simd.c 13.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Shared crypto simd helpers
 *
 * Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
 * Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
 * Copyright (c) 2019 Google LLC
 *
 * Based on aesni-intel_glue.c by:
 *  Copyright (C) 2008, Intel Corp.
 *    Author: Huang Ying <ying.huang@intel.com>
 */

/*
 * Shared crypto SIMD helpers.  These functions dynamically create and register
 * an skcipher or AEAD algorithm that wraps another, internal algorithm.  The
 * wrapper ensures that the internal algorithm is only executed in a context
 * where SIMD instructions are usable, i.e. where may_use_simd() returns true.
 * If SIMD is already usable, the wrapper directly calls the internal algorithm.
 * Otherwise it defers execution to a workqueue via cryptd.
 *
 * This is an alternative to the internal algorithm implementing a fallback for
 * the !may_use_simd() case itself.
 *
 * Note that the wrapper algorithm is asynchronous, i.e. it has the
 * CRYPTO_ALG_ASYNC flag set.  Therefore it won't be found by users who
 * explicitly allocate a synchronous algorithm.
 */

#include <crypto/cryptd.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/preempt.h>
#include <asm/simd.h>

/* skcipher support */

struct simd_skcipher_alg {
	const char *ialg_name;
	struct skcipher_alg alg;
};

struct simd_skcipher_ctx {
	struct cryptd_skcipher *cryptd_tfm;
};

static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
				unsigned int key_len)
{
	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct crypto_skcipher *child = &ctx->cryptd_tfm->base;

	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
					 CRYPTO_TFM_REQ_MASK);
	return crypto_skcipher_setkey(child, key, key_len);
}

static int simd_skcipher_encrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct skcipher_request *subreq;
	struct crypto_skcipher *child;

	subreq = skcipher_request_ctx(req);
	*subreq = *req;

	if (!crypto_simd_usable() ||
	    (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
		child = &ctx->cryptd_tfm->base;
	else
		child = cryptd_skcipher_child(ctx->cryptd_tfm);

	skcipher_request_set_tfm(subreq, child);

	return crypto_skcipher_encrypt(subreq);
}

static int simd_skcipher_decrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct skcipher_request *subreq;
	struct crypto_skcipher *child;

	subreq = skcipher_request_ctx(req);
	*subreq = *req;

	if (!crypto_simd_usable() ||
	    (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
		child = &ctx->cryptd_tfm->base;
	else
		child = cryptd_skcipher_child(ctx->cryptd_tfm);

	skcipher_request_set_tfm(subreq, child);

	return crypto_skcipher_decrypt(subreq);
}

static void simd_skcipher_exit(struct crypto_skcipher *tfm)
{
	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);

	cryptd_free_skcipher(ctx->cryptd_tfm);
}

static int simd_skcipher_init(struct crypto_skcipher *tfm)
{
	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct cryptd_skcipher *cryptd_tfm;
	struct simd_skcipher_alg *salg;
	struct skcipher_alg *alg;
	unsigned reqsize;

	alg = crypto_skcipher_alg(tfm);
	salg = container_of(alg, struct simd_skcipher_alg, alg);

	cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
					   CRYPTO_ALG_INTERNAL,
					   CRYPTO_ALG_INTERNAL);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);

	ctx->cryptd_tfm = cryptd_tfm;

	reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
	reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
	reqsize += sizeof(struct skcipher_request);

	crypto_skcipher_set_reqsize(tfm, reqsize);

	return 0;
}

struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname,
						      const char *drvname,
						      const char *basename)
{
	struct simd_skcipher_alg *salg;
	struct crypto_skcipher *tfm;
	struct skcipher_alg *ialg;
	struct skcipher_alg *alg;
	int err;

	tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL,
				    CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
	if (IS_ERR(tfm))
		return ERR_CAST(tfm);

	ialg = crypto_skcipher_alg(tfm);

	salg = kzalloc(sizeof(*salg), GFP_KERNEL);
	if (!salg) {
		salg = ERR_PTR(-ENOMEM);
		goto out_put_tfm;
	}

	salg->ialg_name = basename;
	alg = &salg->alg;

	err = -ENAMETOOLONG;
	if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
	    CRYPTO_MAX_ALG_NAME)
		goto out_free_salg;

	if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
		     drvname) >= CRYPTO_MAX_ALG_NAME)
		goto out_free_salg;

	alg->base.cra_flags = CRYPTO_ALG_ASYNC;
	alg->base.cra_priority = ialg->base.cra_priority;
	alg->base.cra_blocksize = ialg->base.cra_blocksize;
	alg->base.cra_alignmask = ialg->base.cra_alignmask;
	alg->base.cra_module = ialg->base.cra_module;
	alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);

	alg->ivsize = ialg->ivsize;
	alg->chunksize = ialg->chunksize;
	alg->min_keysize = ialg->min_keysize;
	alg->max_keysize = ialg->max_keysize;

	alg->init = simd_skcipher_init;
	alg->exit = simd_skcipher_exit;

	alg->setkey = simd_skcipher_setkey;
	alg->encrypt = simd_skcipher_encrypt;
	alg->decrypt = simd_skcipher_decrypt;

	err = crypto_register_skcipher(alg);
	if (err)
		goto out_free_salg;

out_put_tfm:
	crypto_free_skcipher(tfm);
	return salg;

out_free_salg:
	kfree(salg);
	salg = ERR_PTR(err);
	goto out_put_tfm;
}
EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);

struct simd_skcipher_alg *simd_skcipher_create(const char *algname,
					       const char *basename)
{
	char drvname[CRYPTO_MAX_ALG_NAME];

	if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
	    CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-ENAMETOOLONG);

	return simd_skcipher_create_compat(algname, drvname, basename);
}
EXPORT_SYMBOL_GPL(simd_skcipher_create);

void simd_skcipher_free(struct simd_skcipher_alg *salg)
{
	crypto_unregister_skcipher(&salg->alg);
	kfree(salg);
}
EXPORT_SYMBOL_GPL(simd_skcipher_free);

int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
				   struct simd_skcipher_alg **simd_algs)
{
	int err;
	int i;
	const char *algname;
	const char *drvname;
	const char *basename;
	struct simd_skcipher_alg *simd;

	err = crypto_register_skciphers(algs, count);
	if (err)
		return err;

	for (i = 0; i < count; i++) {
		WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
		WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
		algname = algs[i].base.cra_name + 2;
		drvname = algs[i].base.cra_driver_name + 2;
		basename = algs[i].base.cra_driver_name;
		simd = simd_skcipher_create_compat(algname, drvname, basename);
		err = PTR_ERR(simd);
		if (IS_ERR(simd))
			goto err_unregister;
		simd_algs[i] = simd;
	}
	return 0;

err_unregister:
	simd_unregister_skciphers(algs, count, simd_algs);
	return err;
}
EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);

void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
			       struct simd_skcipher_alg **simd_algs)
{
	int i;

	crypto_unregister_skciphers(algs, count);

	for (i = 0; i < count; i++) {
		if (simd_algs[i]) {
			simd_skcipher_free(simd_algs[i]);
			simd_algs[i] = NULL;
		}
	}
}
EXPORT_SYMBOL_GPL(simd_unregister_skciphers);

/* AEAD support */

struct simd_aead_alg {
	const char *ialg_name;
	struct aead_alg alg;
};

struct simd_aead_ctx {
	struct cryptd_aead *cryptd_tfm;
};

static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
				unsigned int key_len)
{
	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
	struct crypto_aead *child = &ctx->cryptd_tfm->base;

	crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
				     CRYPTO_TFM_REQ_MASK);
	return crypto_aead_setkey(child, key, key_len);
}

static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
	struct crypto_aead *child = &ctx->cryptd_tfm->base;

	return crypto_aead_setauthsize(child, authsize);
}

static int simd_aead_encrypt(struct aead_request *req)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
	struct aead_request *subreq;
	struct crypto_aead *child;

	subreq = aead_request_ctx(req);
	*subreq = *req;

	if (!crypto_simd_usable() ||
	    (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
		child = &ctx->cryptd_tfm->base;
	else
		child = cryptd_aead_child(ctx->cryptd_tfm);

	aead_request_set_tfm(subreq, child);

	return crypto_aead_encrypt(subreq);
}

static int simd_aead_decrypt(struct aead_request *req)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
	struct aead_request *subreq;
	struct crypto_aead *child;

	subreq = aead_request_ctx(req);
	*subreq = *req;

	if (!crypto_simd_usable() ||
	    (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
		child = &ctx->cryptd_tfm->base;
	else
		child = cryptd_aead_child(ctx->cryptd_tfm);

	aead_request_set_tfm(subreq, child);

	return crypto_aead_decrypt(subreq);
}

static void simd_aead_exit(struct crypto_aead *tfm)
{
	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);

	cryptd_free_aead(ctx->cryptd_tfm);
}

static int simd_aead_init(struct crypto_aead *tfm)
{
	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
	struct cryptd_aead *cryptd_tfm;
	struct simd_aead_alg *salg;
	struct aead_alg *alg;
	unsigned reqsize;

	alg = crypto_aead_alg(tfm);
	salg = container_of(alg, struct simd_aead_alg, alg);

	cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
				       CRYPTO_ALG_INTERNAL);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);

	ctx->cryptd_tfm = cryptd_tfm;

	reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
	reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
	reqsize += sizeof(struct aead_request);

	crypto_aead_set_reqsize(tfm, reqsize);

	return 0;
}

struct simd_aead_alg *simd_aead_create_compat(const char *algname,
					      const char *drvname,
					      const char *basename)
{
	struct simd_aead_alg *salg;
	struct crypto_aead *tfm;
	struct aead_alg *ialg;
	struct aead_alg *alg;
	int err;

	tfm = crypto_alloc_aead(basename, CRYPTO_ALG_INTERNAL,
				CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
	if (IS_ERR(tfm))
		return ERR_CAST(tfm);

	ialg = crypto_aead_alg(tfm);

	salg = kzalloc(sizeof(*salg), GFP_KERNEL);
	if (!salg) {
		salg = ERR_PTR(-ENOMEM);
		goto out_put_tfm;
	}

	salg->ialg_name = basename;
	alg = &salg->alg;

	err = -ENAMETOOLONG;
	if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
	    CRYPTO_MAX_ALG_NAME)
		goto out_free_salg;

	if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
		     drvname) >= CRYPTO_MAX_ALG_NAME)
		goto out_free_salg;

	alg->base.cra_flags = CRYPTO_ALG_ASYNC;
	alg->base.cra_priority = ialg->base.cra_priority;
	alg->base.cra_blocksize = ialg->base.cra_blocksize;
	alg->base.cra_alignmask = ialg->base.cra_alignmask;
	alg->base.cra_module = ialg->base.cra_module;
	alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);

	alg->ivsize = ialg->ivsize;
	alg->maxauthsize = ialg->maxauthsize;
	alg->chunksize = ialg->chunksize;

	alg->init = simd_aead_init;
	alg->exit = simd_aead_exit;

	alg->setkey = simd_aead_setkey;
	alg->setauthsize = simd_aead_setauthsize;
	alg->encrypt = simd_aead_encrypt;
	alg->decrypt = simd_aead_decrypt;

	err = crypto_register_aead(alg);
	if (err)
		goto out_free_salg;

out_put_tfm:
	crypto_free_aead(tfm);
	return salg;

out_free_salg:
	kfree(salg);
	salg = ERR_PTR(err);
	goto out_put_tfm;
}
EXPORT_SYMBOL_GPL(simd_aead_create_compat);

struct simd_aead_alg *simd_aead_create(const char *algname,
				       const char *basename)
{
	char drvname[CRYPTO_MAX_ALG_NAME];

	if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
	    CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-ENAMETOOLONG);

	return simd_aead_create_compat(algname, drvname, basename);
}
EXPORT_SYMBOL_GPL(simd_aead_create);

void simd_aead_free(struct simd_aead_alg *salg)
{
	crypto_unregister_aead(&salg->alg);
	kfree(salg);
}
EXPORT_SYMBOL_GPL(simd_aead_free);

int simd_register_aeads_compat(struct aead_alg *algs, int count,
			       struct simd_aead_alg **simd_algs)
{
	int err;
	int i;
	const char *algname;
	const char *drvname;
	const char *basename;
	struct simd_aead_alg *simd;

	err = crypto_register_aeads(algs, count);
	if (err)
		return err;

	for (i = 0; i < count; i++) {
		WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
		WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
		algname = algs[i].base.cra_name + 2;
		drvname = algs[i].base.cra_driver_name + 2;
		basename = algs[i].base.cra_driver_name;
		simd = simd_aead_create_compat(algname, drvname, basename);
		err = PTR_ERR(simd);
		if (IS_ERR(simd))
			goto err_unregister;
		simd_algs[i] = simd;
	}
	return 0;

err_unregister:
	simd_unregister_aeads(algs, count, simd_algs);
	return err;
}
EXPORT_SYMBOL_GPL(simd_register_aeads_compat);

void simd_unregister_aeads(struct aead_alg *algs, int count,
			   struct simd_aead_alg **simd_algs)
{
	int i;

	crypto_unregister_aeads(algs, count);

	for (i = 0; i < count; i++) {
		if (simd_algs[i]) {
			simd_aead_free(simd_algs[i]);
			simd_algs[i] = NULL;
		}
	}
}
EXPORT_SYMBOL_GPL(simd_unregister_aeads);

MODULE_LICENSE("GPL");