pmem.c 14.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
/*
 * Persistent Memory Driver
 *
 * Copyright (c) 2014-2015, Intel Corporation.
 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <asm/cacheflush.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/badblocks.h>
#include <linux/memremap.h>
#include <linux/vmalloc.h>
#include <linux/blk-mq.h>
#include <linux/pfn_t.h>
#include <linux/slab.h>
#include <linux/uio.h>
#include <linux/dax.h>
#include <linux/nd.h>
#include "pmem.h"
#include "pfn.h"
#include "nd.h"

static struct device *to_dev(struct pmem_device *pmem)
{
	/*
	 * nvdimm bus services need a 'dev' parameter, and we record the device
	 * at init in bb.dev.
	 */
	return pmem->bb.dev;
}

static struct nd_region *to_region(struct pmem_device *pmem)
{
	return to_nd_region(to_dev(pmem)->parent);
}

static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
		phys_addr_t offset, unsigned int len)
{
	struct device *dev = to_dev(pmem);
	sector_t sector;
	long cleared;
	blk_status_t rc = BLK_STS_OK;

	sector = (offset - pmem->data_offset) / 512;

	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
	if (cleared < len)
		rc = BLK_STS_IOERR;
	if (cleared > 0 && cleared / 512) {
		cleared /= 512;
		dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
				(unsigned long long) sector, cleared,
				cleared > 1 ? "s" : "");
		badblocks_clear(&pmem->bb, sector, cleared);
		if (pmem->bb_state)
			sysfs_notify_dirent(pmem->bb_state);
	}

	arch_invalidate_pmem(pmem->virt_addr + offset, len);

	return rc;
}

static void write_pmem(void *pmem_addr, struct page *page,
		unsigned int off, unsigned int len)
{
	unsigned int chunk;
	void *mem;

	while (len) {
		mem = kmap_atomic(page);
		chunk = min_t(unsigned int, len, PAGE_SIZE);
		memcpy_flushcache(pmem_addr, mem + off, chunk);
		kunmap_atomic(mem);
		len -= chunk;
		off = 0;
		page++;
		pmem_addr += PAGE_SIZE;
	}
}

static blk_status_t read_pmem(struct page *page, unsigned int off,
		void *pmem_addr, unsigned int len)
{
	unsigned int chunk;
	int rc;
	void *mem;

	while (len) {
		mem = kmap_atomic(page);
		chunk = min_t(unsigned int, len, PAGE_SIZE);
		rc = memcpy_mcsafe(mem + off, pmem_addr, chunk);
		kunmap_atomic(mem);
		if (rc)
			return BLK_STS_IOERR;
		len -= chunk;
		off = 0;
		page++;
		pmem_addr += PAGE_SIZE;
	}
	return BLK_STS_OK;
}

static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
			unsigned int len, unsigned int off, bool is_write,
			sector_t sector)
{
	blk_status_t rc = BLK_STS_OK;
	bool bad_pmem = false;
	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
	void *pmem_addr = pmem->virt_addr + pmem_off;

	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
		bad_pmem = true;

	if (!is_write) {
		if (unlikely(bad_pmem))
			rc = BLK_STS_IOERR;
		else {
			rc = read_pmem(page, off, pmem_addr, len);
			flush_dcache_page(page);
		}
	} else {
		/*
		 * Note that we write the data both before and after
		 * clearing poison.  The write before clear poison
		 * handles situations where the latest written data is
		 * preserved and the clear poison operation simply marks
		 * the address range as valid without changing the data.
		 * In this case application software can assume that an
		 * interrupted write will either return the new good
		 * data or an error.
		 *
		 * However, if pmem_clear_poison() leaves the data in an
		 * indeterminate state we need to perform the write
		 * after clear poison.
		 */
		flush_dcache_page(page);
		write_pmem(pmem_addr, page, off, len);
		if (unlikely(bad_pmem)) {
			rc = pmem_clear_poison(pmem, pmem_off, len);
			write_pmem(pmem_addr, page, off, len);
		}
	}

	return rc;
}

/* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
#ifndef REQ_FLUSH
#define REQ_FLUSH REQ_PREFLUSH
#endif

static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
{
	blk_status_t rc = 0;
	bool do_acct;
	unsigned long start;
	struct bio_vec bvec;
	struct bvec_iter iter;
	struct pmem_device *pmem = q->queuedata;
	struct nd_region *nd_region = to_region(pmem);

	if (bio->bi_opf & REQ_FLUSH)
		nvdimm_flush(nd_region);

	do_acct = nd_iostat_start(bio, &start);
	bio_for_each_segment(bvec, bio, iter) {
		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
				bvec.bv_offset, op_is_write(bio_op(bio)),
				iter.bi_sector);
		if (rc) {
			bio->bi_status = rc;
			break;
		}
	}
	if (do_acct)
		nd_iostat_end(bio, start);

	if (bio->bi_opf & REQ_FUA)
		nvdimm_flush(nd_region);

	bio_endio(bio);
	return BLK_QC_T_NONE;
}

static int pmem_rw_page(struct block_device *bdev, sector_t sector,
		       struct page *page, bool is_write)
{
	struct pmem_device *pmem = bdev->bd_queue->queuedata;
	blk_status_t rc;

	rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
			  0, is_write, sector);

	/*
	 * The ->rw_page interface is subtle and tricky.  The core
	 * retries on any error, so we can only invoke page_endio() in
	 * the successful completion case.  Otherwise, we'll see crashes
	 * caused by double completion.
	 */
	if (rc == 0)
		page_endio(page, is_write, 0);

	return blk_status_to_errno(rc);
}

/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
		long nr_pages, void **kaddr, pfn_t *pfn)
{
	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;

	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
					PFN_PHYS(nr_pages))))
		return -EIO;
	*kaddr = pmem->virt_addr + offset;
	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);

	/*
	 * If badblocks are present, limit known good range to the
	 * requested range.
	 */
	if (unlikely(pmem->bb.count))
		return nr_pages;
	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
}

static const struct block_device_operations pmem_fops = {
	.owner =		THIS_MODULE,
	.rw_page =		pmem_rw_page,
	.revalidate_disk =	nvdimm_revalidate_disk,
};

static long pmem_dax_direct_access(struct dax_device *dax_dev,
		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
{
	struct pmem_device *pmem = dax_get_private(dax_dev);

	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
}

static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
		void *addr, size_t bytes, struct iov_iter *i)
{
	return copy_from_iter_flushcache(addr, bytes, i);
}

static const struct dax_operations pmem_dax_ops = {
	.direct_access = pmem_dax_direct_access,
	.copy_from_iter = pmem_copy_from_iter,
};

static const struct attribute_group *pmem_attribute_groups[] = {
	&dax_attribute_group,
	NULL,
};

static void pmem_release_queue(void *q)
{
	blk_cleanup_queue(q);
}

static void pmem_freeze_queue(void *q)
{
	blk_freeze_queue_start(q);
}

static void pmem_release_disk(void *__pmem)
{
	struct pmem_device *pmem = __pmem;

	kill_dax(pmem->dax_dev);
	put_dax(pmem->dax_dev);
	del_gendisk(pmem->disk);
	put_disk(pmem->disk);
}

static int pmem_attach_disk(struct device *dev,
		struct nd_namespace_common *ndns)
{
	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
	struct nd_region *nd_region = to_nd_region(dev->parent);
	struct vmem_altmap __altmap, *altmap = NULL;
	int nid = dev_to_node(dev), fua, wbc;
	struct resource *res = &nsio->res;
	struct nd_pfn *nd_pfn = NULL;
	struct dax_device *dax_dev;
	struct nd_pfn_sb *pfn_sb;
	struct pmem_device *pmem;
	struct resource pfn_res;
	struct request_queue *q;
	struct device *gendev;
	struct gendisk *disk;
	void *addr;

	/* while nsio_rw_bytes is active, parse a pfn info block if present */
	if (is_nd_pfn(dev)) {
		nd_pfn = to_nd_pfn(dev);
		altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
		if (IS_ERR(altmap))
			return PTR_ERR(altmap);
	}

	/* we're attaching a block device, disable raw namespace access */
	devm_nsio_disable(dev, nsio);

	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
	if (!pmem)
		return -ENOMEM;

	dev_set_drvdata(dev, pmem);
	pmem->phys_addr = res->start;
	pmem->size = resource_size(res);
	fua = nvdimm_has_flush(nd_region);
	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
		dev_warn(dev, "unable to guarantee persistence of writes\n");
		fua = 0;
	}
	wbc = nvdimm_has_cache(nd_region);

	if (!devm_request_mem_region(dev, res->start, resource_size(res),
				dev_name(&ndns->dev))) {
		dev_warn(dev, "could not reserve region %pR\n", res);
		return -EBUSY;
	}

	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
	if (!q)
		return -ENOMEM;

	if (devm_add_action_or_reset(dev, pmem_release_queue, q))
		return -ENOMEM;

	pmem->pfn_flags = PFN_DEV;
	if (is_nd_pfn(dev)) {
		addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
				altmap);
		pfn_sb = nd_pfn->pfn_sb;
		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
		pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
		pmem->pfn_flags |= PFN_MAP;
		res = &pfn_res; /* for badblocks populate */
		res->start += pmem->data_offset;
	} else if (pmem_should_map_pages(dev)) {
		addr = devm_memremap_pages(dev, &nsio->res,
				&q->q_usage_counter, NULL);
		pmem->pfn_flags |= PFN_MAP;
	} else
		addr = devm_memremap(dev, pmem->phys_addr,
				pmem->size, ARCH_MEMREMAP_PMEM);

	/*
	 * At release time the queue must be frozen before
	 * devm_memremap_pages is unwound
	 */
	if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
		return -ENOMEM;

	if (IS_ERR(addr))
		return PTR_ERR(addr);
	pmem->virt_addr = addr;

	blk_queue_write_cache(q, wbc, fua);
	blk_queue_make_request(q, pmem_make_request);
	blk_queue_physical_block_size(q, PAGE_SIZE);
	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
	blk_queue_max_hw_sectors(q, UINT_MAX);
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
	queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
	q->queuedata = pmem;

	disk = alloc_disk_node(0, nid);
	if (!disk)
		return -ENOMEM;
	pmem->disk = disk;

	disk->fops		= &pmem_fops;
	disk->queue		= q;
	disk->flags		= GENHD_FL_EXT_DEVT;
	nvdimm_namespace_disk_name(ndns, disk->disk_name);
	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
			/ 512);
	if (devm_init_badblocks(dev, &pmem->bb))
		return -ENOMEM;
	nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
	disk->bb = &pmem->bb;

	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
	if (!dax_dev) {
		put_disk(disk);
		return -ENOMEM;
	}
	dax_write_cache(dax_dev, wbc);
	pmem->dax_dev = dax_dev;

	gendev = disk_to_dev(disk);
	gendev->groups = pmem_attribute_groups;

	device_add_disk(dev, disk);
	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
		return -ENOMEM;

	revalidate_disk(disk);

	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
					  "badblocks");
	if (!pmem->bb_state)
		dev_warn(dev, "'badblocks' notification disabled\n");

	return 0;
}

static int nd_pmem_probe(struct device *dev)
{
	struct nd_namespace_common *ndns;

	ndns = nvdimm_namespace_common_probe(dev);
	if (IS_ERR(ndns))
		return PTR_ERR(ndns);

	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
		return -ENXIO;

	if (is_nd_btt(dev))
		return nvdimm_namespace_attach_btt(ndns);

	if (is_nd_pfn(dev))
		return pmem_attach_disk(dev, ndns);

	/* if we find a valid info-block we'll come back as that personality */
	if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
			|| nd_dax_probe(dev, ndns) == 0)
		return -ENXIO;

	/* ...otherwise we're just a raw pmem device */
	return pmem_attach_disk(dev, ndns);
}

static int nd_pmem_remove(struct device *dev)
{
	struct pmem_device *pmem = dev_get_drvdata(dev);

	if (is_nd_btt(dev))
		nvdimm_namespace_detach_btt(to_nd_btt(dev));
	else {
		/*
		 * Note, this assumes device_lock() context to not race
		 * nd_pmem_notify()
		 */
		sysfs_put(pmem->bb_state);
		pmem->bb_state = NULL;
	}
	nvdimm_flush(to_nd_region(dev->parent));

	return 0;
}

static void nd_pmem_shutdown(struct device *dev)
{
	nvdimm_flush(to_nd_region(dev->parent));
}

static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
{
	struct nd_region *nd_region;
	resource_size_t offset = 0, end_trunc = 0;
	struct nd_namespace_common *ndns;
	struct nd_namespace_io *nsio;
	struct resource res;
	struct badblocks *bb;
	struct kernfs_node *bb_state;

	if (event != NVDIMM_REVALIDATE_POISON)
		return;

	if (is_nd_btt(dev)) {
		struct nd_btt *nd_btt = to_nd_btt(dev);

		ndns = nd_btt->ndns;
		nd_region = to_nd_region(ndns->dev.parent);
		nsio = to_nd_namespace_io(&ndns->dev);
		bb = &nsio->bb;
		bb_state = NULL;
	} else {
		struct pmem_device *pmem = dev_get_drvdata(dev);

		nd_region = to_region(pmem);
		bb = &pmem->bb;
		bb_state = pmem->bb_state;

		if (is_nd_pfn(dev)) {
			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;

			ndns = nd_pfn->ndns;
			offset = pmem->data_offset +
					__le32_to_cpu(pfn_sb->start_pad);
			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
		} else {
			ndns = to_ndns(dev);
		}

		nsio = to_nd_namespace_io(&ndns->dev);
	}

	res.start = nsio->res.start + offset;
	res.end = nsio->res.end - end_trunc;
	nvdimm_badblocks_populate(nd_region, bb, &res);
	if (bb_state)
		sysfs_notify_dirent(bb_state);
}

MODULE_ALIAS("pmem");
MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
static struct nd_device_driver nd_pmem_driver = {
	.probe = nd_pmem_probe,
	.remove = nd_pmem_remove,
	.notify = nd_pmem_notify,
	.shutdown = nd_pmem_shutdown,
	.drv = {
		.name = "nd_pmem",
	},
	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
};

static int __init pmem_init(void)
{
	return nd_driver_register(&nd_pmem_driver);
}
module_init(pmem_init);

static void pmem_exit(void)
{
	driver_unregister(&nd_pmem_driver.drv);
}
module_exit(pmem_exit);

MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
MODULE_LICENSE("GPL v2");