIO) or userspace notifications.

	  If unsure, say Y.

config SHMEM
	bool "Use full shmem filesystem" if EMBEDDED
	default y
	depends on MMU
	help
	  The shmem is an internal filesystem used to manage shared memory.
	  It is backed by swap and manages resource limits. It is also exported
	  to userspace as tmpfs if TMPFS is enabled. Disabling this
	  option replaces shmem and tmpfs with the much simpler ramfs code,
	  which may be appropriate on small systems without swap.

config AIO
	bool "Enable AIO support" if EMBEDDED
	default y
	help
	  This option enables POSIX asynchronous I/O which may by used
          by some high performance threaded applications. Disabling
          this option saves about 7k.

config HAVE_PERF_EVENTS
	bool
	help
	  See tools/perf/design.txt for details.

config PERF_USE_VMALLOC
	bool
	help
	  See tools/perf/design.txt for details

menu "Kernel Performance Events And Counters"

config PERF_EVENTS
	bool "Kernel performance events and counters"
	default y if (PROFILING || PERF_COUNTERS)
	depends on HAVE_PERF_EVENTS
	select ANON_INODES
	select IRQ_WORK
	help
	  Enable kernel support for various performance events provided
	  by software and hardware.

	  Software events are supported either built-in or via the
	  use of generic tracepoints.

	  Most modern CPUs support performance events via performance
	  counter registers. These registers count the number of certain
	  types of hw events: such as instructions executed, cachemisses
	  suffered, or branches mis-predicted - without slowing down the
	  kernel or applications. These registers can also trigger interrupts
	  when a threshold number of events have passed - and can thus be
	  used to profile the code that runs on that CPU.

	  The Linux Performance Event subsystem provides an abstraction of
	  these software and hardware event capabilities, available via a
	  system call and used by the "perf" utility in tools/perf/. It
	  provides per task and per CPU counters, and it provides event
	  capabilities on top of those.

	  Say Y if unsure.

config PERF_COUNTERS
	bool "Kernel performance counters (old config option)"
	depends on HAVE_PERF_EVENTS
	help
	  This config has been obsoleted by the PERF_EVENTS
	  config option - please see that one for details.

	  It has no effect on the kernel whether you enable
	  it or not, it is a compatibility placeholder.

	  Say N if unsure.

config DEBUG_PERF_USE_VMALLOC
	default n
	bool "Debug: use vmalloc to back perf mmap() buffers"
	depends on PERF_EVENTS && DEBUG_KERNEL
	select PERF_USE_VMALLOC
	help
	 Use vmalloc memory to back perf mmap() buffers.

	 Mostly useful for debugging the vmalloc code on platforms
	 that don't require it.

	 Say N if unsure.

endmenu

config VM_EVENT_COUNTERS
	default y
	bool "Enable VM event counters for /proc/vmstat" if EMBEDDED
	help
	  VM event counters are needed for event counts to be shown.
	  This option allows the disabling of the VM event counters
	  on EMBEDDED systems.  /proc/vmstat will only show page counts
	  if VM event counters are disabled.

config PCI_QUIRKS
	default y
	bool "Enable PCI quirk workarounds" if EMBEDDED
	depends on PCI
	help
	  This enables workarounds for various PCI chipset
          bugs/quirks. Disable this only if your target machine is
          unaffected by PCI quirks.

config SLUB_DEBUG
	default y
	bool "Enable SLUB debugging support" if EMBEDDED
	depends on SLUB && SYSFS
	help
	  SLUB has extensive debug support features. Disabling these can
	  result in significant savings in code size. This also disables
	  SLUB sysfs support. /sys/slab will not exist and there will be
	  no support for cache validation etc.

config COMPAT_BRK
	bool "Disable heap randomization"
	default y
	help
	  Randomizing heap placement makes heap exploits harder, but it
	  also breaks ancient binaries (including anything libc5 based).
	  This option changes the bootup default to heap randomization
	  disabled, and can be overridden at runtime by setting
	  /proc/sys/kernel/randomize_va_space to 2.

	  On non-ancient distros (post-2000 ones) N is usually a safe choice.

choice
	prompt "Choose SLAB allocator"
	default SLUB
	help
	   This option allows to select a slab allocator.

config SLAB
	bool "SLAB"
	help
	  The regular slab allocator that is established and known to work
	  well in all environments. It organizes cache hot objects in
	  per cpu and per node queues.

config SLUB
	bool "SLUB (Unqueued Allocator)"
	help
	   SLUB is a slab allocator that minimizes cache line usage
	   instead of managing queues of cached objects (SLAB approach).
	   Per cpu caching is realized using slabs of objects instead
	   of queues of objects. SLUB can use memory efficiently
	   and has enhanced diagnostics. SLUB is the default choice for
	   a slab allocator.

config SLOB
	depends on EMBEDDED
	bool "SLOB (Simple Allocator)"
	help
	   SLOB replaces the stock allocator with a drastically simpler
	   allocator. SLOB is generally more space efficient but
	   does not perform as well on large systems.

endchoice

config MMAP_ALLOW_UNINITIALIZED
	bool "Allow mmapped anonymous memory to be uninitialized"
	depends on EMBEDDED && !MMU
	default n
	help
	  Normally, and according to the Linux spec, anonymous memory obtained
	  from mmap() has it's contents cleared before it is passed to
	  userspace.  Enabling this config option allows you to request that
	  mmap() skip that if it is given an MAP_UNINITIALIZED flag, thus
	  providing a huge performance boost.  If this option is not enabled,
	  then the flag will be ignored.

	  This is taken advantage of by uClibc's malloc(), and also by
	  ELF-FDPIC binfmt's brk and stack allocator.

	  Because of the obvious security issues, this option should only be
	  enabled on embedded devices where you control what is run in
	  userspace.  Since that isn't generally a problem on no-MMU systems,
	  it is normally safe to say Y here.

	  See Documentation/nommu-mmap.txt for more information.

config PROFILING
	bool "Profiling support"
	help
	  Say Y here to enable the extended profiling support mechanisms used
	  by profilers such as OProfile.

#
# Place an empty function call at each tracepoint site. Can be
# dynamically changed for a probe function.
#
config TRACEPOINTS
	bool

source "arch/Kconfig"

endmenu		# General setup

config HAVE_GENERIC_DMA_COHERENT
	bool
	default n

config SLABINFO
	bool
	depends on PROC_FS
	depends on SLAB || SLUB_DEBUG
	default y

config RT_MUTEXES
	boolean

config BASE_SMALL
	int
	default 0 if BASE_FULL
	default 1 if !BASE_FULL

menuconfig MODULES
	bool "Enable loadable module support"
	help
	  Kernel modules are small pieces of compiled code which can
	  be inserted in the running kernel, rather than being
	  permanently built into the kernel.  You use the "modprobe"
	  tool to add (and sometimes remove) them.  If you say Y here,
	  many parts of the kernel can be built as modules (by
	  answering M instead of Y where indicated): this is most
	  useful for infrequently used options which are not required
	  for booting.  For more information, see the man pages for
	  modprobe, lsmod, modinfo, insmod and rmmod.

	  If you say Y here, you will need to run "make
	  modules_install" to put the modules under /lib/modules/
	  where modprobe can find them (you may need to be root to do
	  this).

	  If unsure, say Y.

if MODULES

config MODULE_FORCE_LOAD
	bool "Forced module loading"
	default n
	help
	  Allow loading of modules without version information (ie. modprobe
	  --force).  Forced module loading sets the 'F' (forced) taint flag and
	  is usually a really bad idea.

config MODULE_UNLOAD
	bool "Module unloading"
	help
	  Without this option you will not be able to unload any
	  modules (note that some modules may not be unloadable
	  anyway), which makes your kernel smaller, faster
	  and simpler.  If unsure, say Y.

config MODULE_FORCE_UNLOAD
	bool "Forced module unloading"
	depends on MODULE_UNLOAD && EXPERIMENTAL
	help
	  This option allows you to force a module to unload, even if the
	  kernel believes it is unsafe: the kernel will remove the module
	  without waiting for anyone to stop using it (using the -f option to
	  rmmod).  This is mainly for kernel developers and desperate users.
	  If unsure, say N.

config MODVERSIONS
	bool "Module versioning support"
	help
	  Usually, you have to use modules compiled with your kernel.
	  Saying Y here makes it sometimes possible to use modules
	  compiled for different kernels, by adding enough information
	  to the modules to (hopefully) spot any changes which would
	  make them incompatible with the kernel you are running.  If
	  unsure, say N.

config MODULE_SRCVERSION_ALL
	bool "Source checksum for all modules"
	help
	  Modules which contain a MODULE_VERSION get an extra "srcversion"
	  field inserted into their modinfo section, which contains a
    	  sum of the source files which made it.  This helps maintainers
	  see exactly which source was used to build a module (since
	  others sometimes change the module source without updating
	  the version).  With this option, such a "srcversion" field
	  will be created for all modules.  If unsure, say N.

endif # MODULES

config INIT_ALL_POSSIBLE
	bool
	help
	  Back when each arch used to define their own cpu_online_map and
	  cpu_possible_map, some of them chose to initialize cpu_possible_map
	  with all 1s, and others with all 0s.  When they were centralised,
	  it was better to provide this option than to break all the archs
	  and have several arch maintainers pursuing me down dark alleys.

config STOP_MACHINE
	bool
	default y
	depends on (SMP && MODULE_UNLOAD) || HOTPLUG_CPU
	help
	  Need stop_machine() primitive.

source "block/Kconfig"

config PREEMPT_NOTIFIERS
	bool

config PADATA
	depends on SMP
	bool

source "kernel/Kconfig.locks"