rtc-sa1100.c 11.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
/*
 * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
 *
 * Copyright (c) 2000 Nils Faerber
 *
 * Based on rtc.c by Paul Gortmaker
 *
 * Original Driver by Nils Faerber <nils@kernelconcepts.de>
 *
 * Modifications from:
 *   CIH <cih@coventive.com>
 *   Nicolas Pitre <nico@fluxnic.net>
 *   Andrew Christian <andrew.christian@hp.com>
 *
 * Converted to the RTC subsystem and Driver Model
 *   by Richard Purdie <rpurdie@rpsys.net>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/rtc.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/io.h>

#include <mach/hardware.h>
#include <asm/irq.h>

#define RTC_DEF_DIVIDER		(32768 - 1)
#define RTC_DEF_TRIM		0
#define RTC_FREQ		1024

#define RCNR		0x00	/* RTC Count Register */
#define RTAR		0x04	/* RTC Alarm Register */
#define RTSR		0x08	/* RTC Status Register */
#define RTTR		0x0c	/* RTC Timer Trim Register */

#define RTSR_HZE	(1 << 3)	/* HZ interrupt enable */
#define RTSR_ALE	(1 << 2)	/* RTC alarm interrupt enable */
#define RTSR_HZ		(1 << 1)	/* HZ rising-edge detected */
#define RTSR_AL		(1 << 0)	/* RTC alarm detected */

#define rtc_readl(sa1100_rtc, reg)	\
	readl_relaxed((sa1100_rtc)->base + (reg))
#define rtc_writel(sa1100_rtc, reg, value)	\
	writel_relaxed((value), (sa1100_rtc)->base + (reg))

struct sa1100_rtc {
	struct resource		*ress;
	void __iomem		*base;
	struct clk		*clk;
	int			irq_1Hz;
	int			irq_Alrm;
	struct rtc_device	*rtc;
	spinlock_t		lock;		/* Protects this structure */
};
/*
 * Calculate the next alarm time given the requested alarm time mask
 * and the current time.
 */
static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now,
	struct rtc_time *alrm)
{
	unsigned long next_time;
	unsigned long now_time;

	next->tm_year = now->tm_year;
	next->tm_mon = now->tm_mon;
	next->tm_mday = now->tm_mday;
	next->tm_hour = alrm->tm_hour;
	next->tm_min = alrm->tm_min;
	next->tm_sec = alrm->tm_sec;

	rtc_tm_to_time(now, &now_time);
	rtc_tm_to_time(next, &next_time);

	if (next_time < now_time) {
		/* Advance one day */
		next_time += 60 * 60 * 24;
		rtc_time_to_tm(next_time, next);
	}
}

static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
{
	struct platform_device *pdev = to_platform_device(dev_id);
	struct sa1100_rtc *sa1100_rtc = platform_get_drvdata(pdev);
	unsigned int rtsr;
	unsigned long events = 0;

	spin_lock(&sa1100_rtc->lock);

	/* clear interrupt sources */
	rtsr = rtc_readl(sa1100_rtc, RTSR);
	rtc_writel(sa1100_rtc, RTSR, 0);

	/* Fix for a nasty initialization problem the in SA11xx RTSR register.
	 * See also the comments in sa1100_rtc_probe(). */
	if (rtsr & (RTSR_ALE | RTSR_HZE)) {
		/* This is the original code, before there was the if test
		 * above. This code does not clear interrupts that were not
		 * enabled. */
		rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ) & (rtsr >> 2));
	} else {
		/* For some reason, it is possible to enter this routine
		 * without interruptions enabled, it has been tested with
		 * several units (Bug in SA11xx chip?).
		 *
		 * This situation leads to an infinite "loop" of interrupt
		 * routine calling and as a result the processor seems to
		 * lock on its first call to open(). */
		rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ));
	}

	/* clear alarm interrupt if it has occurred */
	if (rtsr & RTSR_AL)
		rtsr &= ~RTSR_ALE;
	rtc_writel(sa1100_rtc, RTSR, rtsr & (RTSR_ALE | RTSR_HZE));

	/* update irq data & counter */
	if (rtsr & RTSR_AL)
		events |= RTC_AF | RTC_IRQF;
	if (rtsr & RTSR_HZ)
		events |= RTC_UF | RTC_IRQF;

	rtc_update_irq(sa1100_rtc->rtc, 1, events);

	spin_unlock(&sa1100_rtc->lock);

	return IRQ_HANDLED;
}

static int sa1100_rtc_open(struct device *dev)
{
	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
	int ret;

	ret = request_irq(sa1100_rtc->irq_1Hz, sa1100_rtc_interrupt,
				IRQF_DISABLED, "rtc 1Hz", dev);
	if (ret) {
		dev_err(dev, "IRQ %d already in use.\n", sa1100_rtc->irq_1Hz);
		goto fail_ui;
	}
	ret = request_irq(sa1100_rtc->irq_Alrm, sa1100_rtc_interrupt,
				IRQF_DISABLED, "rtc Alrm", dev);
	if (ret) {
		dev_err(dev, "IRQ %d already in use.\n", sa1100_rtc->irq_Alrm);
		goto fail_ai;
	}
	sa1100_rtc->rtc->max_user_freq = RTC_FREQ;
	rtc_irq_set_freq(sa1100_rtc->rtc, NULL, RTC_FREQ);

	return 0;

 fail_ai:
	free_irq(sa1100_rtc->irq_1Hz, dev);
 fail_ui:
	return ret;
}

static void sa1100_rtc_release(struct device *dev)
{
	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);

	spin_lock_irq(&sa1100_rtc->lock);
	rtc_writel(sa1100_rtc, RTSR, 0);
	spin_unlock_irq(&sa1100_rtc->lock);

	free_irq(sa1100_rtc->irq_Alrm, dev);
	free_irq(sa1100_rtc->irq_1Hz, dev);
}

static int sa1100_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
	unsigned int rtsr;

	spin_lock_irq(&sa1100_rtc->lock);

	rtsr = rtc_readl(sa1100_rtc, RTSR);
	if (enabled)
		rtsr |= RTSR_ALE;
	else
		rtsr &= ~RTSR_ALE;
	rtc_writel(sa1100_rtc, RTSR, rtsr);

	spin_unlock_irq(&sa1100_rtc->lock);
	return 0;
}

static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);

	rtc_time_to_tm(rtc_readl(sa1100_rtc, RCNR), tm);
	return 0;
}

static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
	unsigned long time;
	int ret;

	ret = rtc_tm_to_time(tm, &time);
	if (ret == 0)
		rtc_writel(sa1100_rtc, RCNR, time);
	return ret;
}

static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
	unsigned long time;
	unsigned int rtsr;

	time = rtc_readl(sa1100_rtc, RCNR);
	rtc_time_to_tm(time, &alrm->time);
	rtsr = rtc_readl(sa1100_rtc, RTSR);
	alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
	alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
	return 0;
}

static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
	struct rtc_time now_tm, alarm_tm;
	unsigned long time, alarm;
	unsigned int rtsr;

	spin_lock_irq(&sa1100_rtc->lock);

	time = rtc_readl(sa1100_rtc, RCNR);
	rtc_time_to_tm(time, &now_tm);
	rtc_next_alarm_time(&alarm_tm, &now_tm, &alrm->time);
	rtc_tm_to_time(&alarm_tm, &alarm);
	rtc_writel(sa1100_rtc, RTAR, alarm);

	rtsr = rtc_readl(sa1100_rtc, RTSR);
	if (alrm->enabled)
		rtsr |= RTSR_ALE;
	else
		rtsr &= ~RTSR_ALE;
	rtc_writel(sa1100_rtc, RTSR, rtsr);

	spin_unlock_irq(&sa1100_rtc->lock);

	return 0;
}

static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
{
	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);

	seq_printf(seq, "trim/divider\t\t: 0x%08x\n",
			rtc_readl(sa1100_rtc, RTTR));
	seq_printf(seq, "RTSR\t\t\t: 0x%08x\n",
			rtc_readl(sa1100_rtc, RTSR));
	return 0;
}

static const struct rtc_class_ops sa1100_rtc_ops = {
	.open = sa1100_rtc_open,
	.release = sa1100_rtc_release,
	.read_time = sa1100_rtc_read_time,
	.set_time = sa1100_rtc_set_time,
	.read_alarm = sa1100_rtc_read_alarm,
	.set_alarm = sa1100_rtc_set_alarm,
	.proc = sa1100_rtc_proc,
	.alarm_irq_enable = sa1100_rtc_alarm_irq_enable,
};

static int sa1100_rtc_probe(struct platform_device *pdev)
{
	struct sa1100_rtc *sa1100_rtc;
	unsigned int rttr;
	int ret;

	sa1100_rtc = kzalloc(sizeof(struct sa1100_rtc), GFP_KERNEL);
	if (!sa1100_rtc)
		return -ENOMEM;

	spin_lock_init(&sa1100_rtc->lock);
	platform_set_drvdata(pdev, sa1100_rtc);

	ret = -ENXIO;
	sa1100_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!sa1100_rtc->ress) {
		dev_err(&pdev->dev, "No I/O memory resource defined\n");
		goto err_ress;
	}

	sa1100_rtc->irq_1Hz = platform_get_irq(pdev, 0);
	if (sa1100_rtc->irq_1Hz < 0) {
		dev_err(&pdev->dev, "No 1Hz IRQ resource defined\n");
		goto err_ress;
	}
	sa1100_rtc->irq_Alrm = platform_get_irq(pdev, 1);
	if (sa1100_rtc->irq_Alrm < 0) {
		dev_err(&pdev->dev, "No alarm IRQ resource defined\n");
		goto err_ress;
	}

	ret = -ENOMEM;
	sa1100_rtc->base = ioremap(sa1100_rtc->ress->start,
				resource_size(sa1100_rtc->ress));
	if (!sa1100_rtc->base) {
		dev_err(&pdev->dev, "Unable to map pxa RTC I/O memory\n");
		goto err_map;
	}

	sa1100_rtc->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(sa1100_rtc->clk)) {
		dev_err(&pdev->dev, "failed to find rtc clock source\n");
		ret = PTR_ERR(sa1100_rtc->clk);
		goto err_clk;
	}
	clk_prepare(sa1100_rtc->clk);
	clk_enable(sa1100_rtc->clk);

	/*
	 * According to the manual we should be able to let RTTR be zero
	 * and then a default diviser for a 32.768KHz clock is used.
	 * Apparently this doesn't work, at least for my SA1110 rev 5.
	 * If the clock divider is uninitialized then reset it to the
	 * default value to get the 1Hz clock.
	 */
	if (rtc_readl(sa1100_rtc, RTTR) == 0) {
		rttr = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
		rtc_writel(sa1100_rtc, RTTR, rttr);
		dev_warn(&pdev->dev, "warning: initializing default clock"
			 " divider/trim value\n");
		/* The current RTC value probably doesn't make sense either */
		rtc_writel(sa1100_rtc, RCNR, 0);
	}

	device_init_wakeup(&pdev->dev, 1);

	sa1100_rtc->rtc = rtc_device_register(pdev->name, &pdev->dev,
						&sa1100_rtc_ops, THIS_MODULE);
	if (IS_ERR(sa1100_rtc->rtc)) {
		dev_err(&pdev->dev, "Failed to register RTC device -> %d\n",
			ret);
		goto err_rtc_reg;
	}
	/* Fix for a nasty initialization problem the in SA11xx RTSR register.
	 * See also the comments in sa1100_rtc_interrupt().
	 *
	 * Sometimes bit 1 of the RTSR (RTSR_HZ) will wake up 1, which means an
	 * interrupt pending, even though interrupts were never enabled.
	 * In this case, this bit it must be reset before enabling
	 * interruptions to avoid a nonexistent interrupt to occur.
	 *
	 * In principle, the same problem would apply to bit 0, although it has
	 * never been observed to happen.
	 *
	 * This issue is addressed both here and in sa1100_rtc_interrupt().
	 * If the issue is not addressed here, in the times when the processor
	 * wakes up with the bit set there will be one spurious interrupt.
	 *
	 * The issue is also dealt with in sa1100_rtc_interrupt() to be on the
	 * safe side, once the condition that lead to this strange
	 * initialization is unknown and could in principle happen during
	 * normal processing.
	 *
	 * Notice that clearing bit 1 and 0 is accomplished by writting ONES to
	 * the corresponding bits in RTSR. */
	rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ));

	return 0;

err_rtc_reg:
err_clk:
	iounmap(sa1100_rtc->base);
err_ress:
err_map:
	kfree(sa1100_rtc);
	return ret;
}

static int sa1100_rtc_remove(struct platform_device *pdev)
{
	struct sa1100_rtc *sa1100_rtc = platform_get_drvdata(pdev);

	rtc_device_unregister(sa1100_rtc->rtc);
	clk_disable(sa1100_rtc->clk);
	clk_unprepare(sa1100_rtc->clk);
	iounmap(sa1100_rtc->base);
	return 0;
}

#ifdef CONFIG_PM
static int sa1100_rtc_suspend(struct device *dev)
{
	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		enable_irq_wake(sa1100_rtc->irq_Alrm);
	return 0;
}

static int sa1100_rtc_resume(struct device *dev)
{
	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		disable_irq_wake(sa1100_rtc->irq_Alrm);
	return 0;
}

static const struct dev_pm_ops sa1100_rtc_pm_ops = {
	.suspend	= sa1100_rtc_suspend,
	.resume		= sa1100_rtc_resume,
};
#endif

static struct platform_driver sa1100_rtc_driver = {
	.probe		= sa1100_rtc_probe,
	.remove		= sa1100_rtc_remove,
	.driver		= {
		.name	= "sa1100-rtc",
#ifdef CONFIG_PM
		.pm	= &sa1100_rtc_pm_ops,
#endif
	},
};

module_platform_driver(sa1100_rtc_driver);

MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:sa1100-rtc");