dimm_devs.c 24.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/moduleparam.h>
#include <linux/vmalloc.h>
#include <linux/device.h>
#include <linux/ndctl.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include "nd-core.h"
#include "label.h"
#include "pmem.h"
#include "nd.h"

static DEFINE_IDA(dimm_ida);

static bool noblk;
module_param(noblk, bool, 0444);
MODULE_PARM_DESC(noblk, "force disable BLK / local alias support");

/*
 * Retrieve bus and dimm handle and return if this bus supports
 * get_config_data commands
 */
int nvdimm_check_config_data(struct device *dev)
{
	struct nvdimm *nvdimm = to_nvdimm(dev);

	if (!nvdimm->cmd_mask ||
	    !test_bit(ND_CMD_GET_CONFIG_DATA, &nvdimm->cmd_mask)) {
		if (test_bit(NDD_LABELING, &nvdimm->flags))
			return -ENXIO;
		else
			return -ENOTTY;
	}

	return 0;
}

static int validate_dimm(struct nvdimm_drvdata *ndd)
{
	int rc;

	if (!ndd)
		return -EINVAL;

	rc = nvdimm_check_config_data(ndd->dev);
	if (rc)
		dev_dbg(ndd->dev, "%ps: %s error: %d\n",
				__builtin_return_address(0), __func__, rc);
	return rc;
}

/**
 * nvdimm_init_nsarea - determine the geometry of a dimm's namespace area
 * @nvdimm: dimm to initialize
 */
int nvdimm_init_nsarea(struct nvdimm_drvdata *ndd)
{
	struct nd_cmd_get_config_size *cmd = &ndd->nsarea;
	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
	struct nvdimm_bus_descriptor *nd_desc;
	int rc = validate_dimm(ndd);
	int cmd_rc = 0;

	if (rc)
		return rc;

	if (cmd->config_size)
		return 0; /* already valid */

	memset(cmd, 0, sizeof(*cmd));
	nd_desc = nvdimm_bus->nd_desc;
	rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
			ND_CMD_GET_CONFIG_SIZE, cmd, sizeof(*cmd), &cmd_rc);
	if (rc < 0)
		return rc;
	return cmd_rc;
}

int nvdimm_get_config_data(struct nvdimm_drvdata *ndd, void *buf,
			   size_t offset, size_t len)
{
	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
	struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
	int rc = validate_dimm(ndd), cmd_rc = 0;
	struct nd_cmd_get_config_data_hdr *cmd;
	size_t max_cmd_size, buf_offset;

	if (rc)
		return rc;

	if (offset + len > ndd->nsarea.config_size)
		return -ENXIO;

	max_cmd_size = min_t(u32, len, ndd->nsarea.max_xfer);
	cmd = kvzalloc(max_cmd_size + sizeof(*cmd), GFP_KERNEL);
	if (!cmd)
		return -ENOMEM;

	for (buf_offset = 0; len;
	     len -= cmd->in_length, buf_offset += cmd->in_length) {
		size_t cmd_size;

		cmd->in_offset = offset + buf_offset;
		cmd->in_length = min(max_cmd_size, len);

		cmd_size = sizeof(*cmd) + cmd->in_length;

		rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
				ND_CMD_GET_CONFIG_DATA, cmd, cmd_size, &cmd_rc);
		if (rc < 0)
			break;
		if (cmd_rc < 0) {
			rc = cmd_rc;
			break;
		}

		/* out_buf should be valid, copy it into our output buffer */
		memcpy(buf + buf_offset, cmd->out_buf, cmd->in_length);
	}
	kvfree(cmd);

	return rc;
}

int nvdimm_set_config_data(struct nvdimm_drvdata *ndd, size_t offset,
		void *buf, size_t len)
{
	size_t max_cmd_size, buf_offset;
	struct nd_cmd_set_config_hdr *cmd;
	int rc = validate_dimm(ndd), cmd_rc = 0;
	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
	struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;

	if (rc)
		return rc;

	if (offset + len > ndd->nsarea.config_size)
		return -ENXIO;

	max_cmd_size = min_t(u32, len, ndd->nsarea.max_xfer);
	cmd = kvzalloc(max_cmd_size + sizeof(*cmd) + sizeof(u32), GFP_KERNEL);
	if (!cmd)
		return -ENOMEM;

	for (buf_offset = 0; len; len -= cmd->in_length,
			buf_offset += cmd->in_length) {
		size_t cmd_size;

		cmd->in_offset = offset + buf_offset;
		cmd->in_length = min(max_cmd_size, len);
		memcpy(cmd->in_buf, buf + buf_offset, cmd->in_length);

		/* status is output in the last 4-bytes of the command buffer */
		cmd_size = sizeof(*cmd) + cmd->in_length + sizeof(u32);

		rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
				ND_CMD_SET_CONFIG_DATA, cmd, cmd_size, &cmd_rc);
		if (rc < 0)
			break;
		if (cmd_rc < 0) {
			rc = cmd_rc;
			break;
		}
	}
	kvfree(cmd);

	return rc;
}

void nvdimm_set_labeling(struct device *dev)
{
	struct nvdimm *nvdimm = to_nvdimm(dev);

	set_bit(NDD_LABELING, &nvdimm->flags);
}

void nvdimm_set_locked(struct device *dev)
{
	struct nvdimm *nvdimm = to_nvdimm(dev);

	set_bit(NDD_LOCKED, &nvdimm->flags);
}

void nvdimm_clear_locked(struct device *dev)
{
	struct nvdimm *nvdimm = to_nvdimm(dev);

	clear_bit(NDD_LOCKED, &nvdimm->flags);
}

static void nvdimm_release(struct device *dev)
{
	struct nvdimm *nvdimm = to_nvdimm(dev);

	ida_simple_remove(&dimm_ida, nvdimm->id);
	kfree(nvdimm);
}

struct nvdimm *to_nvdimm(struct device *dev)
{
	struct nvdimm *nvdimm = container_of(dev, struct nvdimm, dev);

	WARN_ON(!is_nvdimm(dev));
	return nvdimm;
}
EXPORT_SYMBOL_GPL(to_nvdimm);

struct nvdimm *nd_blk_region_to_dimm(struct nd_blk_region *ndbr)
{
	struct nd_region *nd_region = &ndbr->nd_region;
	struct nd_mapping *nd_mapping = &nd_region->mapping[0];

	return nd_mapping->nvdimm;
}
EXPORT_SYMBOL_GPL(nd_blk_region_to_dimm);

unsigned long nd_blk_memremap_flags(struct nd_blk_region *ndbr)
{
	/* pmem mapping properties are private to libnvdimm */
	return ARCH_MEMREMAP_PMEM;
}
EXPORT_SYMBOL_GPL(nd_blk_memremap_flags);

struct nvdimm_drvdata *to_ndd(struct nd_mapping *nd_mapping)
{
	struct nvdimm *nvdimm = nd_mapping->nvdimm;

	WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev));

	return dev_get_drvdata(&nvdimm->dev);
}
EXPORT_SYMBOL(to_ndd);

void nvdimm_drvdata_release(struct kref *kref)
{
	struct nvdimm_drvdata *ndd = container_of(kref, typeof(*ndd), kref);
	struct device *dev = ndd->dev;
	struct resource *res, *_r;

	dev_dbg(dev, "trace\n");
	nvdimm_bus_lock(dev);
	for_each_dpa_resource_safe(ndd, res, _r)
		nvdimm_free_dpa(ndd, res);
	nvdimm_bus_unlock(dev);

	kvfree(ndd->data);
	kfree(ndd);
	put_device(dev);
}

void get_ndd(struct nvdimm_drvdata *ndd)
{
	kref_get(&ndd->kref);
}

void put_ndd(struct nvdimm_drvdata *ndd)
{
	if (ndd)
		kref_put(&ndd->kref, nvdimm_drvdata_release);
}

const char *nvdimm_name(struct nvdimm *nvdimm)
{
	return dev_name(&nvdimm->dev);
}
EXPORT_SYMBOL_GPL(nvdimm_name);

struct kobject *nvdimm_kobj(struct nvdimm *nvdimm)
{
	return &nvdimm->dev.kobj;
}
EXPORT_SYMBOL_GPL(nvdimm_kobj);

unsigned long nvdimm_cmd_mask(struct nvdimm *nvdimm)
{
	return nvdimm->cmd_mask;
}
EXPORT_SYMBOL_GPL(nvdimm_cmd_mask);

void *nvdimm_provider_data(struct nvdimm *nvdimm)
{
	if (nvdimm)
		return nvdimm->provider_data;
	return NULL;
}
EXPORT_SYMBOL_GPL(nvdimm_provider_data);

static ssize_t commands_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nvdimm *nvdimm = to_nvdimm(dev);
	int cmd, len = 0;

	if (!nvdimm->cmd_mask)
		return sprintf(buf, "\n");

	for_each_set_bit(cmd, &nvdimm->cmd_mask, BITS_PER_LONG)
		len += sprintf(buf + len, "%s ", nvdimm_cmd_name(cmd));
	len += sprintf(buf + len, "\n");
	return len;
}
static DEVICE_ATTR_RO(commands);

static ssize_t flags_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nvdimm *nvdimm = to_nvdimm(dev);

	return sprintf(buf, "%s%s%s\n",
			test_bit(NDD_ALIASING, &nvdimm->flags) ? "alias " : "",
			test_bit(NDD_LABELING, &nvdimm->flags) ? "label " : "",
			test_bit(NDD_LOCKED, &nvdimm->flags) ? "lock " : "");
}
static DEVICE_ATTR_RO(flags);

static ssize_t state_show(struct device *dev, struct device_attribute *attr,
		char *buf)
{
	struct nvdimm *nvdimm = to_nvdimm(dev);

	/*
	 * The state may be in the process of changing, userspace should
	 * quiesce probing if it wants a static answer
	 */
	nvdimm_bus_lock(dev);
	nvdimm_bus_unlock(dev);
	return sprintf(buf, "%s\n", atomic_read(&nvdimm->busy)
			? "active" : "idle");
}
static DEVICE_ATTR_RO(state);

static ssize_t available_slots_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nvdimm_drvdata *ndd = dev_get_drvdata(dev);
	ssize_t rc;
	u32 nfree;

	if (!ndd)
		return -ENXIO;

	nvdimm_bus_lock(dev);
	nfree = nd_label_nfree(ndd);
	if (nfree - 1 > nfree) {
		dev_WARN_ONCE(dev, 1, "we ate our last label?\n");
		nfree = 0;
	} else
		nfree--;
	rc = sprintf(buf, "%d\n", nfree);
	nvdimm_bus_unlock(dev);
	return rc;
}
static DEVICE_ATTR_RO(available_slots);

__weak ssize_t security_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nvdimm *nvdimm = to_nvdimm(dev);

	if (test_bit(NVDIMM_SECURITY_OVERWRITE, &nvdimm->sec.flags))
		return sprintf(buf, "overwrite\n");
	if (test_bit(NVDIMM_SECURITY_DISABLED, &nvdimm->sec.flags))
		return sprintf(buf, "disabled\n");
	if (test_bit(NVDIMM_SECURITY_UNLOCKED, &nvdimm->sec.flags))
		return sprintf(buf, "unlocked\n");
	if (test_bit(NVDIMM_SECURITY_LOCKED, &nvdimm->sec.flags))
		return sprintf(buf, "locked\n");
	return -ENOTTY;
}

static ssize_t frozen_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nvdimm *nvdimm = to_nvdimm(dev);

	return sprintf(buf, "%d\n", test_bit(NVDIMM_SECURITY_FROZEN,
				&nvdimm->sec.flags));
}
static DEVICE_ATTR_RO(frozen);

static ssize_t security_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)

{
	ssize_t rc;

	/*
	 * Require all userspace triggered security management to be
	 * done while probing is idle and the DIMM is not in active use
	 * in any region.
	 */
	nd_device_lock(dev);
	nvdimm_bus_lock(dev);
	wait_nvdimm_bus_probe_idle(dev);
	rc = nvdimm_security_store(dev, buf, len);
	nvdimm_bus_unlock(dev);
	nd_device_unlock(dev);

	return rc;
}
static DEVICE_ATTR_RW(security);

static struct attribute *nvdimm_attributes[] = {
	&dev_attr_state.attr,
	&dev_attr_flags.attr,
	&dev_attr_commands.attr,
	&dev_attr_available_slots.attr,
	&dev_attr_security.attr,
	&dev_attr_frozen.attr,
	NULL,
};

static umode_t nvdimm_visible(struct kobject *kobj, struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, typeof(*dev), kobj);
	struct nvdimm *nvdimm = to_nvdimm(dev);

	if (a != &dev_attr_security.attr && a != &dev_attr_frozen.attr)
		return a->mode;
	if (!nvdimm->sec.flags)
		return 0;

	if (a == &dev_attr_security.attr) {
		/* Are there any state mutation ops (make writable)? */
		if (nvdimm->sec.ops->freeze || nvdimm->sec.ops->disable
				|| nvdimm->sec.ops->change_key
				|| nvdimm->sec.ops->erase
				|| nvdimm->sec.ops->overwrite)
			return a->mode;
		return 0444;
	}

	if (nvdimm->sec.ops->freeze)
		return a->mode;
	return 0;
}

static const struct attribute_group nvdimm_attribute_group = {
	.attrs = nvdimm_attributes,
	.is_visible = nvdimm_visible,
};

static ssize_t result_show(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct nvdimm *nvdimm = to_nvdimm(dev);
	enum nvdimm_fwa_result result;

	if (!nvdimm->fw_ops)
		return -EOPNOTSUPP;

	nvdimm_bus_lock(dev);
	result = nvdimm->fw_ops->activate_result(nvdimm);
	nvdimm_bus_unlock(dev);

	switch (result) {
	case NVDIMM_FWA_RESULT_NONE:
		return sprintf(buf, "none\n");
	case NVDIMM_FWA_RESULT_SUCCESS:
		return sprintf(buf, "success\n");
	case NVDIMM_FWA_RESULT_FAIL:
		return sprintf(buf, "fail\n");
	case NVDIMM_FWA_RESULT_NOTSTAGED:
		return sprintf(buf, "not_staged\n");
	case NVDIMM_FWA_RESULT_NEEDRESET:
		return sprintf(buf, "need_reset\n");
	default:
		return -ENXIO;
	}
}
static DEVICE_ATTR_ADMIN_RO(result);

static ssize_t activate_show(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct nvdimm *nvdimm = to_nvdimm(dev);
	enum nvdimm_fwa_state state;

	if (!nvdimm->fw_ops)
		return -EOPNOTSUPP;

	nvdimm_bus_lock(dev);
	state = nvdimm->fw_ops->activate_state(nvdimm);
	nvdimm_bus_unlock(dev);

	switch (state) {
	case NVDIMM_FWA_IDLE:
		return sprintf(buf, "idle\n");
	case NVDIMM_FWA_BUSY:
		return sprintf(buf, "busy\n");
	case NVDIMM_FWA_ARMED:
		return sprintf(buf, "armed\n");
	default:
		return -ENXIO;
	}
}

static ssize_t activate_store(struct device *dev, struct device_attribute *attr,
		const char *buf, size_t len)
{
	struct nvdimm *nvdimm = to_nvdimm(dev);
	enum nvdimm_fwa_trigger arg;
	int rc;

	if (!nvdimm->fw_ops)
		return -EOPNOTSUPP;

	if (sysfs_streq(buf, "arm"))
		arg = NVDIMM_FWA_ARM;
	else if (sysfs_streq(buf, "disarm"))
		arg = NVDIMM_FWA_DISARM;
	else
		return -EINVAL;

	nvdimm_bus_lock(dev);
	rc = nvdimm->fw_ops->arm(nvdimm, arg);
	nvdimm_bus_unlock(dev);

	if (rc < 0)
		return rc;
	return len;
}
static DEVICE_ATTR_ADMIN_RW(activate);

static struct attribute *nvdimm_firmware_attributes[] = {
	&dev_attr_activate.attr,
	&dev_attr_result.attr,
	NULL,
};

static umode_t nvdimm_firmware_visible(struct kobject *kobj, struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, typeof(*dev), kobj);
	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
	struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
	struct nvdimm *nvdimm = to_nvdimm(dev);
	enum nvdimm_fwa_capability cap;

	if (!nd_desc->fw_ops)
		return 0;
	if (!nvdimm->fw_ops)
		return 0;

	nvdimm_bus_lock(dev);
	cap = nd_desc->fw_ops->capability(nd_desc);
	nvdimm_bus_unlock(dev);

	if (cap < NVDIMM_FWA_CAP_QUIESCE)
		return 0;

	return a->mode;
}

static const struct attribute_group nvdimm_firmware_attribute_group = {
	.name = "firmware",
	.attrs = nvdimm_firmware_attributes,
	.is_visible = nvdimm_firmware_visible,
};

static const struct attribute_group *nvdimm_attribute_groups[] = {
	&nd_device_attribute_group,
	&nvdimm_attribute_group,
	&nvdimm_firmware_attribute_group,
	NULL,
};

static const struct device_type nvdimm_device_type = {
	.name = "nvdimm",
	.release = nvdimm_release,
	.groups = nvdimm_attribute_groups,
};

bool is_nvdimm(struct device *dev)
{
	return dev->type == &nvdimm_device_type;
}

struct nvdimm *__nvdimm_create(struct nvdimm_bus *nvdimm_bus,
		void *provider_data, const struct attribute_group **groups,
		unsigned long flags, unsigned long cmd_mask, int num_flush,
		struct resource *flush_wpq, const char *dimm_id,
		const struct nvdimm_security_ops *sec_ops,
		const struct nvdimm_fw_ops *fw_ops)
{
	struct nvdimm *nvdimm = kzalloc(sizeof(*nvdimm), GFP_KERNEL);
	struct device *dev;

	if (!nvdimm)
		return NULL;

	nvdimm->id = ida_simple_get(&dimm_ida, 0, 0, GFP_KERNEL);
	if (nvdimm->id < 0) {
		kfree(nvdimm);
		return NULL;
	}

	nvdimm->dimm_id = dimm_id;
	nvdimm->provider_data = provider_data;
	if (noblk)
		flags |= 1 << NDD_NOBLK;
	nvdimm->flags = flags;
	nvdimm->cmd_mask = cmd_mask;
	nvdimm->num_flush = num_flush;
	nvdimm->flush_wpq = flush_wpq;
	atomic_set(&nvdimm->busy, 0);
	dev = &nvdimm->dev;
	dev_set_name(dev, "nmem%d", nvdimm->id);
	dev->parent = &nvdimm_bus->dev;
	dev->type = &nvdimm_device_type;
	dev->devt = MKDEV(nvdimm_major, nvdimm->id);
	dev->groups = groups;
	nvdimm->sec.ops = sec_ops;
	nvdimm->fw_ops = fw_ops;
	nvdimm->sec.overwrite_tmo = 0;
	INIT_DELAYED_WORK(&nvdimm->dwork, nvdimm_security_overwrite_query);
	/*
	 * Security state must be initialized before device_add() for
	 * attribute visibility.
	 */
	/* get security state and extended (master) state */
	nvdimm->sec.flags = nvdimm_security_flags(nvdimm, NVDIMM_USER);
	nvdimm->sec.ext_flags = nvdimm_security_flags(nvdimm, NVDIMM_MASTER);
	nd_device_register(dev);

	return nvdimm;
}
EXPORT_SYMBOL_GPL(__nvdimm_create);

static void shutdown_security_notify(void *data)
{
	struct nvdimm *nvdimm = data;

	sysfs_put(nvdimm->sec.overwrite_state);
}

int nvdimm_security_setup_events(struct device *dev)
{
	struct nvdimm *nvdimm = to_nvdimm(dev);

	if (!nvdimm->sec.flags || !nvdimm->sec.ops
			|| !nvdimm->sec.ops->overwrite)
		return 0;
	nvdimm->sec.overwrite_state = sysfs_get_dirent(dev->kobj.sd, "security");
	if (!nvdimm->sec.overwrite_state)
		return -ENOMEM;

	return devm_add_action_or_reset(dev, shutdown_security_notify, nvdimm);
}
EXPORT_SYMBOL_GPL(nvdimm_security_setup_events);

int nvdimm_in_overwrite(struct nvdimm *nvdimm)
{
	return test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags);
}
EXPORT_SYMBOL_GPL(nvdimm_in_overwrite);

int nvdimm_security_freeze(struct nvdimm *nvdimm)
{
	int rc;

	WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev));

	if (!nvdimm->sec.ops || !nvdimm->sec.ops->freeze)
		return -EOPNOTSUPP;

	if (!nvdimm->sec.flags)
		return -EIO;

	if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
		dev_warn(&nvdimm->dev, "Overwrite operation in progress.\n");
		return -EBUSY;
	}

	rc = nvdimm->sec.ops->freeze(nvdimm);
	nvdimm->sec.flags = nvdimm_security_flags(nvdimm, NVDIMM_USER);

	return rc;
}

static unsigned long dpa_align(struct nd_region *nd_region)
{
	struct device *dev = &nd_region->dev;

	if (dev_WARN_ONCE(dev, !is_nvdimm_bus_locked(dev),
				"bus lock required for capacity provision\n"))
		return 0;
	if (dev_WARN_ONCE(dev, !nd_region->ndr_mappings || nd_region->align
				% nd_region->ndr_mappings,
				"invalid region align %#lx mappings: %d\n",
				nd_region->align, nd_region->ndr_mappings))
		return 0;
	return nd_region->align / nd_region->ndr_mappings;
}

int alias_dpa_busy(struct device *dev, void *data)
{
	resource_size_t map_end, blk_start, new;
	struct blk_alloc_info *info = data;
	struct nd_mapping *nd_mapping;
	struct nd_region *nd_region;
	struct nvdimm_drvdata *ndd;
	struct resource *res;
	unsigned long align;
	int i;

	if (!is_memory(dev))
		return 0;

	nd_region = to_nd_region(dev);
	for (i = 0; i < nd_region->ndr_mappings; i++) {
		nd_mapping  = &nd_region->mapping[i];
		if (nd_mapping->nvdimm == info->nd_mapping->nvdimm)
			break;
	}

	if (i >= nd_region->ndr_mappings)
		return 0;

	ndd = to_ndd(nd_mapping);
	map_end = nd_mapping->start + nd_mapping->size - 1;
	blk_start = nd_mapping->start;

	/*
	 * In the allocation case ->res is set to free space that we are
	 * looking to validate against PMEM aliasing collision rules
	 * (i.e. BLK is allocated after all aliased PMEM).
	 */
	if (info->res) {
		if (info->res->start >= nd_mapping->start
				&& info->res->start < map_end)
			/* pass */;
		else
			return 0;
	}

 retry:
	/*
	 * Find the free dpa from the end of the last pmem allocation to
	 * the end of the interleave-set mapping.
	 */
	align = dpa_align(nd_region);
	if (!align)
		return 0;

	for_each_dpa_resource(ndd, res) {
		resource_size_t start, end;

		if (strncmp(res->name, "pmem", 4) != 0)
			continue;

		start = ALIGN_DOWN(res->start, align);
		end = ALIGN(res->end + 1, align) - 1;
		if ((start >= blk_start && start < map_end)
				|| (end >= blk_start && end <= map_end)) {
			new = max(blk_start, min(map_end, end) + 1);
			if (new != blk_start) {
				blk_start = new;
				goto retry;
			}
		}
	}

	/* update the free space range with the probed blk_start */
	if (info->res && blk_start > info->res->start) {
		info->res->start = max(info->res->start, blk_start);
		if (info->res->start > info->res->end)
			info->res->end = info->res->start - 1;
		return 1;
	}

	info->available -= blk_start - nd_mapping->start;

	return 0;
}

/**
 * nd_blk_available_dpa - account the unused dpa of BLK region
 * @nd_mapping: container of dpa-resource-root + labels
 *
 * Unlike PMEM, BLK namespaces can occupy discontiguous DPA ranges, but
 * we arrange for them to never start at an lower dpa than the last
 * PMEM allocation in an aliased region.
 */
resource_size_t nd_blk_available_dpa(struct nd_region *nd_region)
{
	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
	struct nd_mapping *nd_mapping = &nd_region->mapping[0];
	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
	struct blk_alloc_info info = {
		.nd_mapping = nd_mapping,
		.available = nd_mapping->size,
		.res = NULL,
	};
	struct resource *res;
	unsigned long align;

	if (!ndd)
		return 0;

	device_for_each_child(&nvdimm_bus->dev, &info, alias_dpa_busy);

	/* now account for busy blk allocations in unaliased dpa */
	align = dpa_align(nd_region);
	if (!align)
		return 0;
	for_each_dpa_resource(ndd, res) {
		resource_size_t start, end, size;

		if (strncmp(res->name, "blk", 3) != 0)
			continue;
		start = ALIGN_DOWN(res->start, align);
		end = ALIGN(res->end + 1, align) - 1;
		size = end - start + 1;
		if (size >= info.available)
			return 0;
		info.available -= size;
	}

	return info.available;
}

/**
 * nd_pmem_max_contiguous_dpa - For the given dimm+region, return the max
 *			   contiguous unallocated dpa range.
 * @nd_region: constrain available space check to this reference region
 * @nd_mapping: container of dpa-resource-root + labels
 */
resource_size_t nd_pmem_max_contiguous_dpa(struct nd_region *nd_region,
					   struct nd_mapping *nd_mapping)
{
	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
	struct nvdimm_bus *nvdimm_bus;
	resource_size_t max = 0;
	struct resource *res;
	unsigned long align;

	/* if a dimm is disabled the available capacity is zero */
	if (!ndd)
		return 0;

	align = dpa_align(nd_region);
	if (!align)
		return 0;

	nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
	if (__reserve_free_pmem(&nd_region->dev, nd_mapping->nvdimm))
		return 0;
	for_each_dpa_resource(ndd, res) {
		resource_size_t start, end;

		if (strcmp(res->name, "pmem-reserve") != 0)
			continue;
		/* trim free space relative to current alignment setting */
		start = ALIGN(res->start, align);
		end = ALIGN_DOWN(res->end + 1, align) - 1;
		if (end < start)
			continue;
		if (end - start + 1 > max)
			max = end - start + 1;
	}
	release_free_pmem(nvdimm_bus, nd_mapping);
	return max;
}

/**
 * nd_pmem_available_dpa - for the given dimm+region account unallocated dpa
 * @nd_mapping: container of dpa-resource-root + labels
 * @nd_region: constrain available space check to this reference region
 * @overlap: calculate available space assuming this level of overlap
 *
 * Validate that a PMEM label, if present, aligns with the start of an
 * interleave set and truncate the available size at the lowest BLK
 * overlap point.
 *
 * The expectation is that this routine is called multiple times as it
 * probes for the largest BLK encroachment for any single member DIMM of
 * the interleave set.  Once that value is determined the PMEM-limit for
 * the set can be established.
 */
resource_size_t nd_pmem_available_dpa(struct nd_region *nd_region,
		struct nd_mapping *nd_mapping, resource_size_t *overlap)
{
	resource_size_t map_start, map_end, busy = 0, available, blk_start;
	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
	struct resource *res;
	const char *reason;
	unsigned long align;

	if (!ndd)
		return 0;

	align = dpa_align(nd_region);
	if (!align)
		return 0;

	map_start = nd_mapping->start;
	map_end = map_start + nd_mapping->size - 1;
	blk_start = max(map_start, map_end + 1 - *overlap);
	for_each_dpa_resource(ndd, res) {
		resource_size_t start, end;

		start = ALIGN_DOWN(res->start, align);
		end = ALIGN(res->end + 1, align) - 1;
		if (start >= map_start && start < map_end) {
			if (strncmp(res->name, "blk", 3) == 0)
				blk_start = min(blk_start,
						max(map_start, start));
			else if (end > map_end) {
				reason = "misaligned to iset";
				goto err;
			} else
				busy += end - start + 1;
		} else if (end >= map_start && end <= map_end) {
			if (strncmp(res->name, "blk", 3) == 0) {
				/*
				 * If a BLK allocation overlaps the start of
				 * PMEM the entire interleave set may now only
				 * be used for BLK.
				 */
				blk_start = map_start;
			} else
				busy += end - start + 1;
		} else if (map_start > start && map_start < end) {
			/* total eclipse of the mapping */
			busy += nd_mapping->size;
			blk_start = map_start;
		}
	}

	*overlap = map_end + 1 - blk_start;
	available = blk_start - map_start;
	if (busy < available)
		return ALIGN_DOWN(available - busy, align);
	return 0;

 err:
	nd_dbg_dpa(nd_region, ndd, res, "%s\n", reason);
	return 0;
}

void nvdimm_free_dpa(struct nvdimm_drvdata *ndd, struct resource *res)
{
	WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev));
	kfree(res->name);
	__release_region(&ndd->dpa, res->start, resource_size(res));
}

struct resource *nvdimm_allocate_dpa(struct nvdimm_drvdata *ndd,
		struct nd_label_id *label_id, resource_size_t start,
		resource_size_t n)
{
	char *name = kmemdup(label_id, sizeof(*label_id), GFP_KERNEL);
	struct resource *res;

	if (!name)
		return NULL;

	WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev));
	res = __request_region(&ndd->dpa, start, n, name, 0);
	if (!res)
		kfree(name);
	return res;
}

/**
 * nvdimm_allocated_dpa - sum up the dpa currently allocated to this label_id
 * @nvdimm: container of dpa-resource-root + labels
 * @label_id: dpa resource name of the form {pmem|blk}-<human readable uuid>
 */
resource_size_t nvdimm_allocated_dpa(struct nvdimm_drvdata *ndd,
		struct nd_label_id *label_id)
{
	resource_size_t allocated = 0;
	struct resource *res;

	for_each_dpa_resource(ndd, res)
		if (strcmp(res->name, label_id->id) == 0)
			allocated += resource_size(res);

	return allocated;
}

static int count_dimms(struct device *dev, void *c)
{
	int *count = c;

	if (is_nvdimm(dev))
		(*count)++;
	return 0;
}

int nvdimm_bus_check_dimm_count(struct nvdimm_bus *nvdimm_bus, int dimm_count)
{
	int count = 0;
	/* Flush any possible dimm registration failures */
	nd_synchronize();

	device_for_each_child(&nvdimm_bus->dev, &count, count_dimms);
	dev_dbg(&nvdimm_bus->dev, "count: %d\n", count);
	if (count != dimm_count)
		return -ENXIO;
	return 0;
}
EXPORT_SYMBOL_GPL(nvdimm_bus_check_dimm_count);

void __exit nvdimm_devs_exit(void)
{
	ida_destroy(&dimm_ida);
}