discard.c 22.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
// SPDX-License-Identifier: GPL-2.0

#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/ktime.h>
#include <linux/list.h>
#include <linux/math64.h>
#include <linux/sizes.h>
#include <linux/workqueue.h>
#include "ctree.h"
#include "block-group.h"
#include "discard.h"
#include "free-space-cache.h"

/*
 * This contains the logic to handle async discard.
 *
 * Async discard manages trimming of free space outside of transaction commit.
 * Discarding is done by managing the block_groups on a LRU list based on free
 * space recency.  Two passes are used to first prioritize discarding extents
 * and then allow for trimming in the bitmap the best opportunity to coalesce.
 * The block_groups are maintained on multiple lists to allow for multiple
 * passes with different discard filter requirements.  A delayed work item is
 * used to manage discarding with timeout determined by a max of the delay
 * incurred by the iops rate limit, the byte rate limit, and the max delay of
 * BTRFS_DISCARD_MAX_DELAY.
 *
 * Note, this only keeps track of block_groups that are explicitly for data.
 * Mixed block_groups are not supported.
 *
 * The first list is special to manage discarding of fully free block groups.
 * This is necessary because we issue a final trim for a full free block group
 * after forgetting it.  When a block group becomes unused, instead of directly
 * being added to the unused_bgs list, we add it to this first list.  Then
 * from there, if it becomes fully discarded, we place it onto the unused_bgs
 * list.
 *
 * The in-memory free space cache serves as the backing state for discard.
 * Consequently this means there is no persistence.  We opt to load all the
 * block groups in as not discarded, so the mount case degenerates to the
 * crashing case.
 *
 * As the free space cache uses bitmaps, there exists a tradeoff between
 * ease/efficiency for find_free_extent() and the accuracy of discard state.
 * Here we opt to let untrimmed regions merge with everything while only letting
 * trimmed regions merge with other trimmed regions.  This can cause
 * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
 * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
 * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
 * this resets the state and we will retry trimming the whole bitmap.  This is a
 * tradeoff between discard state accuracy and the cost of accounting.
 */

/* This is an initial delay to give some chance for block reuse */
#define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
#define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)

/* Target completion latency of discarding all discardable extents */
#define BTRFS_DISCARD_TARGET_MSEC	(6 * 60 * 60UL * MSEC_PER_SEC)
#define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
#define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
#define BTRFS_DISCARD_MAX_IOPS		(10U)

/* Montonically decreasing minimum length filters after index 0 */
static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
	0,
	BTRFS_ASYNC_DISCARD_MAX_FILTER,
	BTRFS_ASYNC_DISCARD_MIN_FILTER
};

static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
					  struct btrfs_block_group *block_group)
{
	return &discard_ctl->discard_list[block_group->discard_index];
}

static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
				  struct btrfs_block_group *block_group)
{
	if (!btrfs_run_discard_work(discard_ctl))
		return;

	if (list_empty(&block_group->discard_list) ||
	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
		block_group->discard_eligible_time = (ktime_get_ns() +
						      BTRFS_DISCARD_DELAY);
		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
	}

	list_move_tail(&block_group->discard_list,
		       get_discard_list(discard_ctl, block_group));
}

static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
				struct btrfs_block_group *block_group)
{
	if (!btrfs_is_block_group_data_only(block_group))
		return;

	spin_lock(&discard_ctl->lock);
	__add_to_discard_list(discard_ctl, block_group);
	spin_unlock(&discard_ctl->lock);
}

static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
				       struct btrfs_block_group *block_group)
{
	spin_lock(&discard_ctl->lock);

	if (!btrfs_run_discard_work(discard_ctl)) {
		spin_unlock(&discard_ctl->lock);
		return;
	}

	list_del_init(&block_group->discard_list);

	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
	block_group->discard_eligible_time = (ktime_get_ns() +
					      BTRFS_DISCARD_UNUSED_DELAY);
	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
	list_add_tail(&block_group->discard_list,
		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);

	spin_unlock(&discard_ctl->lock);
}

static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
				     struct btrfs_block_group *block_group)
{
	bool running = false;

	spin_lock(&discard_ctl->lock);

	if (block_group == discard_ctl->block_group) {
		running = true;
		discard_ctl->block_group = NULL;
	}

	block_group->discard_eligible_time = 0;
	list_del_init(&block_group->discard_list);

	spin_unlock(&discard_ctl->lock);

	return running;
}

/**
 * find_next_block_group - find block_group that's up next for discarding
 * @discard_ctl: discard control
 * @now: current time
 *
 * Iterate over the discard lists to find the next block_group up for
 * discarding checking the discard_eligible_time of block_group.
 */
static struct btrfs_block_group *find_next_block_group(
					struct btrfs_discard_ctl *discard_ctl,
					u64 now)
{
	struct btrfs_block_group *ret_block_group = NULL, *block_group;
	int i;

	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
		struct list_head *discard_list = &discard_ctl->discard_list[i];

		if (!list_empty(discard_list)) {
			block_group = list_first_entry(discard_list,
						       struct btrfs_block_group,
						       discard_list);

			if (!ret_block_group)
				ret_block_group = block_group;

			if (ret_block_group->discard_eligible_time < now)
				break;

			if (ret_block_group->discard_eligible_time >
			    block_group->discard_eligible_time)
				ret_block_group = block_group;
		}
	}

	return ret_block_group;
}

/**
 * peek_discard_list - wrap find_next_block_group()
 * @discard_ctl: discard control
 * @discard_state: the discard_state of the block_group after state management
 * @discard_index: the discard_index of the block_group after state management
 *
 * This wraps find_next_block_group() and sets the block_group to be in use.
 * discard_state's control flow is managed here.  Variables related to
 * discard_state are reset here as needed (eg discard_cursor).  @discard_state
 * and @discard_index are remembered as it may change while we're discarding,
 * but we want the discard to execute in the context determined here.
 */
static struct btrfs_block_group *peek_discard_list(
					struct btrfs_discard_ctl *discard_ctl,
					enum btrfs_discard_state *discard_state,
					int *discard_index, u64 now)
{
	struct btrfs_block_group *block_group;

	spin_lock(&discard_ctl->lock);
again:
	block_group = find_next_block_group(discard_ctl, now);

	if (block_group && now >= block_group->discard_eligible_time) {
		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
		    block_group->used != 0) {
			if (btrfs_is_block_group_data_only(block_group))
				__add_to_discard_list(discard_ctl, block_group);
			else
				list_del_init(&block_group->discard_list);
			goto again;
		}
		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
			block_group->discard_cursor = block_group->start;
			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
		}
		discard_ctl->block_group = block_group;
	}
	if (block_group) {
		*discard_state = block_group->discard_state;
		*discard_index = block_group->discard_index;
	}
	spin_unlock(&discard_ctl->lock);

	return block_group;
}

/**
 * btrfs_discard_check_filter - updates a block groups filters
 * @block_group: block group of interest
 * @bytes: recently freed region size after coalescing
 *
 * Async discard maintains multiple lists with progressively smaller filters
 * to prioritize discarding based on size.  Should a free space that matches
 * a larger filter be returned to the free_space_cache, prioritize that discard
 * by moving @block_group to the proper filter.
 */
void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
				u64 bytes)
{
	struct btrfs_discard_ctl *discard_ctl;

	if (!block_group ||
	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
		return;

	discard_ctl = &block_group->fs_info->discard_ctl;

	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
	    bytes >= discard_minlen[block_group->discard_index - 1]) {
		int i;

		remove_from_discard_list(discard_ctl, block_group);

		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
		     i++) {
			if (bytes >= discard_minlen[i]) {
				block_group->discard_index = i;
				add_to_discard_list(discard_ctl, block_group);
				break;
			}
		}
	}
}

/**
 * btrfs_update_discard_index - moves a block group along the discard lists
 * @discard_ctl: discard control
 * @block_group: block_group of interest
 *
 * Increment @block_group's discard_index.  If it falls of the list, let it be.
 * Otherwise add it back to the appropriate list.
 */
static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
				       struct btrfs_block_group *block_group)
{
	block_group->discard_index++;
	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
		block_group->discard_index = 1;
		return;
	}

	add_to_discard_list(discard_ctl, block_group);
}

/**
 * btrfs_discard_cancel_work - remove a block_group from the discard lists
 * @discard_ctl: discard control
 * @block_group: block_group of interest
 *
 * This removes @block_group from the discard lists.  If necessary, it waits on
 * the current work and then reschedules the delayed work.
 */
void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
			       struct btrfs_block_group *block_group)
{
	if (remove_from_discard_list(discard_ctl, block_group)) {
		cancel_delayed_work_sync(&discard_ctl->work);
		btrfs_discard_schedule_work(discard_ctl, true);
	}
}

/**
 * btrfs_discard_queue_work - handles queuing the block_groups
 * @discard_ctl: discard control
 * @block_group: block_group of interest
 *
 * This maintains the LRU order of the discard lists.
 */
void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
			      struct btrfs_block_group *block_group)
{
	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
		return;

	if (block_group->used == 0)
		add_to_discard_unused_list(discard_ctl, block_group);
	else
		add_to_discard_list(discard_ctl, block_group);

	if (!delayed_work_pending(&discard_ctl->work))
		btrfs_discard_schedule_work(discard_ctl, false);
}

static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
					  u64 now, bool override)
{
	struct btrfs_block_group *block_group;

	if (!btrfs_run_discard_work(discard_ctl))
		return;
	if (!override && delayed_work_pending(&discard_ctl->work))
		return;

	block_group = find_next_block_group(discard_ctl, now);
	if (block_group) {
		unsigned long delay = discard_ctl->delay;
		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);

		/*
		 * A single delayed workqueue item is responsible for
		 * discarding, so we can manage the bytes rate limit by keeping
		 * track of the previous discard.
		 */
		if (kbps_limit && discard_ctl->prev_discard) {
			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
						  MSEC_PER_SEC, bps_limit);

			delay = max(delay, msecs_to_jiffies(bps_delay));
		}

		/*
		 * This timeout is to hopefully prevent immediate discarding
		 * in a recently allocated block group.
		 */
		if (now < block_group->discard_eligible_time) {
			u64 bg_timeout = block_group->discard_eligible_time - now;

			delay = max(delay, nsecs_to_jiffies(bg_timeout));
		}

		mod_delayed_work(discard_ctl->discard_workers,
				 &discard_ctl->work, delay);
	}
}

/*
 * btrfs_discard_schedule_work - responsible for scheduling the discard work
 * @discard_ctl:  discard control
 * @override:     override the current timer
 *
 * Discards are issued by a delayed workqueue item.  @override is used to
 * update the current delay as the baseline delay interval is reevaluated on
 * transaction commit.  This is also maxed with any other rate limit.
 */
void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
				 bool override)
{
	const u64 now = ktime_get_ns();

	spin_lock(&discard_ctl->lock);
	__btrfs_discard_schedule_work(discard_ctl, now, override);
	spin_unlock(&discard_ctl->lock);
}

/**
 * btrfs_finish_discard_pass - determine next step of a block_group
 * @discard_ctl: discard control
 * @block_group: block_group of interest
 *
 * This determines the next step for a block group after it's finished going
 * through a pass on a discard list.  If it is unused and fully trimmed, we can
 * mark it unused and send it to the unused_bgs path.  Otherwise, pass it onto
 * the appropriate filter list or let it fall off.
 */
static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
				      struct btrfs_block_group *block_group)
{
	remove_from_discard_list(discard_ctl, block_group);

	if (block_group->used == 0) {
		if (btrfs_is_free_space_trimmed(block_group))
			btrfs_mark_bg_unused(block_group);
		else
			add_to_discard_unused_list(discard_ctl, block_group);
	} else {
		btrfs_update_discard_index(discard_ctl, block_group);
	}
}

/**
 * btrfs_discard_workfn - discard work function
 * @work: work
 *
 * This finds the next block_group to start discarding and then discards a
 * single region.  It does this in a two-pass fashion: first extents and second
 * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
 */
static void btrfs_discard_workfn(struct work_struct *work)
{
	struct btrfs_discard_ctl *discard_ctl;
	struct btrfs_block_group *block_group;
	enum btrfs_discard_state discard_state;
	int discard_index = 0;
	u64 trimmed = 0;
	u64 minlen = 0;
	u64 now = ktime_get_ns();

	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);

	block_group = peek_discard_list(discard_ctl, &discard_state,
					&discard_index, now);
	if (!block_group || !btrfs_run_discard_work(discard_ctl))
		return;
	if (now < block_group->discard_eligible_time) {
		btrfs_discard_schedule_work(discard_ctl, false);
		return;
	}

	/* Perform discarding */
	minlen = discard_minlen[discard_index];

	if (discard_state == BTRFS_DISCARD_BITMAPS) {
		u64 maxlen = 0;

		/*
		 * Use the previous levels minimum discard length as the max
		 * length filter.  In the case something is added to make a
		 * region go beyond the max filter, the entire bitmap is set
		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
		 */
		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
			maxlen = discard_minlen[discard_index - 1];

		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
				       block_group->discard_cursor,
				       btrfs_block_group_end(block_group),
				       minlen, maxlen, true);
		discard_ctl->discard_bitmap_bytes += trimmed;
	} else {
		btrfs_trim_block_group_extents(block_group, &trimmed,
				       block_group->discard_cursor,
				       btrfs_block_group_end(block_group),
				       minlen, true);
		discard_ctl->discard_extent_bytes += trimmed;
	}

	discard_ctl->prev_discard = trimmed;

	/* Determine next steps for a block_group */
	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
		if (discard_state == BTRFS_DISCARD_BITMAPS) {
			btrfs_finish_discard_pass(discard_ctl, block_group);
		} else {
			block_group->discard_cursor = block_group->start;
			spin_lock(&discard_ctl->lock);
			if (block_group->discard_state !=
			    BTRFS_DISCARD_RESET_CURSOR)
				block_group->discard_state =
							BTRFS_DISCARD_BITMAPS;
			spin_unlock(&discard_ctl->lock);
		}
	}

	spin_lock(&discard_ctl->lock);
	discard_ctl->block_group = NULL;
	__btrfs_discard_schedule_work(discard_ctl, now, false);
	spin_unlock(&discard_ctl->lock);
}

/**
 * btrfs_run_discard_work - determines if async discard should be running
 * @discard_ctl: discard control
 *
 * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
 */
bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
{
	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
						     struct btrfs_fs_info,
						     discard_ctl);

	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
}

/**
 * btrfs_discard_calc_delay - recalculate the base delay
 * @discard_ctl: discard control
 *
 * Recalculate the base delay which is based off the total number of
 * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
 */
void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
{
	s32 discardable_extents;
	s64 discardable_bytes;
	u32 iops_limit;
	unsigned long delay;
	unsigned long lower_limit = BTRFS_DISCARD_MIN_DELAY_MSEC;

	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
	if (!discardable_extents)
		return;

	spin_lock(&discard_ctl->lock);

	/*
	 * The following is to fix a potential -1 discrepenancy that we're not
	 * sure how to reproduce. But given that this is the only place that
	 * utilizes these numbers and this is only called by from
	 * btrfs_finish_extent_commit() which is synchronized, we can correct
	 * here.
	 */
	if (discardable_extents < 0)
		atomic_add(-discardable_extents,
			   &discard_ctl->discardable_extents);

	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
	if (discardable_bytes < 0)
		atomic64_add(-discardable_bytes,
			     &discard_ctl->discardable_bytes);

	if (discardable_extents <= 0) {
		spin_unlock(&discard_ctl->lock);
		return;
	}

	iops_limit = READ_ONCE(discard_ctl->iops_limit);
	if (iops_limit)
		lower_limit = max_t(unsigned long, lower_limit,
				    MSEC_PER_SEC / iops_limit);

	delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
	delay = clamp(delay, lower_limit, BTRFS_DISCARD_MAX_DELAY_MSEC);
	discard_ctl->delay = msecs_to_jiffies(delay);

	spin_unlock(&discard_ctl->lock);
}

/**
 * btrfs_discard_update_discardable - propagate discard counters
 * @block_group: block_group of interest
 * @ctl: free_space_ctl of @block_group
 *
 * This propagates deltas of counters up to the discard_ctl.  It maintains a
 * current counter and a previous counter passing the delta up to the global
 * stat.  Then the current counter value becomes the previous counter value.
 */
void btrfs_discard_update_discardable(struct btrfs_block_group *block_group,
				      struct btrfs_free_space_ctl *ctl)
{
	struct btrfs_discard_ctl *discard_ctl;
	s32 extents_delta;
	s64 bytes_delta;

	if (!block_group ||
	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
	    !btrfs_is_block_group_data_only(block_group))
		return;

	discard_ctl = &block_group->fs_info->discard_ctl;

	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
			ctl->discardable_extents[BTRFS_STAT_PREV];
	if (extents_delta) {
		atomic_add(extents_delta, &discard_ctl->discardable_extents);
		ctl->discardable_extents[BTRFS_STAT_PREV] =
			ctl->discardable_extents[BTRFS_STAT_CURR];
	}

	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
		      ctl->discardable_bytes[BTRFS_STAT_PREV];
	if (bytes_delta) {
		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
		ctl->discardable_bytes[BTRFS_STAT_PREV] =
			ctl->discardable_bytes[BTRFS_STAT_CURR];
	}
}

/**
 * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists
 * @fs_info: fs_info of interest
 *
 * The unused_bgs list needs to be punted to the discard lists because the
 * order of operations is changed.  In the normal sychronous discard path, the
 * block groups are trimmed via a single large trim in transaction commit.  This
 * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
 * it must be done before going down the unused_bgs path.
 */
void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
{
	struct btrfs_block_group *block_group, *next;

	spin_lock(&fs_info->unused_bgs_lock);
	/* We enabled async discard, so punt all to the queue */
	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
				 bg_list) {
		list_del_init(&block_group->bg_list);
		btrfs_put_block_group(block_group);
		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
	}
	spin_unlock(&fs_info->unused_bgs_lock);
}

/**
 * btrfs_discard_purge_list - purge discard lists
 * @discard_ctl: discard control
 *
 * If we are disabling async discard, we may have intercepted block groups that
 * are completely free and ready for the unused_bgs path.  As discarding will
 * now happen in transaction commit or not at all, we can safely mark the
 * corresponding block groups as unused and they will be sent on their merry
 * way to the unused_bgs list.
 */
static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
{
	struct btrfs_block_group *block_group, *next;
	int i;

	spin_lock(&discard_ctl->lock);
	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
		list_for_each_entry_safe(block_group, next,
					 &discard_ctl->discard_list[i],
					 discard_list) {
			list_del_init(&block_group->discard_list);
			spin_unlock(&discard_ctl->lock);
			if (block_group->used == 0)
				btrfs_mark_bg_unused(block_group);
			spin_lock(&discard_ctl->lock);
		}
	}
	spin_unlock(&discard_ctl->lock);
}

void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
{
	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
		btrfs_discard_cleanup(fs_info);
		return;
	}

	btrfs_discard_punt_unused_bgs_list(fs_info);

	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
}

void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
{
	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
}

void btrfs_discard_init(struct btrfs_fs_info *fs_info)
{
	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
	int i;

	spin_lock_init(&discard_ctl->lock);
	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);

	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);

	discard_ctl->prev_discard = 0;
	atomic_set(&discard_ctl->discardable_extents, 0);
	atomic64_set(&discard_ctl->discardable_bytes, 0);
	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
	discard_ctl->delay = BTRFS_DISCARD_MAX_DELAY_MSEC;
	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
	discard_ctl->kbps_limit = 0;
	discard_ctl->discard_extent_bytes = 0;
	discard_ctl->discard_bitmap_bytes = 0;
	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
}

void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
{
	btrfs_discard_stop(fs_info);
	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
	btrfs_discard_purge_list(&fs_info->discard_ctl);
}