highmem.c 11.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
/*
 * High memory handling common code and variables.
 *
 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
 *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
 *
 *
 * Redesigned the x86 32-bit VM architecture to deal with
 * 64-bit physical space. With current x86 CPUs this
 * means up to 64 Gigabytes physical RAM.
 *
 * Rewrote high memory support to move the page cache into
 * high memory. Implemented permanent (schedulable) kmaps
 * based on Linus' idea.
 *
 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/pagemap.h>
#include <linux/mempool.h>
#include <linux/blkdev.h>
#include <linux/init.h>
#include <linux/hash.h>
#include <linux/highmem.h>
#include <asm/tlbflush.h>

/*
 * Virtual_count is not a pure "count".
 *  0 means that it is not mapped, and has not been mapped
 *    since a TLB flush - it is usable.
 *  1 means that there are no users, but it has been mapped
 *    since the last TLB flush - so we can't use it.
 *  n means that there are (n-1) current users of it.
 */
#ifdef CONFIG_HIGHMEM

unsigned long totalhigh_pages __read_mostly;
EXPORT_SYMBOL(totalhigh_pages);

unsigned int nr_free_highpages (void)
{
	pg_data_t *pgdat;
	unsigned int pages = 0;

	for_each_online_pgdat(pgdat) {
		pages += zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
			NR_FREE_PAGES);
		if (zone_movable_is_highmem())
			pages += zone_page_state(
					&pgdat->node_zones[ZONE_MOVABLE],
					NR_FREE_PAGES);
	}

	return pages;
}

static int pkmap_count[LAST_PKMAP];
static unsigned int last_pkmap_nr;
static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);

pte_t * pkmap_page_table;

static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);

/*
 * Most architectures have no use for kmap_high_get(), so let's abstract
 * the disabling of IRQ out of the locking in that case to save on a
 * potential useless overhead.
 */
#ifdef ARCH_NEEDS_KMAP_HIGH_GET
#define lock_kmap()             spin_lock_irq(&kmap_lock)
#define unlock_kmap()           spin_unlock_irq(&kmap_lock)
#define lock_kmap_any(flags)    spin_lock_irqsave(&kmap_lock, flags)
#define unlock_kmap_any(flags)  spin_unlock_irqrestore(&kmap_lock, flags)
#else
#define lock_kmap()             spin_lock(&kmap_lock)
#define unlock_kmap()           spin_unlock(&kmap_lock)
#define lock_kmap_any(flags)    \
		do { spin_lock(&kmap_lock); (void)(flags); } while (0)
#define unlock_kmap_any(flags)  \
		do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
#endif

static void flush_all_zero_pkmaps(void)
{
	int i;
	int need_flush = 0;

	flush_cache_kmaps();

	for (i = 0; i < LAST_PKMAP; i++) {
		struct page *page;

		/*
		 * zero means we don't have anything to do,
		 * >1 means that it is still in use. Only
		 * a count of 1 means that it is free but
		 * needs to be unmapped
		 */
		if (pkmap_count[i] != 1)
			continue;
		pkmap_count[i] = 0;

		/* sanity check */
		BUG_ON(pte_none(pkmap_page_table[i]));

		/*
		 * Don't need an atomic fetch-and-clear op here;
		 * no-one has the page mapped, and cannot get at
		 * its virtual address (and hence PTE) without first
		 * getting the kmap_lock (which is held here).
		 * So no dangers, even with speculative execution.
		 */
		page = pte_page(pkmap_page_table[i]);
		pte_clear(&init_mm, (unsigned long)page_address(page),
			  &pkmap_page_table[i]);

		set_page_address(page, NULL);
		need_flush = 1;
	}
	if (need_flush)
		flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
}

/**
 * kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings
 */
void kmap_flush_unused(void)
{
	lock_kmap();
	flush_all_zero_pkmaps();
	unlock_kmap();
}

static inline unsigned long map_new_virtual(struct page *page)
{
	unsigned long vaddr;
	int count;

start:
	count = LAST_PKMAP;
	/* Find an empty entry */
	for (;;) {
		last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
		if (!last_pkmap_nr) {
			flush_all_zero_pkmaps();
			count = LAST_PKMAP;
		}
		if (!pkmap_count[last_pkmap_nr])
			break;	/* Found a usable entry */
		if (--count)
			continue;

		/*
		 * Sleep for somebody else to unmap their entries
		 */
		{
			DECLARE_WAITQUEUE(wait, current);

			__set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&pkmap_map_wait, &wait);
			unlock_kmap();
			schedule();
			remove_wait_queue(&pkmap_map_wait, &wait);
			lock_kmap();

			/* Somebody else might have mapped it while we slept */
			if (page_address(page))
				return (unsigned long)page_address(page);

			/* Re-start */
			goto start;
		}
	}
	vaddr = PKMAP_ADDR(last_pkmap_nr);
	set_pte_at(&init_mm, vaddr,
		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));

	pkmap_count[last_pkmap_nr] = 1;
	set_page_address(page, (void *)vaddr);

	return vaddr;
}

/**
 * kmap_high - map a highmem page into memory
 * @page: &struct page to map
 *
 * Returns the page's virtual memory address.
 *
 * We cannot call this from interrupts, as it may block.
 */
void *kmap_high(struct page *page)
{
	unsigned long vaddr;

	/*
	 * For highmem pages, we can't trust "virtual" until
	 * after we have the lock.
	 */
	lock_kmap();
	vaddr = (unsigned long)page_address(page);
	if (!vaddr)
		vaddr = map_new_virtual(page);
	pkmap_count[PKMAP_NR(vaddr)]++;
	BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
	unlock_kmap();
	return (void*) vaddr;
}

EXPORT_SYMBOL(kmap_high);

#ifdef ARCH_NEEDS_KMAP_HIGH_GET
/**
 * kmap_high_get - pin a highmem page into memory
 * @page: &struct page to pin
 *
 * Returns the page's current virtual memory address, or NULL if no mapping
 * exists.  If and only if a non null address is returned then a
 * matching call to kunmap_high() is necessary.
 *
 * This can be called from any context.
 */
void *kmap_high_get(struct page *page)
{
	unsigned long vaddr, flags;

	lock_kmap_any(flags);
	vaddr = (unsigned long)page_address(page);
	if (vaddr) {
		BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
		pkmap_count[PKMAP_NR(vaddr)]++;
	}
	unlock_kmap_any(flags);
	return (void*) vaddr;
}
#endif

/**
 * kunmap_high - map a highmem page into memory
 * @page: &struct page to unmap
 *
 * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
 * only from user context.
 */
void kunmap_high(struct page *page)
{
	unsigned long vaddr;
	unsigned long nr;
	unsigned long flags;
	int need_wakeup;

	lock_kmap_any(flags);
	vaddr = (unsigned long)page_address(page);
	BUG_ON(!vaddr);
	nr = PKMAP_NR(vaddr);

	/*
	 * A count must never go down to zero
	 * without a TLB flush!
	 */
	need_wakeup = 0;
	switch (--pkmap_count[nr]) {
	case 0:
		BUG();
	case 1:
		/*
		 * Avoid an unnecessary wake_up() function call.
		 * The common case is pkmap_count[] == 1, but
		 * no waiters.
		 * The tasks queued in the wait-queue are guarded
		 * by both the lock in the wait-queue-head and by
		 * the kmap_lock.  As the kmap_lock is held here,
		 * no need for the wait-queue-head's lock.  Simply
		 * test if the queue is empty.
		 */
		need_wakeup = waitqueue_active(&pkmap_map_wait);
	}
	unlock_kmap_any(flags);

	/* do wake-up, if needed, race-free outside of the spin lock */
	if (need_wakeup)
		wake_up(&pkmap_map_wait);
}

EXPORT_SYMBOL(kunmap_high);
#endif

#if defined(HASHED_PAGE_VIRTUAL)

#define PA_HASH_ORDER	7

/*
 * Describes one page->virtual association
 */
struct page_address_map {
	struct page *page;
	void *virtual;
	struct list_head list;
};

/*
 * page_address_map freelist, allocated from page_address_maps.
 */
static struct list_head page_address_pool;	/* freelist */
static spinlock_t pool_lock;			/* protects page_address_pool */

/*
 * Hash table bucket
 */
static struct page_address_slot {
	struct list_head lh;			/* List of page_address_maps */
	spinlock_t lock;			/* Protect this bucket's list */
} ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];

static struct page_address_slot *page_slot(struct page *page)
{
	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
}

/**
 * page_address - get the mapped virtual address of a page
 * @page: &struct page to get the virtual address of
 *
 * Returns the page's virtual address.
 */
void *page_address(struct page *page)
{
	unsigned long flags;
	void *ret;
	struct page_address_slot *pas;

	if (!PageHighMem(page))
		return lowmem_page_address(page);

	pas = page_slot(page);
	ret = NULL;
	spin_lock_irqsave(&pas->lock, flags);
	if (!list_empty(&pas->lh)) {
		struct page_address_map *pam;

		list_for_each_entry(pam, &pas->lh, list) {
			if (pam->page == page) {
				ret = pam->virtual;
				goto done;
			}
		}
	}
done:
	spin_unlock_irqrestore(&pas->lock, flags);
	return ret;
}

EXPORT_SYMBOL(page_address);

/**
 * set_page_address - set a page's virtual address
 * @page: &struct page to set
 * @virtual: virtual address to use
 */
void set_page_address(struct page *page, void *virtual)
{
	unsigned long flags;
	struct page_address_slot *pas;
	struct page_address_map *pam;

	BUG_ON(!PageHighMem(page));

	pas = page_slot(page);
	if (virtual) {		/* Add */
		BUG_ON(list_empty(&page_address_pool));

		spin_lock_irqsave(&pool_lock, flags);
		pam = list_entry(page_address_pool.next,
				struct page_address_map, list);
		list_del(&pam->list);
		spin_unlock_irqrestore(&pool_lock, flags);

		pam->page = page;
		pam->virtual = virtual;

		spin_lock_irqsave(&pas->lock, flags);
		list_add_tail(&pam->list, &pas->lh);
		spin_unlock_irqrestore(&pas->lock, flags);
	} else {		/* Remove */
		spin_lock_irqsave(&pas->lock, flags);
		list_for_each_entry(pam, &pas->lh, list) {
			if (pam->page == page) {
				list_del(&pam->list);
				spin_unlock_irqrestore(&pas->lock, flags);
				spin_lock_irqsave(&pool_lock, flags);
				list_add_tail(&pam->list, &page_address_pool);
				spin_unlock_irqrestore(&pool_lock, flags);
				goto done;
			}
		}
		spin_unlock_irqrestore(&pas->lock, flags);
	}
done:
	return;
}

static struct page_address_map page_address_maps[LAST_PKMAP];

void __init page_address_init(void)
{
	int i;

	INIT_LIST_HEAD(&page_address_pool);
	for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
		list_add(&page_address_maps[i].list, &page_address_pool);
	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
		INIT_LIST_HEAD(&page_address_htable[i].lh);
		spin_lock_init(&page_address_htable[i].lock);
	}
	spin_lock_init(&pool_lock);
}

#endif	/* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */

#if defined(CONFIG_DEBUG_HIGHMEM) && defined(CONFIG_TRACE_IRQFLAGS_SUPPORT)

void debug_kmap_atomic(enum km_type type)
{
	static int warn_count = 10;

	if (unlikely(warn_count < 0))
		return;

	if (unlikely(in_interrupt())) {
		if (in_nmi()) {
			if (type != KM_NMI && type != KM_NMI_PTE) {
				WARN_ON(1);
				warn_count--;
			}
		} else if (in_irq()) {
			if (type != KM_IRQ0 && type != KM_IRQ1 &&
			    type != KM_BIO_SRC_IRQ && type != KM_BIO_DST_IRQ &&
			    type != KM_BOUNCE_READ && type != KM_IRQ_PTE) {
				WARN_ON(1);
				warn_count--;
			}
		} else if (!irqs_disabled()) {	/* softirq */
			if (type != KM_IRQ0 && type != KM_IRQ1 &&
			    type != KM_SOFTIRQ0 && type != KM_SOFTIRQ1 &&
			    type != KM_SKB_SUNRPC_DATA &&
			    type != KM_SKB_DATA_SOFTIRQ &&
			    type != KM_BOUNCE_READ) {
				WARN_ON(1);
				warn_count--;
			}
		}
	}

	if (type == KM_IRQ0 || type == KM_IRQ1 || type == KM_BOUNCE_READ ||
			type == KM_BIO_SRC_IRQ || type == KM_BIO_DST_IRQ ||
			type == KM_IRQ_PTE || type == KM_NMI ||
			type == KM_NMI_PTE ) {
		if (!irqs_disabled()) {
			WARN_ON(1);
			warn_count--;
		}
	} else if (type == KM_SOFTIRQ0 || type == KM_SOFTIRQ1) {
		if (irq_count() == 0 && !irqs_disabled()) {
			WARN_ON(1);
			warn_count--;
		}
	}
}

#endif