cfi_cmdset_0020.c 37.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
/*
 * Common Flash Interface support:
 *   ST Advanced Architecture Command Set (ID 0x0020)
 *
 * (C) 2000 Red Hat. GPL'd
 *
 * 10/10/2000	Nicolas Pitre <nico@fluxnic.net>
 * 	- completely revamped method functions so they are aware and
 * 	  independent of the flash geometry (buswidth, interleave, etc.)
 * 	- scalability vs code size is completely set at compile-time
 * 	  (see include/linux/mtd/cfi.h for selection)
 *	- optimized write buffer method
 * 06/21/2002	Joern Engel <joern@wh.fh-wedel.de> and others
 *	- modified Intel Command Set 0x0001 to support ST Advanced Architecture
 *	  (command set 0x0020)
 *	- added a writev function
 * 07/13/2005	Joern Engel <joern@wh.fh-wedel.de>
 * 	- Plugged memory leak in cfi_staa_writev().
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <asm/io.h>
#include <asm/byteorder.h>

#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/mtd/map.h>
#include <linux/mtd/cfi.h>
#include <linux/mtd/mtd.h>


static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
		unsigned long count, loff_t to, size_t *retlen);
static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *);
static void cfi_staa_sync (struct mtd_info *);
static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_staa_suspend (struct mtd_info *);
static void cfi_staa_resume (struct mtd_info *);

static void cfi_staa_destroy(struct mtd_info *);

struct mtd_info *cfi_cmdset_0020(struct map_info *, int);

static struct mtd_info *cfi_staa_setup (struct map_info *);

static struct mtd_chip_driver cfi_staa_chipdrv = {
	.probe		= NULL, /* Not usable directly */
	.destroy	= cfi_staa_destroy,
	.name		= "cfi_cmdset_0020",
	.module		= THIS_MODULE
};

/* #define DEBUG_LOCK_BITS */
//#define DEBUG_CFI_FEATURES

#ifdef DEBUG_CFI_FEATURES
static void cfi_tell_features(struct cfi_pri_intelext *extp)
{
        int i;
        printk("  Feature/Command Support: %4.4X\n", extp->FeatureSupport);
	printk("     - Chip Erase:         %s\n", extp->FeatureSupport&1?"supported":"unsupported");
	printk("     - Suspend Erase:      %s\n", extp->FeatureSupport&2?"supported":"unsupported");
	printk("     - Suspend Program:    %s\n", extp->FeatureSupport&4?"supported":"unsupported");
	printk("     - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
	printk("     - Queued Erase:       %s\n", extp->FeatureSupport&16?"supported":"unsupported");
	printk("     - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
	printk("     - Protection Bits:    %s\n", extp->FeatureSupport&64?"supported":"unsupported");
	printk("     - Page-mode read:     %s\n", extp->FeatureSupport&128?"supported":"unsupported");
	printk("     - Synchronous read:   %s\n", extp->FeatureSupport&256?"supported":"unsupported");
	for (i=9; i<32; i++) {
		if (extp->FeatureSupport & (1<<i))
			printk("     - Unknown Bit %X:      supported\n", i);
	}

	printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
	printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
	for (i=1; i<8; i++) {
		if (extp->SuspendCmdSupport & (1<<i))
			printk("     - Unknown Bit %X:               supported\n", i);
	}

	printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
	printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no");
	printk("     - Valid Bit Active:     %s\n", extp->BlkStatusRegMask&2?"yes":"no");
	for (i=2; i<16; i++) {
		if (extp->BlkStatusRegMask & (1<<i))
			printk("     - Unknown Bit %X Active: yes\n",i);
	}

	printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
	       extp->VccOptimal >> 8, extp->VccOptimal & 0xf);
	if (extp->VppOptimal)
		printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
		       extp->VppOptimal >> 8, extp->VppOptimal & 0xf);
}
#endif

/* This routine is made available to other mtd code via
 * inter_module_register.  It must only be accessed through
 * inter_module_get which will bump the use count of this module.  The
 * addresses passed back in cfi are valid as long as the use count of
 * this module is non-zero, i.e. between inter_module_get and
 * inter_module_put.  Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
 */
struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary)
{
	struct cfi_private *cfi = map->fldrv_priv;
	int i;

	if (cfi->cfi_mode) {
		/*
		 * It's a real CFI chip, not one for which the probe
		 * routine faked a CFI structure. So we read the feature
		 * table from it.
		 */
		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
		struct cfi_pri_intelext *extp;

		extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics");
		if (!extp)
			return NULL;

		if (extp->MajorVersion != '1' ||
		    (extp->MinorVersion < '0' || extp->MinorVersion > '3')) {
			printk(KERN_ERR "  Unknown ST Microelectronics"
			       " Extended Query version %c.%c.\n",
			       extp->MajorVersion, extp->MinorVersion);
			kfree(extp);
			return NULL;
		}

		/* Do some byteswapping if necessary */
		extp->FeatureSupport = cfi32_to_cpu(map, extp->FeatureSupport);
		extp->BlkStatusRegMask = cfi32_to_cpu(map,
						extp->BlkStatusRegMask);

#ifdef DEBUG_CFI_FEATURES
		/* Tell the user about it in lots of lovely detail */
		cfi_tell_features(extp);
#endif

		/* Install our own private info structure */
		cfi->cmdset_priv = extp;
	}

	for (i=0; i< cfi->numchips; i++) {
		cfi->chips[i].word_write_time = 128;
		cfi->chips[i].buffer_write_time = 128;
		cfi->chips[i].erase_time = 1024;
		cfi->chips[i].ref_point_counter = 0;
		init_waitqueue_head(&(cfi->chips[i].wq));
	}

	return cfi_staa_setup(map);
}
EXPORT_SYMBOL_GPL(cfi_cmdset_0020);

static struct mtd_info *cfi_staa_setup(struct map_info *map)
{
	struct cfi_private *cfi = map->fldrv_priv;
	struct mtd_info *mtd;
	unsigned long offset = 0;
	int i,j;
	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;

	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
	//printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);

	if (!mtd) {
		printk(KERN_ERR "Failed to allocate memory for MTD device\n");
		kfree(cfi->cmdset_priv);
		return NULL;
	}

	mtd->priv = map;
	mtd->type = MTD_NORFLASH;
	mtd->size = devsize * cfi->numchips;

	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
			* mtd->numeraseregions, GFP_KERNEL);
	if (!mtd->eraseregions) {
		printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
		kfree(cfi->cmdset_priv);
		kfree(mtd);
		return NULL;
	}

	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
		unsigned long ernum, ersize;
		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;

		if (mtd->erasesize < ersize) {
			mtd->erasesize = ersize;
		}
		for (j=0; j<cfi->numchips; j++) {
			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
		}
		offset += (ersize * ernum);
		}

		if (offset != devsize) {
			/* Argh */
			printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
			kfree(mtd->eraseregions);
			kfree(cfi->cmdset_priv);
			kfree(mtd);
			return NULL;
		}

		for (i=0; i<mtd->numeraseregions;i++){
			printk(KERN_DEBUG "%d: offset=0x%llx,size=0x%x,blocks=%d\n",
			       i, (unsigned long long)mtd->eraseregions[i].offset,
			       mtd->eraseregions[i].erasesize,
			       mtd->eraseregions[i].numblocks);
		}

	/* Also select the correct geometry setup too */
	mtd->erase = cfi_staa_erase_varsize;
	mtd->read = cfi_staa_read;
        mtd->write = cfi_staa_write_buffers;
	mtd->writev = cfi_staa_writev;
	mtd->sync = cfi_staa_sync;
	mtd->lock = cfi_staa_lock;
	mtd->unlock = cfi_staa_unlock;
	mtd->suspend = cfi_staa_suspend;
	mtd->resume = cfi_staa_resume;
	mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE;
	mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
	map->fldrv = &cfi_staa_chipdrv;
	__module_get(THIS_MODULE);
	mtd->name = map->name;
	return mtd;
}


static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
{
	map_word status, status_OK;
	unsigned long timeo;
	DECLARE_WAITQUEUE(wait, current);
	int suspended = 0;
	unsigned long cmd_addr;
	struct cfi_private *cfi = map->fldrv_priv;

	adr += chip->start;

	/* Ensure cmd read/writes are aligned. */
	cmd_addr = adr & ~(map_bankwidth(map)-1);

	/* Let's determine this according to the interleave only once */
	status_OK = CMD(0x80);

	timeo = jiffies + HZ;
 retry:
	mutex_lock(&chip->mutex);

	/* Check that the chip's ready to talk to us.
	 * If it's in FL_ERASING state, suspend it and make it talk now.
	 */
	switch (chip->state) {
	case FL_ERASING:
		if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2))
			goto sleep; /* We don't support erase suspend */

		map_write (map, CMD(0xb0), cmd_addr);
		/* If the flash has finished erasing, then 'erase suspend'
		 * appears to make some (28F320) flash devices switch to
		 * 'read' mode.  Make sure that we switch to 'read status'
		 * mode so we get the right data. --rmk
		 */
		map_write(map, CMD(0x70), cmd_addr);
		chip->oldstate = FL_ERASING;
		chip->state = FL_ERASE_SUSPENDING;
		//		printk("Erase suspending at 0x%lx\n", cmd_addr);
		for (;;) {
			status = map_read(map, cmd_addr);
			if (map_word_andequal(map, status, status_OK, status_OK))
				break;

			if (time_after(jiffies, timeo)) {
				/* Urgh */
				map_write(map, CMD(0xd0), cmd_addr);
				/* make sure we're in 'read status' mode */
				map_write(map, CMD(0x70), cmd_addr);
				chip->state = FL_ERASING;
				wake_up(&chip->wq);
				mutex_unlock(&chip->mutex);
				printk(KERN_ERR "Chip not ready after erase "
				       "suspended: status = 0x%lx\n", status.x[0]);
				return -EIO;
			}

			mutex_unlock(&chip->mutex);
			cfi_udelay(1);
			mutex_lock(&chip->mutex);
		}

		suspended = 1;
		map_write(map, CMD(0xff), cmd_addr);
		chip->state = FL_READY;
		break;

#if 0
	case FL_WRITING:
		/* Not quite yet */
#endif

	case FL_READY:
		break;

	case FL_CFI_QUERY:
	case FL_JEDEC_QUERY:
		map_write(map, CMD(0x70), cmd_addr);
		chip->state = FL_STATUS;

	case FL_STATUS:
		status = map_read(map, cmd_addr);
		if (map_word_andequal(map, status, status_OK, status_OK)) {
			map_write(map, CMD(0xff), cmd_addr);
			chip->state = FL_READY;
			break;
		}

		/* Urgh. Chip not yet ready to talk to us. */
		if (time_after(jiffies, timeo)) {
			mutex_unlock(&chip->mutex);
			printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]);
			return -EIO;
		}

		/* Latency issues. Drop the lock, wait a while and retry */
		mutex_unlock(&chip->mutex);
		cfi_udelay(1);
		goto retry;

	default:
	sleep:
		/* Stick ourselves on a wait queue to be woken when
		   someone changes the status */
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);
		mutex_unlock(&chip->mutex);
		schedule();
		remove_wait_queue(&chip->wq, &wait);
		timeo = jiffies + HZ;
		goto retry;
	}

	map_copy_from(map, buf, adr, len);

	if (suspended) {
		chip->state = chip->oldstate;
		/* What if one interleaved chip has finished and the
		   other hasn't? The old code would leave the finished
		   one in READY mode. That's bad, and caused -EROFS
		   errors to be returned from do_erase_oneblock because
		   that's the only bit it checked for at the time.
		   As the state machine appears to explicitly allow
		   sending the 0x70 (Read Status) command to an erasing
		   chip and expecting it to be ignored, that's what we
		   do. */
		map_write(map, CMD(0xd0), cmd_addr);
		map_write(map, CMD(0x70), cmd_addr);
	}

	wake_up(&chip->wq);
	mutex_unlock(&chip->mutex);
	return 0;
}

static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long ofs;
	int chipnum;
	int ret = 0;

	/* ofs: offset within the first chip that the first read should start */
	chipnum = (from >> cfi->chipshift);
	ofs = from - (chipnum <<  cfi->chipshift);

	*retlen = 0;

	while (len) {
		unsigned long thislen;

		if (chipnum >= cfi->numchips)
			break;

		if ((len + ofs -1) >> cfi->chipshift)
			thislen = (1<<cfi->chipshift) - ofs;
		else
			thislen = len;

		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
		if (ret)
			break;

		*retlen += thislen;
		len -= thislen;
		buf += thislen;

		ofs = 0;
		chipnum++;
	}
	return ret;
}

static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
				  unsigned long adr, const u_char *buf, int len)
{
	struct cfi_private *cfi = map->fldrv_priv;
	map_word status, status_OK;
	unsigned long cmd_adr, timeo;
	DECLARE_WAITQUEUE(wait, current);
	int wbufsize, z;

        /* M58LW064A requires bus alignment for buffer wriets -- saw */
        if (adr & (map_bankwidth(map)-1))
            return -EINVAL;

        wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
        adr += chip->start;
	cmd_adr = adr & ~(wbufsize-1);

	/* Let's determine this according to the interleave only once */
        status_OK = CMD(0x80);

	timeo = jiffies + HZ;
 retry:

#ifdef DEBUG_CFI_FEATURES
       printk("%s: chip->state[%d]\n", __func__, chip->state);
#endif
	mutex_lock(&chip->mutex);

	/* Check that the chip's ready to talk to us.
	 * Later, we can actually think about interrupting it
	 * if it's in FL_ERASING state.
	 * Not just yet, though.
	 */
	switch (chip->state) {
	case FL_READY:
		break;

	case FL_CFI_QUERY:
	case FL_JEDEC_QUERY:
		map_write(map, CMD(0x70), cmd_adr);
                chip->state = FL_STATUS;
#ifdef DEBUG_CFI_FEATURES
	printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr));
#endif

	case FL_STATUS:
		status = map_read(map, cmd_adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;
		/* Urgh. Chip not yet ready to talk to us. */
		if (time_after(jiffies, timeo)) {
			mutex_unlock(&chip->mutex);
                        printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
                               status.x[0], map_read(map, cmd_adr).x[0]);
			return -EIO;
		}

		/* Latency issues. Drop the lock, wait a while and retry */
		mutex_unlock(&chip->mutex);
		cfi_udelay(1);
		goto retry;

	default:
		/* Stick ourselves on a wait queue to be woken when
		   someone changes the status */
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);
		mutex_unlock(&chip->mutex);
		schedule();
		remove_wait_queue(&chip->wq, &wait);
		timeo = jiffies + HZ;
		goto retry;
	}

	ENABLE_VPP(map);
	map_write(map, CMD(0xe8), cmd_adr);
	chip->state = FL_WRITING_TO_BUFFER;

	z = 0;
	for (;;) {
		status = map_read(map, cmd_adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;

		mutex_unlock(&chip->mutex);
		cfi_udelay(1);
		mutex_lock(&chip->mutex);

		if (++z > 100) {
			/* Argh. Not ready for write to buffer */
			DISABLE_VPP(map);
                        map_write(map, CMD(0x70), cmd_adr);
			chip->state = FL_STATUS;
			mutex_unlock(&chip->mutex);
			printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]);
			return -EIO;
		}
	}

	/* Write length of data to come */
	map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr );

	/* Write data */
	for (z = 0; z < len;
	     z += map_bankwidth(map), buf += map_bankwidth(map)) {
		map_word d;
		d = map_word_load(map, buf);
		map_write(map, d, adr+z);
	}
	/* GO GO GO */
	map_write(map, CMD(0xd0), cmd_adr);
	chip->state = FL_WRITING;

	mutex_unlock(&chip->mutex);
	cfi_udelay(chip->buffer_write_time);
	mutex_lock(&chip->mutex);

	timeo = jiffies + (HZ/2);
	z = 0;
	for (;;) {
		if (chip->state != FL_WRITING) {
			/* Someone's suspended the write. Sleep */
			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);
			mutex_unlock(&chip->mutex);
			schedule();
			remove_wait_queue(&chip->wq, &wait);
			timeo = jiffies + (HZ / 2); /* FIXME */
			mutex_lock(&chip->mutex);
			continue;
		}

		status = map_read(map, cmd_adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;

		/* OK Still waiting */
		if (time_after(jiffies, timeo)) {
                        /* clear status */
                        map_write(map, CMD(0x50), cmd_adr);
                        /* put back into read status register mode */
                        map_write(map, CMD(0x70), adr);
			chip->state = FL_STATUS;
			DISABLE_VPP(map);
			mutex_unlock(&chip->mutex);
			printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
			return -EIO;
		}

		/* Latency issues. Drop the lock, wait a while and retry */
		mutex_unlock(&chip->mutex);
		cfi_udelay(1);
		z++;
		mutex_lock(&chip->mutex);
	}
	if (!z) {
		chip->buffer_write_time--;
		if (!chip->buffer_write_time)
			chip->buffer_write_time++;
	}
	if (z > 1)
		chip->buffer_write_time++;

	/* Done and happy. */
	DISABLE_VPP(map);
	chip->state = FL_STATUS;

        /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
        if (map_word_bitsset(map, status, CMD(0x3a))) {
#ifdef DEBUG_CFI_FEATURES
		printk("%s: 2 status[%lx]\n", __func__, status.x[0]);
#endif
		/* clear status */
		map_write(map, CMD(0x50), cmd_adr);
		/* put back into read status register mode */
		map_write(map, CMD(0x70), adr);
		wake_up(&chip->wq);
		mutex_unlock(&chip->mutex);
		return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO;
	}
	wake_up(&chip->wq);
	mutex_unlock(&chip->mutex);

        return 0;
}

static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
				       size_t len, size_t *retlen, const u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
	int ret = 0;
	int chipnum;
	unsigned long ofs;

	*retlen = 0;
	if (!len)
		return 0;

	chipnum = to >> cfi->chipshift;
	ofs = to  - (chipnum << cfi->chipshift);

#ifdef DEBUG_CFI_FEATURES
	printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map));
	printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize);
	printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len);
#endif

        /* Write buffer is worth it only if more than one word to write... */
        while (len > 0) {
		/* We must not cross write block boundaries */
		int size = wbufsize - (ofs & (wbufsize-1));

                if (size > len)
                    size = len;

                ret = do_write_buffer(map, &cfi->chips[chipnum],
				      ofs, buf, size);
		if (ret)
			return ret;

		ofs += size;
		buf += size;
		(*retlen) += size;
		len -= size;

		if (ofs >> cfi->chipshift) {
			chipnum ++;
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
		}
	}

	return 0;
}

/*
 * Writev for ECC-Flashes is a little more complicated. We need to maintain
 * a small buffer for this.
 * XXX: If the buffer size is not a multiple of 2, this will break
 */
#define ECCBUF_SIZE (mtd->writesize)
#define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
#define ECCBUF_MOD(x) ((x) &  (ECCBUF_SIZE - 1))
static int
cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
		unsigned long count, loff_t to, size_t *retlen)
{
	unsigned long i;
	size_t	 totlen = 0, thislen;
	int	 ret = 0;
	size_t	 buflen = 0;
	static char *buffer;

	if (!ECCBUF_SIZE) {
		/* We should fall back to a general writev implementation.
		 * Until that is written, just break.
		 */
		return -EIO;
	}
	buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL);
	if (!buffer)
		return -ENOMEM;

	for (i=0; i<count; i++) {
		size_t elem_len = vecs[i].iov_len;
		void *elem_base = vecs[i].iov_base;
		if (!elem_len) /* FIXME: Might be unnecessary. Check that */
			continue;
		if (buflen) { /* cut off head */
			if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */
				memcpy(buffer+buflen, elem_base, elem_len);
				buflen += elem_len;
				continue;
			}
			memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen);
			ret = mtd_write(mtd, to, ECCBUF_SIZE, &thislen,
					buffer);
			totlen += thislen;
			if (ret || thislen != ECCBUF_SIZE)
				goto write_error;
			elem_len -= thislen-buflen;
			elem_base += thislen-buflen;
			to += ECCBUF_SIZE;
		}
		if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */
			ret = mtd_write(mtd, to, ECCBUF_DIV(elem_len),
					&thislen, elem_base);
			totlen += thislen;
			if (ret || thislen != ECCBUF_DIV(elem_len))
				goto write_error;
			to += thislen;
		}
		buflen = ECCBUF_MOD(elem_len); /* cut off tail */
		if (buflen) {
			memset(buffer, 0xff, ECCBUF_SIZE);
			memcpy(buffer, elem_base + thislen, buflen);
		}
	}
	if (buflen) { /* flush last page, even if not full */
		/* This is sometimes intended behaviour, really */
		ret = mtd_write(mtd, to, buflen, &thislen, buffer);
		totlen += thislen;
		if (ret || thislen != ECCBUF_SIZE)
			goto write_error;
	}
write_error:
	if (retlen)
		*retlen = totlen;
	kfree(buffer);
	return ret;
}


static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
{
	struct cfi_private *cfi = map->fldrv_priv;
	map_word status, status_OK;
	unsigned long timeo;
	int retries = 3;
	DECLARE_WAITQUEUE(wait, current);
	int ret = 0;

	adr += chip->start;

	/* Let's determine this according to the interleave only once */
	status_OK = CMD(0x80);

	timeo = jiffies + HZ;
retry:
	mutex_lock(&chip->mutex);

	/* Check that the chip's ready to talk to us. */
	switch (chip->state) {
	case FL_CFI_QUERY:
	case FL_JEDEC_QUERY:
	case FL_READY:
		map_write(map, CMD(0x70), adr);
		chip->state = FL_STATUS;

	case FL_STATUS:
		status = map_read(map, adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;

		/* Urgh. Chip not yet ready to talk to us. */
		if (time_after(jiffies, timeo)) {
			mutex_unlock(&chip->mutex);
			printk(KERN_ERR "waiting for chip to be ready timed out in erase\n");
			return -EIO;
		}

		/* Latency issues. Drop the lock, wait a while and retry */
		mutex_unlock(&chip->mutex);
		cfi_udelay(1);
		goto retry;

	default:
		/* Stick ourselves on a wait queue to be woken when
		   someone changes the status */
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);
		mutex_unlock(&chip->mutex);
		schedule();
		remove_wait_queue(&chip->wq, &wait);
		timeo = jiffies + HZ;
		goto retry;
	}

	ENABLE_VPP(map);
	/* Clear the status register first */
	map_write(map, CMD(0x50), adr);

	/* Now erase */
	map_write(map, CMD(0x20), adr);
	map_write(map, CMD(0xD0), adr);
	chip->state = FL_ERASING;

	mutex_unlock(&chip->mutex);
	msleep(1000);
	mutex_lock(&chip->mutex);

	/* FIXME. Use a timer to check this, and return immediately. */
	/* Once the state machine's known to be working I'll do that */

	timeo = jiffies + (HZ*20);
	for (;;) {
		if (chip->state != FL_ERASING) {
			/* Someone's suspended the erase. Sleep */
			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);
			mutex_unlock(&chip->mutex);
			schedule();
			remove_wait_queue(&chip->wq, &wait);
			timeo = jiffies + (HZ*20); /* FIXME */
			mutex_lock(&chip->mutex);
			continue;
		}

		status = map_read(map, adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;

		/* OK Still waiting */
		if (time_after(jiffies, timeo)) {
			map_write(map, CMD(0x70), adr);
			chip->state = FL_STATUS;
			printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
			DISABLE_VPP(map);
			mutex_unlock(&chip->mutex);
			return -EIO;
		}

		/* Latency issues. Drop the lock, wait a while and retry */
		mutex_unlock(&chip->mutex);
		cfi_udelay(1);
		mutex_lock(&chip->mutex);
	}

	DISABLE_VPP(map);
	ret = 0;

	/* We've broken this before. It doesn't hurt to be safe */
	map_write(map, CMD(0x70), adr);
	chip->state = FL_STATUS;
	status = map_read(map, adr);

	/* check for lock bit */
	if (map_word_bitsset(map, status, CMD(0x3a))) {
		unsigned char chipstatus = status.x[0];
		if (!map_word_equal(map, status, CMD(chipstatus))) {
			int i, w;
			for (w=0; w<map_words(map); w++) {
				for (i = 0; i<cfi_interleave(cfi); i++) {
					chipstatus |= status.x[w] >> (cfi->device_type * 8);
				}
			}
			printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
			       status.x[0], chipstatus);
		}
		/* Reset the error bits */
		map_write(map, CMD(0x50), adr);
		map_write(map, CMD(0x70), adr);

		if ((chipstatus & 0x30) == 0x30) {
			printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
			ret = -EIO;
		} else if (chipstatus & 0x02) {
			/* Protection bit set */
			ret = -EROFS;
		} else if (chipstatus & 0x8) {
			/* Voltage */
			printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
			ret = -EIO;
		} else if (chipstatus & 0x20) {
			if (retries--) {
				printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
				timeo = jiffies + HZ;
				chip->state = FL_STATUS;
				mutex_unlock(&chip->mutex);
				goto retry;
			}
			printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
			ret = -EIO;
		}
	}

	wake_up(&chip->wq);
	mutex_unlock(&chip->mutex);
	return ret;
}

static int cfi_staa_erase_varsize(struct mtd_info *mtd,
				  struct erase_info *instr)
{	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long adr, len;
	int chipnum, ret = 0;
	int i, first;
	struct mtd_erase_region_info *regions = mtd->eraseregions;

	if (instr->addr > mtd->size)
		return -EINVAL;

	if ((instr->len + instr->addr) > mtd->size)
		return -EINVAL;

	/* Check that both start and end of the requested erase are
	 * aligned with the erasesize at the appropriate addresses.
	 */

	i = 0;

	/* Skip all erase regions which are ended before the start of
	   the requested erase. Actually, to save on the calculations,
	   we skip to the first erase region which starts after the
	   start of the requested erase, and then go back one.
	*/

	while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
	       i++;
	i--;

	/* OK, now i is pointing at the erase region in which this
	   erase request starts. Check the start of the requested
	   erase range is aligned with the erase size which is in
	   effect here.
	*/

	if (instr->addr & (regions[i].erasesize-1))
		return -EINVAL;

	/* Remember the erase region we start on */
	first = i;

	/* Next, check that the end of the requested erase is aligned
	 * with the erase region at that address.
	 */

	while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
		i++;

	/* As before, drop back one to point at the region in which
	   the address actually falls
	*/
	i--;

	if ((instr->addr + instr->len) & (regions[i].erasesize-1))
		return -EINVAL;

	chipnum = instr->addr >> cfi->chipshift;
	adr = instr->addr - (chipnum << cfi->chipshift);
	len = instr->len;

	i=first;

	while(len) {
		ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);

		if (ret)
			return ret;

		adr += regions[i].erasesize;
		len -= regions[i].erasesize;

		if (adr % (1<< cfi->chipshift) == (((unsigned long)regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
			i++;

		if (adr >> cfi->chipshift) {
			adr = 0;
			chipnum++;

			if (chipnum >= cfi->numchips)
			break;
		}
	}

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

static void cfi_staa_sync (struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;
	int ret = 0;
	DECLARE_WAITQUEUE(wait, current);

	for (i=0; !ret && i<cfi->numchips; i++) {
		chip = &cfi->chips[i];

	retry:
		mutex_lock(&chip->mutex);

		switch(chip->state) {
		case FL_READY:
		case FL_STATUS:
		case FL_CFI_QUERY:
		case FL_JEDEC_QUERY:
			chip->oldstate = chip->state;
			chip->state = FL_SYNCING;
			/* No need to wake_up() on this state change -
			 * as the whole point is that nobody can do anything
			 * with the chip now anyway.
			 */
		case FL_SYNCING:
			mutex_unlock(&chip->mutex);
			break;

		default:
			/* Not an idle state */
			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);

			mutex_unlock(&chip->mutex);
			schedule();
		        remove_wait_queue(&chip->wq, &wait);

			goto retry;
		}
	}

	/* Unlock the chips again */

	for (i--; i >=0; i--) {
		chip = &cfi->chips[i];

		mutex_lock(&chip->mutex);

		if (chip->state == FL_SYNCING) {
			chip->state = chip->oldstate;
			wake_up(&chip->wq);
		}
		mutex_unlock(&chip->mutex);
	}
}

static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
{
	struct cfi_private *cfi = map->fldrv_priv;
	map_word status, status_OK;
	unsigned long timeo = jiffies + HZ;
	DECLARE_WAITQUEUE(wait, current);

	adr += chip->start;

	/* Let's determine this according to the interleave only once */
	status_OK = CMD(0x80);

	timeo = jiffies + HZ;
retry:
	mutex_lock(&chip->mutex);

	/* Check that the chip's ready to talk to us. */
	switch (chip->state) {
	case FL_CFI_QUERY:
	case FL_JEDEC_QUERY:
	case FL_READY:
		map_write(map, CMD(0x70), adr);
		chip->state = FL_STATUS;

	case FL_STATUS:
		status = map_read(map, adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;

		/* Urgh. Chip not yet ready to talk to us. */
		if (time_after(jiffies, timeo)) {
			mutex_unlock(&chip->mutex);
			printk(KERN_ERR "waiting for chip to be ready timed out in lock\n");
			return -EIO;
		}

		/* Latency issues. Drop the lock, wait a while and retry */
		mutex_unlock(&chip->mutex);
		cfi_udelay(1);
		goto retry;

	default:
		/* Stick ourselves on a wait queue to be woken when
		   someone changes the status */
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);
		mutex_unlock(&chip->mutex);
		schedule();
		remove_wait_queue(&chip->wq, &wait);
		timeo = jiffies + HZ;
		goto retry;
	}

	ENABLE_VPP(map);
	map_write(map, CMD(0x60), adr);
	map_write(map, CMD(0x01), adr);
	chip->state = FL_LOCKING;

	mutex_unlock(&chip->mutex);
	msleep(1000);
	mutex_lock(&chip->mutex);

	/* FIXME. Use a timer to check this, and return immediately. */
	/* Once the state machine's known to be working I'll do that */

	timeo = jiffies + (HZ*2);
	for (;;) {

		status = map_read(map, adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;

		/* OK Still waiting */
		if (time_after(jiffies, timeo)) {
			map_write(map, CMD(0x70), adr);
			chip->state = FL_STATUS;
			printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
			DISABLE_VPP(map);
			mutex_unlock(&chip->mutex);
			return -EIO;
		}

		/* Latency issues. Drop the lock, wait a while and retry */
		mutex_unlock(&chip->mutex);
		cfi_udelay(1);
		mutex_lock(&chip->mutex);
	}

	/* Done and happy. */
	chip->state = FL_STATUS;
	DISABLE_VPP(map);
	wake_up(&chip->wq);
	mutex_unlock(&chip->mutex);
	return 0;
}
static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long adr;
	int chipnum, ret = 0;
#ifdef DEBUG_LOCK_BITS
	int ofs_factor = cfi->interleave * cfi->device_type;
#endif

	if (ofs & (mtd->erasesize - 1))
		return -EINVAL;

	if (len & (mtd->erasesize -1))
		return -EINVAL;

	if ((len + ofs) > mtd->size)
		return -EINVAL;

	chipnum = ofs >> cfi->chipshift;
	adr = ofs - (chipnum << cfi->chipshift);

	while(len) {

#ifdef DEBUG_LOCK_BITS
		cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
		printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
		cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
#endif

		ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr);

#ifdef DEBUG_LOCK_BITS
		cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
		printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
		cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
#endif

		if (ret)
			return ret;

		adr += mtd->erasesize;
		len -= mtd->erasesize;

		if (adr >> cfi->chipshift) {
			adr = 0;
			chipnum++;

			if (chipnum >= cfi->numchips)
			break;
		}
	}
	return 0;
}
static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
{
	struct cfi_private *cfi = map->fldrv_priv;
	map_word status, status_OK;
	unsigned long timeo = jiffies + HZ;
	DECLARE_WAITQUEUE(wait, current);

	adr += chip->start;

	/* Let's determine this according to the interleave only once */
	status_OK = CMD(0x80);

	timeo = jiffies + HZ;
retry:
	mutex_lock(&chip->mutex);

	/* Check that the chip's ready to talk to us. */
	switch (chip->state) {
	case FL_CFI_QUERY:
	case FL_JEDEC_QUERY:
	case FL_READY:
		map_write(map, CMD(0x70), adr);
		chip->state = FL_STATUS;

	case FL_STATUS:
		status = map_read(map, adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;

		/* Urgh. Chip not yet ready to talk to us. */
		if (time_after(jiffies, timeo)) {
			mutex_unlock(&chip->mutex);
			printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n");
			return -EIO;
		}

		/* Latency issues. Drop the lock, wait a while and retry */
		mutex_unlock(&chip->mutex);
		cfi_udelay(1);
		goto retry;

	default:
		/* Stick ourselves on a wait queue to be woken when
		   someone changes the status */
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);
		mutex_unlock(&chip->mutex);
		schedule();
		remove_wait_queue(&chip->wq, &wait);
		timeo = jiffies + HZ;
		goto retry;
	}

	ENABLE_VPP(map);
	map_write(map, CMD(0x60), adr);
	map_write(map, CMD(0xD0), adr);
	chip->state = FL_UNLOCKING;

	mutex_unlock(&chip->mutex);
	msleep(1000);
	mutex_lock(&chip->mutex);

	/* FIXME. Use a timer to check this, and return immediately. */
	/* Once the state machine's known to be working I'll do that */

	timeo = jiffies + (HZ*2);
	for (;;) {

		status = map_read(map, adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;

		/* OK Still waiting */
		if (time_after(jiffies, timeo)) {
			map_write(map, CMD(0x70), adr);
			chip->state = FL_STATUS;
			printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
			DISABLE_VPP(map);
			mutex_unlock(&chip->mutex);
			return -EIO;
		}

		/* Latency issues. Drop the unlock, wait a while and retry */
		mutex_unlock(&chip->mutex);
		cfi_udelay(1);
		mutex_lock(&chip->mutex);
	}

	/* Done and happy. */
	chip->state = FL_STATUS;
	DISABLE_VPP(map);
	wake_up(&chip->wq);
	mutex_unlock(&chip->mutex);
	return 0;
}
static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long adr;
	int chipnum, ret = 0;
#ifdef DEBUG_LOCK_BITS
	int ofs_factor = cfi->interleave * cfi->device_type;
#endif

	chipnum = ofs >> cfi->chipshift;
	adr = ofs - (chipnum << cfi->chipshift);

#ifdef DEBUG_LOCK_BITS
	{
		unsigned long temp_adr = adr;
		unsigned long temp_len = len;

		cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
                while (temp_len) {
			printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor)));
			temp_adr += mtd->erasesize;
			temp_len -= mtd->erasesize;
		}
		cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
	}
#endif

	ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr);

#ifdef DEBUG_LOCK_BITS
	cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
	printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
	cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
#endif

	return ret;
}

static int cfi_staa_suspend(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;
	int ret = 0;

	for (i=0; !ret && i<cfi->numchips; i++) {
		chip = &cfi->chips[i];

		mutex_lock(&chip->mutex);

		switch(chip->state) {
		case FL_READY:
		case FL_STATUS:
		case FL_CFI_QUERY:
		case FL_JEDEC_QUERY:
			chip->oldstate = chip->state;
			chip->state = FL_PM_SUSPENDED;
			/* No need to wake_up() on this state change -
			 * as the whole point is that nobody can do anything
			 * with the chip now anyway.
			 */
		case FL_PM_SUSPENDED:
			break;

		default:
			ret = -EAGAIN;
			break;
		}
		mutex_unlock(&chip->mutex);
	}

	/* Unlock the chips again */

	if (ret) {
		for (i--; i >=0; i--) {
			chip = &cfi->chips[i];

			mutex_lock(&chip->mutex);

			if (chip->state == FL_PM_SUSPENDED) {
				/* No need to force it into a known state here,
				   because we're returning failure, and it didn't
				   get power cycled */
				chip->state = chip->oldstate;
				wake_up(&chip->wq);
			}
			mutex_unlock(&chip->mutex);
		}
	}

	return ret;
}

static void cfi_staa_resume(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;

	for (i=0; i<cfi->numchips; i++) {

		chip = &cfi->chips[i];

		mutex_lock(&chip->mutex);

		/* Go to known state. Chip may have been power cycled */
		if (chip->state == FL_PM_SUSPENDED) {
			map_write(map, CMD(0xFF), 0);
			chip->state = FL_READY;
			wake_up(&chip->wq);
		}

		mutex_unlock(&chip->mutex);
	}
}

static void cfi_staa_destroy(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	kfree(cfi->cmdset_priv);
	kfree(cfi);
}

MODULE_LICENSE("GPL");