core.c 24.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Reset Controller framework
 *
 * Copyright 2013 Philipp Zabel, Pengutronix
 */
#include <linux/atomic.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/kref.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/reset.h>
#include <linux/reset-controller.h>
#include <linux/slab.h>

static DEFINE_MUTEX(reset_list_mutex);
static LIST_HEAD(reset_controller_list);

static DEFINE_MUTEX(reset_lookup_mutex);
static LIST_HEAD(reset_lookup_list);

/**
 * struct reset_control - a reset control
 * @rcdev: a pointer to the reset controller device
 *         this reset control belongs to
 * @list: list entry for the rcdev's reset controller list
 * @id: ID of the reset controller in the reset
 *      controller device
 * @refcnt: Number of gets of this reset_control
 * @acquired: Only one reset_control may be acquired for a given rcdev and id.
 * @shared: Is this a shared (1), or an exclusive (0) reset_control?
 * @deassert_cnt: Number of times this reset line has been deasserted
 * @triggered_count: Number of times this reset line has been reset. Currently
 *                   only used for shared resets, which means that the value
 *                   will be either 0 or 1.
 */
struct reset_control {
	struct reset_controller_dev *rcdev;
	struct list_head list;
	unsigned int id;
	struct kref refcnt;
	bool acquired;
	bool shared;
	bool array;
	atomic_t deassert_count;
	atomic_t triggered_count;
};

/**
 * struct reset_control_array - an array of reset controls
 * @base: reset control for compatibility with reset control API functions
 * @num_rstcs: number of reset controls
 * @rstc: array of reset controls
 */
struct reset_control_array {
	struct reset_control base;
	unsigned int num_rstcs;
	struct reset_control *rstc[];
};

static const char *rcdev_name(struct reset_controller_dev *rcdev)
{
	if (rcdev->dev)
		return dev_name(rcdev->dev);

	if (rcdev->of_node)
		return rcdev->of_node->full_name;

	return NULL;
}

/**
 * of_reset_simple_xlate - translate reset_spec to the reset line number
 * @rcdev: a pointer to the reset controller device
 * @reset_spec: reset line specifier as found in the device tree
 *
 * This simple translation function should be used for reset controllers
 * with 1:1 mapping, where reset lines can be indexed by number without gaps.
 */
static int of_reset_simple_xlate(struct reset_controller_dev *rcdev,
			  const struct of_phandle_args *reset_spec)
{
	if (reset_spec->args[0] >= rcdev->nr_resets)
		return -EINVAL;

	return reset_spec->args[0];
}

/**
 * reset_controller_register - register a reset controller device
 * @rcdev: a pointer to the initialized reset controller device
 */
int reset_controller_register(struct reset_controller_dev *rcdev)
{
	if (!rcdev->of_xlate) {
		rcdev->of_reset_n_cells = 1;
		rcdev->of_xlate = of_reset_simple_xlate;
	}

	INIT_LIST_HEAD(&rcdev->reset_control_head);

	mutex_lock(&reset_list_mutex);
	list_add(&rcdev->list, &reset_controller_list);
	mutex_unlock(&reset_list_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(reset_controller_register);

/**
 * reset_controller_unregister - unregister a reset controller device
 * @rcdev: a pointer to the reset controller device
 */
void reset_controller_unregister(struct reset_controller_dev *rcdev)
{
	mutex_lock(&reset_list_mutex);
	list_del(&rcdev->list);
	mutex_unlock(&reset_list_mutex);
}
EXPORT_SYMBOL_GPL(reset_controller_unregister);

static void devm_reset_controller_release(struct device *dev, void *res)
{
	reset_controller_unregister(*(struct reset_controller_dev **)res);
}

/**
 * devm_reset_controller_register - resource managed reset_controller_register()
 * @dev: device that is registering this reset controller
 * @rcdev: a pointer to the initialized reset controller device
 *
 * Managed reset_controller_register(). For reset controllers registered by
 * this function, reset_controller_unregister() is automatically called on
 * driver detach. See reset_controller_register() for more information.
 */
int devm_reset_controller_register(struct device *dev,
				   struct reset_controller_dev *rcdev)
{
	struct reset_controller_dev **rcdevp;
	int ret;

	rcdevp = devres_alloc(devm_reset_controller_release, sizeof(*rcdevp),
			      GFP_KERNEL);
	if (!rcdevp)
		return -ENOMEM;

	ret = reset_controller_register(rcdev);
	if (!ret) {
		*rcdevp = rcdev;
		devres_add(dev, rcdevp);
	} else {
		devres_free(rcdevp);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(devm_reset_controller_register);

/**
 * reset_controller_add_lookup - register a set of lookup entries
 * @lookup: array of reset lookup entries
 * @num_entries: number of entries in the lookup array
 */
void reset_controller_add_lookup(struct reset_control_lookup *lookup,
				 unsigned int num_entries)
{
	struct reset_control_lookup *entry;
	unsigned int i;

	mutex_lock(&reset_lookup_mutex);
	for (i = 0; i < num_entries; i++) {
		entry = &lookup[i];

		if (!entry->dev_id || !entry->provider) {
			pr_warn("%s(): reset lookup entry badly specified, skipping\n",
				__func__);
			continue;
		}

		list_add_tail(&entry->list, &reset_lookup_list);
	}
	mutex_unlock(&reset_lookup_mutex);
}
EXPORT_SYMBOL_GPL(reset_controller_add_lookup);

static inline struct reset_control_array *
rstc_to_array(struct reset_control *rstc) {
	return container_of(rstc, struct reset_control_array, base);
}

static int reset_control_array_reset(struct reset_control_array *resets)
{
	int ret, i;

	for (i = 0; i < resets->num_rstcs; i++) {
		ret = reset_control_reset(resets->rstc[i]);
		if (ret)
			return ret;
	}

	return 0;
}

static int reset_control_array_assert(struct reset_control_array *resets)
{
	int ret, i;

	for (i = 0; i < resets->num_rstcs; i++) {
		ret = reset_control_assert(resets->rstc[i]);
		if (ret)
			goto err;
	}

	return 0;

err:
	while (i--)
		reset_control_deassert(resets->rstc[i]);
	return ret;
}

static int reset_control_array_deassert(struct reset_control_array *resets)
{
	int ret, i;

	for (i = 0; i < resets->num_rstcs; i++) {
		ret = reset_control_deassert(resets->rstc[i]);
		if (ret)
			goto err;
	}

	return 0;

err:
	while (i--)
		reset_control_assert(resets->rstc[i]);
	return ret;
}

static int reset_control_array_acquire(struct reset_control_array *resets)
{
	unsigned int i;
	int err;

	for (i = 0; i < resets->num_rstcs; i++) {
		err = reset_control_acquire(resets->rstc[i]);
		if (err < 0)
			goto release;
	}

	return 0;

release:
	while (i--)
		reset_control_release(resets->rstc[i]);

	return err;
}

static void reset_control_array_release(struct reset_control_array *resets)
{
	unsigned int i;

	for (i = 0; i < resets->num_rstcs; i++)
		reset_control_release(resets->rstc[i]);
}

static inline bool reset_control_is_array(struct reset_control *rstc)
{
	return rstc->array;
}

/**
 * reset_control_reset - reset the controlled device
 * @rstc: reset controller
 *
 * On a shared reset line the actual reset pulse is only triggered once for the
 * lifetime of the reset_control instance: for all but the first caller this is
 * a no-op.
 * Consumers must not use reset_control_(de)assert on shared reset lines when
 * reset_control_reset has been used.
 *
 * If rstc is NULL it is an optional reset and the function will just
 * return 0.
 */
int reset_control_reset(struct reset_control *rstc)
{
	int ret;

	if (!rstc)
		return 0;

	if (WARN_ON(IS_ERR(rstc)))
		return -EINVAL;

	if (reset_control_is_array(rstc))
		return reset_control_array_reset(rstc_to_array(rstc));

	if (!rstc->rcdev->ops->reset)
		return -ENOTSUPP;

	if (rstc->shared) {
		if (WARN_ON(atomic_read(&rstc->deassert_count) != 0))
			return -EINVAL;

		if (atomic_inc_return(&rstc->triggered_count) != 1)
			return 0;
	} else {
		if (!rstc->acquired)
			return -EPERM;
	}

	ret = rstc->rcdev->ops->reset(rstc->rcdev, rstc->id);
	if (rstc->shared && ret)
		atomic_dec(&rstc->triggered_count);

	return ret;
}
EXPORT_SYMBOL_GPL(reset_control_reset);

/**
 * reset_control_assert - asserts the reset line
 * @rstc: reset controller
 *
 * Calling this on an exclusive reset controller guarantees that the reset
 * will be asserted. When called on a shared reset controller the line may
 * still be deasserted, as long as other users keep it so.
 *
 * For shared reset controls a driver cannot expect the hw's registers and
 * internal state to be reset, but must be prepared for this to happen.
 * Consumers must not use reset_control_reset on shared reset lines when
 * reset_control_(de)assert has been used.
 * return 0.
 *
 * If rstc is NULL it is an optional reset and the function will just
 * return 0.
 */
int reset_control_assert(struct reset_control *rstc)
{
	if (!rstc)
		return 0;

	if (WARN_ON(IS_ERR(rstc)))
		return -EINVAL;

	if (reset_control_is_array(rstc))
		return reset_control_array_assert(rstc_to_array(rstc));

	if (rstc->shared) {
		if (WARN_ON(atomic_read(&rstc->triggered_count) != 0))
			return -EINVAL;

		if (WARN_ON(atomic_read(&rstc->deassert_count) == 0))
			return -EINVAL;

		if (atomic_dec_return(&rstc->deassert_count) != 0)
			return 0;

		/*
		 * Shared reset controls allow the reset line to be in any state
		 * after this call, so doing nothing is a valid option.
		 */
		if (!rstc->rcdev->ops->assert)
			return 0;
	} else {
		/*
		 * If the reset controller does not implement .assert(), there
		 * is no way to guarantee that the reset line is asserted after
		 * this call.
		 */
		if (!rstc->rcdev->ops->assert)
			return -ENOTSUPP;

		if (!rstc->acquired) {
			WARN(1, "reset %s (ID: %u) is not acquired\n",
			     rcdev_name(rstc->rcdev), rstc->id);
			return -EPERM;
		}
	}

	return rstc->rcdev->ops->assert(rstc->rcdev, rstc->id);
}
EXPORT_SYMBOL_GPL(reset_control_assert);

/**
 * reset_control_deassert - deasserts the reset line
 * @rstc: reset controller
 *
 * After calling this function, the reset is guaranteed to be deasserted.
 * Consumers must not use reset_control_reset on shared reset lines when
 * reset_control_(de)assert has been used.
 * return 0.
 *
 * If rstc is NULL it is an optional reset and the function will just
 * return 0.
 */
int reset_control_deassert(struct reset_control *rstc)
{
	if (!rstc)
		return 0;

	if (WARN_ON(IS_ERR(rstc)))
		return -EINVAL;

	if (reset_control_is_array(rstc))
		return reset_control_array_deassert(rstc_to_array(rstc));

	if (rstc->shared) {
		if (WARN_ON(atomic_read(&rstc->triggered_count) != 0))
			return -EINVAL;

		if (atomic_inc_return(&rstc->deassert_count) != 1)
			return 0;
	} else {
		if (!rstc->acquired) {
			WARN(1, "reset %s (ID: %u) is not acquired\n",
			     rcdev_name(rstc->rcdev), rstc->id);
			return -EPERM;
		}
	}

	/*
	 * If the reset controller does not implement .deassert(), we assume
	 * that it handles self-deasserting reset lines via .reset(). In that
	 * case, the reset lines are deasserted by default. If that is not the
	 * case, the reset controller driver should implement .deassert() and
	 * return -ENOTSUPP.
	 */
	if (!rstc->rcdev->ops->deassert)
		return 0;

	return rstc->rcdev->ops->deassert(rstc->rcdev, rstc->id);
}
EXPORT_SYMBOL_GPL(reset_control_deassert);

/**
 * reset_control_status - returns a negative errno if not supported, a
 * positive value if the reset line is asserted, or zero if the reset
 * line is not asserted or if the desc is NULL (optional reset).
 * @rstc: reset controller
 */
int reset_control_status(struct reset_control *rstc)
{
	if (!rstc)
		return 0;

	if (WARN_ON(IS_ERR(rstc)) || reset_control_is_array(rstc))
		return -EINVAL;

	if (rstc->rcdev->ops->status)
		return rstc->rcdev->ops->status(rstc->rcdev, rstc->id);

	return -ENOTSUPP;
}
EXPORT_SYMBOL_GPL(reset_control_status);

/**
 * reset_control_acquire() - acquires a reset control for exclusive use
 * @rstc: reset control
 *
 * This is used to explicitly acquire a reset control for exclusive use. Note
 * that exclusive resets are requested as acquired by default. In order for a
 * second consumer to be able to control the reset, the first consumer has to
 * release it first. Typically the easiest way to achieve this is to call the
 * reset_control_get_exclusive_released() to obtain an instance of the reset
 * control. Such reset controls are not acquired by default.
 *
 * Consumers implementing shared access to an exclusive reset need to follow
 * a specific protocol in order to work together. Before consumers can change
 * a reset they must acquire exclusive access using reset_control_acquire().
 * After they are done operating the reset, they must release exclusive access
 * with a call to reset_control_release(). Consumers are not granted exclusive
 * access to the reset as long as another consumer hasn't released a reset.
 *
 * See also: reset_control_release()
 */
int reset_control_acquire(struct reset_control *rstc)
{
	struct reset_control *rc;

	if (!rstc)
		return 0;

	if (WARN_ON(IS_ERR(rstc)))
		return -EINVAL;

	if (reset_control_is_array(rstc))
		return reset_control_array_acquire(rstc_to_array(rstc));

	mutex_lock(&reset_list_mutex);

	if (rstc->acquired) {
		mutex_unlock(&reset_list_mutex);
		return 0;
	}

	list_for_each_entry(rc, &rstc->rcdev->reset_control_head, list) {
		if (rstc != rc && rstc->id == rc->id) {
			if (rc->acquired) {
				mutex_unlock(&reset_list_mutex);
				return -EBUSY;
			}
		}
	}

	rstc->acquired = true;

	mutex_unlock(&reset_list_mutex);
	return 0;
}
EXPORT_SYMBOL_GPL(reset_control_acquire);

/**
 * reset_control_release() - releases exclusive access to a reset control
 * @rstc: reset control
 *
 * Releases exclusive access right to a reset control previously obtained by a
 * call to reset_control_acquire(). Until a consumer calls this function, no
 * other consumers will be granted exclusive access.
 *
 * See also: reset_control_acquire()
 */
void reset_control_release(struct reset_control *rstc)
{
	if (!rstc || WARN_ON(IS_ERR(rstc)))
		return;

	if (reset_control_is_array(rstc))
		reset_control_array_release(rstc_to_array(rstc));
	else
		rstc->acquired = false;
}
EXPORT_SYMBOL_GPL(reset_control_release);

static struct reset_control *__reset_control_get_internal(
				struct reset_controller_dev *rcdev,
				unsigned int index, bool shared, bool acquired)
{
	struct reset_control *rstc;

	lockdep_assert_held(&reset_list_mutex);

	list_for_each_entry(rstc, &rcdev->reset_control_head, list) {
		if (rstc->id == index) {
			/*
			 * Allow creating a secondary exclusive reset_control
			 * that is initially not acquired for an already
			 * controlled reset line.
			 */
			if (!rstc->shared && !shared && !acquired)
				break;

			if (WARN_ON(!rstc->shared || !shared))
				return ERR_PTR(-EBUSY);

			kref_get(&rstc->refcnt);
			return rstc;
		}
	}

	rstc = kzalloc(sizeof(*rstc), GFP_KERNEL);
	if (!rstc)
		return ERR_PTR(-ENOMEM);

	try_module_get(rcdev->owner);

	rstc->rcdev = rcdev;
	list_add(&rstc->list, &rcdev->reset_control_head);
	rstc->id = index;
	kref_init(&rstc->refcnt);
	rstc->acquired = acquired;
	rstc->shared = shared;

	return rstc;
}

static void __reset_control_release(struct kref *kref)
{
	struct reset_control *rstc = container_of(kref, struct reset_control,
						  refcnt);

	lockdep_assert_held(&reset_list_mutex);

	module_put(rstc->rcdev->owner);

	list_del(&rstc->list);
	kfree(rstc);
}

static void __reset_control_put_internal(struct reset_control *rstc)
{
	lockdep_assert_held(&reset_list_mutex);

	kref_put(&rstc->refcnt, __reset_control_release);
}

struct reset_control *__of_reset_control_get(struct device_node *node,
				     const char *id, int index, bool shared,
				     bool optional, bool acquired)
{
	struct reset_control *rstc;
	struct reset_controller_dev *r, *rcdev;
	struct of_phandle_args args;
	int rstc_id;
	int ret;

	if (!node)
		return ERR_PTR(-EINVAL);

	if (id) {
		index = of_property_match_string(node,
						 "reset-names", id);
		if (index == -EILSEQ)
			return ERR_PTR(index);
		if (index < 0)
			return optional ? NULL : ERR_PTR(-ENOENT);
	}

	ret = of_parse_phandle_with_args(node, "resets", "#reset-cells",
					 index, &args);
	if (ret == -EINVAL)
		return ERR_PTR(ret);
	if (ret)
		return optional ? NULL : ERR_PTR(ret);

	mutex_lock(&reset_list_mutex);
	rcdev = NULL;
	list_for_each_entry(r, &reset_controller_list, list) {
		if (args.np == r->of_node) {
			rcdev = r;
			break;
		}
	}

	if (!rcdev) {
		rstc = ERR_PTR(-EPROBE_DEFER);
		goto out;
	}

	if (WARN_ON(args.args_count != rcdev->of_reset_n_cells)) {
		rstc = ERR_PTR(-EINVAL);
		goto out;
	}

	rstc_id = rcdev->of_xlate(rcdev, &args);
	if (rstc_id < 0) {
		rstc = ERR_PTR(rstc_id);
		goto out;
	}

	/* reset_list_mutex also protects the rcdev's reset_control list */
	rstc = __reset_control_get_internal(rcdev, rstc_id, shared, acquired);

out:
	mutex_unlock(&reset_list_mutex);
	of_node_put(args.np);

	return rstc;
}
EXPORT_SYMBOL_GPL(__of_reset_control_get);

static struct reset_controller_dev *
__reset_controller_by_name(const char *name)
{
	struct reset_controller_dev *rcdev;

	lockdep_assert_held(&reset_list_mutex);

	list_for_each_entry(rcdev, &reset_controller_list, list) {
		if (!rcdev->dev)
			continue;

		if (!strcmp(name, dev_name(rcdev->dev)))
			return rcdev;
	}

	return NULL;
}

static struct reset_control *
__reset_control_get_from_lookup(struct device *dev, const char *con_id,
				bool shared, bool optional, bool acquired)
{
	const struct reset_control_lookup *lookup;
	struct reset_controller_dev *rcdev;
	const char *dev_id = dev_name(dev);
	struct reset_control *rstc = NULL;

	mutex_lock(&reset_lookup_mutex);

	list_for_each_entry(lookup, &reset_lookup_list, list) {
		if (strcmp(lookup->dev_id, dev_id))
			continue;

		if ((!con_id && !lookup->con_id) ||
		    ((con_id && lookup->con_id) &&
		     !strcmp(con_id, lookup->con_id))) {
			mutex_lock(&reset_list_mutex);
			rcdev = __reset_controller_by_name(lookup->provider);
			if (!rcdev) {
				mutex_unlock(&reset_list_mutex);
				mutex_unlock(&reset_lookup_mutex);
				/* Reset provider may not be ready yet. */
				return ERR_PTR(-EPROBE_DEFER);
			}

			rstc = __reset_control_get_internal(rcdev,
							    lookup->index,
							    shared, acquired);
			mutex_unlock(&reset_list_mutex);
			break;
		}
	}

	mutex_unlock(&reset_lookup_mutex);

	if (!rstc)
		return optional ? NULL : ERR_PTR(-ENOENT);

	return rstc;
}

struct reset_control *__reset_control_get(struct device *dev, const char *id,
					  int index, bool shared, bool optional,
					  bool acquired)
{
	if (WARN_ON(shared && acquired))
		return ERR_PTR(-EINVAL);

	if (dev->of_node)
		return __of_reset_control_get(dev->of_node, id, index, shared,
					      optional, acquired);

	return __reset_control_get_from_lookup(dev, id, shared, optional,
					       acquired);
}
EXPORT_SYMBOL_GPL(__reset_control_get);

static void reset_control_array_put(struct reset_control_array *resets)
{
	int i;

	mutex_lock(&reset_list_mutex);
	for (i = 0; i < resets->num_rstcs; i++)
		__reset_control_put_internal(resets->rstc[i]);
	mutex_unlock(&reset_list_mutex);
	kfree(resets);
}

/**
 * reset_control_put - free the reset controller
 * @rstc: reset controller
 */
void reset_control_put(struct reset_control *rstc)
{
	if (IS_ERR_OR_NULL(rstc))
		return;

	if (reset_control_is_array(rstc)) {
		reset_control_array_put(rstc_to_array(rstc));
		return;
	}

	mutex_lock(&reset_list_mutex);
	__reset_control_put_internal(rstc);
	mutex_unlock(&reset_list_mutex);
}
EXPORT_SYMBOL_GPL(reset_control_put);

static void devm_reset_control_release(struct device *dev, void *res)
{
	reset_control_put(*(struct reset_control **)res);
}

struct reset_control *__devm_reset_control_get(struct device *dev,
				     const char *id, int index, bool shared,
				     bool optional, bool acquired)
{
	struct reset_control **ptr, *rstc;

	ptr = devres_alloc(devm_reset_control_release, sizeof(*ptr),
			   GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	rstc = __reset_control_get(dev, id, index, shared, optional, acquired);
	if (!IS_ERR_OR_NULL(rstc)) {
		*ptr = rstc;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return rstc;
}
EXPORT_SYMBOL_GPL(__devm_reset_control_get);

/**
 * device_reset - find reset controller associated with the device
 *                and perform reset
 * @dev: device to be reset by the controller
 * @optional: whether it is optional to reset the device
 *
 * Convenience wrapper for __reset_control_get() and reset_control_reset().
 * This is useful for the common case of devices with single, dedicated reset
 * lines.
 */
int __device_reset(struct device *dev, bool optional)
{
	struct reset_control *rstc;
	int ret;

	rstc = __reset_control_get(dev, NULL, 0, 0, optional, true);
	if (IS_ERR(rstc))
		return PTR_ERR(rstc);

	ret = reset_control_reset(rstc);

	reset_control_put(rstc);

	return ret;
}
EXPORT_SYMBOL_GPL(__device_reset);

/*
 * APIs to manage an array of reset controls.
 */

/**
 * of_reset_control_get_count - Count number of resets available with a device
 *
 * @node: device node that contains 'resets'.
 *
 * Returns positive reset count on success, or error number on failure and
 * on count being zero.
 */
static int of_reset_control_get_count(struct device_node *node)
{
	int count;

	if (!node)
		return -EINVAL;

	count = of_count_phandle_with_args(node, "resets", "#reset-cells");
	if (count == 0)
		count = -ENOENT;

	return count;
}

/**
 * of_reset_control_array_get - Get a list of reset controls using
 *				device node.
 *
 * @np: device node for the device that requests the reset controls array
 * @shared: whether reset controls are shared or not
 * @optional: whether it is optional to get the reset controls
 * @acquired: only one reset control may be acquired for a given controller
 *            and ID
 *
 * Returns pointer to allocated reset_control on success or error on failure
 */
struct reset_control *
of_reset_control_array_get(struct device_node *np, bool shared, bool optional,
			   bool acquired)
{
	struct reset_control_array *resets;
	struct reset_control *rstc;
	int num, i;

	num = of_reset_control_get_count(np);
	if (num < 0)
		return optional ? NULL : ERR_PTR(num);

	resets = kzalloc(struct_size(resets, rstc, num), GFP_KERNEL);
	if (!resets)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < num; i++) {
		rstc = __of_reset_control_get(np, NULL, i, shared, optional,
					      acquired);
		if (IS_ERR(rstc))
			goto err_rst;
		resets->rstc[i] = rstc;
	}
	resets->num_rstcs = num;
	resets->base.array = true;

	return &resets->base;

err_rst:
	mutex_lock(&reset_list_mutex);
	while (--i >= 0)
		__reset_control_put_internal(resets->rstc[i]);
	mutex_unlock(&reset_list_mutex);

	kfree(resets);

	return rstc;
}
EXPORT_SYMBOL_GPL(of_reset_control_array_get);

/**
 * devm_reset_control_array_get - Resource managed reset control array get
 *
 * @dev: device that requests the list of reset controls
 * @shared: whether reset controls are shared or not
 * @optional: whether it is optional to get the reset controls
 *
 * The reset control array APIs are intended for a list of resets
 * that just have to be asserted or deasserted, without any
 * requirements on the order.
 *
 * Returns pointer to allocated reset_control on success or error on failure
 */
struct reset_control *
devm_reset_control_array_get(struct device *dev, bool shared, bool optional)
{
	struct reset_control **devres;
	struct reset_control *rstc;

	devres = devres_alloc(devm_reset_control_release, sizeof(*devres),
			      GFP_KERNEL);
	if (!devres)
		return ERR_PTR(-ENOMEM);

	rstc = of_reset_control_array_get(dev->of_node, shared, optional, true);
	if (IS_ERR_OR_NULL(rstc)) {
		devres_free(devres);
		return rstc;
	}

	*devres = rstc;
	devres_add(dev, devres);

	return rstc;
}
EXPORT_SYMBOL_GPL(devm_reset_control_array_get);

static int reset_control_get_count_from_lookup(struct device *dev)
{
	const struct reset_control_lookup *lookup;
	const char *dev_id;
	int count = 0;

	if (!dev)
		return -EINVAL;

	dev_id = dev_name(dev);
	mutex_lock(&reset_lookup_mutex);

	list_for_each_entry(lookup, &reset_lookup_list, list) {
		if (!strcmp(lookup->dev_id, dev_id))
			count++;
	}

	mutex_unlock(&reset_lookup_mutex);

	if (count == 0)
		count = -ENOENT;

	return count;
}

/**
 * reset_control_get_count - Count number of resets available with a device
 *
 * @dev: device for which to return the number of resets
 *
 * Returns positive reset count on success, or error number on failure and
 * on count being zero.
 */
int reset_control_get_count(struct device *dev)
{
	if (dev->of_node)
		return of_reset_control_get_count(dev->of_node);

	return reset_control_get_count_from_lookup(dev);
}
EXPORT_SYMBOL_GPL(reset_control_get_count);