dma-coherent.c 11 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
// SPDX-License-Identifier: GPL-2.0
/*
 * Coherent per-device memory handling.
 * Borrowed from i386
 */
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>

struct dma_coherent_mem {
	void		*virt_base;
	dma_addr_t	device_base;
	unsigned long	pfn_base;
	int		size;
	int		flags;
	unsigned long	*bitmap;
	spinlock_t	spinlock;
	bool		use_dev_dma_pfn_offset;
};

static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;

static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
{
	if (dev && dev->dma_mem)
		return dev->dma_mem;
	return NULL;
}

static inline dma_addr_t dma_get_device_base(struct device *dev,
					     struct dma_coherent_mem * mem)
{
	if (mem->use_dev_dma_pfn_offset)
		return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT;
	else
		return mem->device_base;
}

static int dma_init_coherent_memory(
	phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags,
	struct dma_coherent_mem **mem)
{
	struct dma_coherent_mem *dma_mem = NULL;
	void __iomem *mem_base = NULL;
	int pages = size >> PAGE_SHIFT;
	int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
	int ret;

	if (!size) {
		ret = -EINVAL;
		goto out;
	}

	mem_base = memremap(phys_addr, size, MEMREMAP_WC);
	if (!mem_base) {
		ret = -EINVAL;
		goto out;
	}
	dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
	if (!dma_mem) {
		ret = -ENOMEM;
		goto out;
	}
	dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!dma_mem->bitmap) {
		ret = -ENOMEM;
		goto out;
	}

	dma_mem->virt_base = mem_base;
	dma_mem->device_base = device_addr;
	dma_mem->pfn_base = PFN_DOWN(phys_addr);
	dma_mem->size = pages;
	dma_mem->flags = flags;
	spin_lock_init(&dma_mem->spinlock);

	*mem = dma_mem;
	return 0;

out:
	kfree(dma_mem);
	if (mem_base)
		memunmap(mem_base);
	return ret;
}

static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
{
	if (!mem)
		return;

	memunmap(mem->virt_base);
	kfree(mem->bitmap);
	kfree(mem);
}

static int dma_assign_coherent_memory(struct device *dev,
				      struct dma_coherent_mem *mem)
{
	if (!dev)
		return -ENODEV;

	if (dev->dma_mem)
		return -EBUSY;

	dev->dma_mem = mem;
	return 0;
}

int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
				dma_addr_t device_addr, size_t size, int flags)
{
	struct dma_coherent_mem *mem;
	int ret;

	ret = dma_init_coherent_memory(phys_addr, device_addr, size, flags, &mem);
	if (ret)
		return ret;

	ret = dma_assign_coherent_memory(dev, mem);
	if (ret)
		dma_release_coherent_memory(mem);
	return ret;
}
EXPORT_SYMBOL(dma_declare_coherent_memory);

void dma_release_declared_memory(struct device *dev)
{
	struct dma_coherent_mem *mem = dev->dma_mem;

	if (!mem)
		return;
	dma_release_coherent_memory(mem);
	dev->dma_mem = NULL;
}
EXPORT_SYMBOL(dma_release_declared_memory);

void *dma_mark_declared_memory_occupied(struct device *dev,
					dma_addr_t device_addr, size_t size)
{
	struct dma_coherent_mem *mem = dev->dma_mem;
	unsigned long flags;
	int pos, err;

	size += device_addr & ~PAGE_MASK;

	if (!mem)
		return ERR_PTR(-EINVAL);

	spin_lock_irqsave(&mem->spinlock, flags);
	pos = PFN_DOWN(device_addr - dma_get_device_base(dev, mem));
	err = bitmap_allocate_region(mem->bitmap, pos, get_order(size));
	spin_unlock_irqrestore(&mem->spinlock, flags);

	if (err != 0)
		return ERR_PTR(err);
	return mem->virt_base + (pos << PAGE_SHIFT);
}
EXPORT_SYMBOL(dma_mark_declared_memory_occupied);

static void *__dma_alloc_from_coherent(struct dma_coherent_mem *mem,
		ssize_t size, dma_addr_t *dma_handle)
{
	int order = get_order(size);
	unsigned long flags;
	int pageno;
	void *ret;

	spin_lock_irqsave(&mem->spinlock, flags);

	if (unlikely(size > (mem->size << PAGE_SHIFT)))
		goto err;

	pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
	if (unlikely(pageno < 0))
		goto err;

	/*
	 * Memory was found in the coherent area.
	 */
	*dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
	ret = mem->virt_base + (pageno << PAGE_SHIFT);
	spin_unlock_irqrestore(&mem->spinlock, flags);
	memset(ret, 0, size);
	return ret;
err:
	spin_unlock_irqrestore(&mem->spinlock, flags);
	return NULL;
}

/**
 * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
 * @dev:	device from which we allocate memory
 * @size:	size of requested memory area
 * @dma_handle:	This will be filled with the correct dma handle
 * @ret:	This pointer will be filled with the virtual address
 *		to allocated area.
 *
 * This function should be only called from per-arch dma_alloc_coherent()
 * to support allocation from per-device coherent memory pools.
 *
 * Returns 0 if dma_alloc_coherent should continue with allocating from
 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
 */
int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
		dma_addr_t *dma_handle, void **ret)
{
	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);

	if (!mem)
		return 0;

	*ret = __dma_alloc_from_coherent(mem, size, dma_handle);
	if (*ret)
		return 1;

	/*
	 * In the case where the allocation can not be satisfied from the
	 * per-device area, try to fall back to generic memory if the
	 * constraints allow it.
	 */
	return mem->flags & DMA_MEMORY_EXCLUSIVE;
}
EXPORT_SYMBOL(dma_alloc_from_dev_coherent);

void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle)
{
	if (!dma_coherent_default_memory)
		return NULL;

	return __dma_alloc_from_coherent(dma_coherent_default_memory, size,
			dma_handle);
}

static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
				       int order, void *vaddr)
{
	if (mem && vaddr >= mem->virt_base && vaddr <
		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
		unsigned long flags;

		spin_lock_irqsave(&mem->spinlock, flags);
		bitmap_release_region(mem->bitmap, page, order);
		spin_unlock_irqrestore(&mem->spinlock, flags);
		return 1;
	}
	return 0;
}

/**
 * dma_release_from_dev_coherent() - free memory to device coherent memory pool
 * @dev:	device from which the memory was allocated
 * @order:	the order of pages allocated
 * @vaddr:	virtual address of allocated pages
 *
 * This checks whether the memory was allocated from the per-device
 * coherent memory pool and if so, releases that memory.
 *
 * Returns 1 if we correctly released the memory, or 0 if the caller should
 * proceed with releasing memory from generic pools.
 */
int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
{
	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);

	return __dma_release_from_coherent(mem, order, vaddr);
}
EXPORT_SYMBOL(dma_release_from_dev_coherent);

int dma_release_from_global_coherent(int order, void *vaddr)
{
	if (!dma_coherent_default_memory)
		return 0;

	return __dma_release_from_coherent(dma_coherent_default_memory, order,
			vaddr);
}

static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
		struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
{
	if (mem && vaddr >= mem->virt_base && vaddr + size <=
		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
		unsigned long off = vma->vm_pgoff;
		int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
		int user_count = vma_pages(vma);
		int count = PAGE_ALIGN(size) >> PAGE_SHIFT;

		*ret = -ENXIO;
		if (off < count && user_count <= count - off) {
			unsigned long pfn = mem->pfn_base + start + off;
			*ret = remap_pfn_range(vma, vma->vm_start, pfn,
					       user_count << PAGE_SHIFT,
					       vma->vm_page_prot);
		}
		return 1;
	}
	return 0;
}

/**
 * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
 * @dev:	device from which the memory was allocated
 * @vma:	vm_area for the userspace memory
 * @vaddr:	cpu address returned by dma_alloc_from_dev_coherent
 * @size:	size of the memory buffer allocated
 * @ret:	result from remap_pfn_range()
 *
 * This checks whether the memory was allocated from the per-device
 * coherent memory pool and if so, maps that memory to the provided vma.
 *
 * Returns 1 if we correctly mapped the memory, or 0 if the caller should
 * proceed with mapping memory from generic pools.
 */
int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
			   void *vaddr, size_t size, int *ret)
{
	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);

	return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
}
EXPORT_SYMBOL(dma_mmap_from_dev_coherent);

int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
				   size_t size, int *ret)
{
	if (!dma_coherent_default_memory)
		return 0;

	return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
					vaddr, size, ret);
}

/*
 * Support for reserved memory regions defined in device tree
 */
#ifdef CONFIG_OF_RESERVED_MEM
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_reserved_mem.h>

static struct reserved_mem *dma_reserved_default_memory __initdata;

static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
{
	struct dma_coherent_mem *mem = rmem->priv;
	int ret;

	if (!mem) {
		ret = dma_init_coherent_memory(rmem->base, rmem->base,
					       rmem->size,
					       DMA_MEMORY_EXCLUSIVE, &mem);
		if (ret) {
			pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
				&rmem->base, (unsigned long)rmem->size / SZ_1M);
			return ret;
		}
	}
	mem->use_dev_dma_pfn_offset = true;
	rmem->priv = mem;
	dma_assign_coherent_memory(dev, mem);
	return 0;
}

static void rmem_dma_device_release(struct reserved_mem *rmem,
				    struct device *dev)
{
	if (dev)
		dev->dma_mem = NULL;
}

static const struct reserved_mem_ops rmem_dma_ops = {
	.device_init	= rmem_dma_device_init,
	.device_release	= rmem_dma_device_release,
};

static int __init rmem_dma_setup(struct reserved_mem *rmem)
{
	unsigned long node = rmem->fdt_node;

	if (of_get_flat_dt_prop(node, "reusable", NULL))
		return -EINVAL;

#ifdef CONFIG_ARM
	if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
		pr_err("Reserved memory: regions without no-map are not yet supported\n");
		return -EINVAL;
	}

	if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
		WARN(dma_reserved_default_memory,
		     "Reserved memory: region for default DMA coherent area is redefined\n");
		dma_reserved_default_memory = rmem;
	}
#endif

	rmem->ops = &rmem_dma_ops;
	pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
		&rmem->base, (unsigned long)rmem->size / SZ_1M);
	return 0;
}

static int __init dma_init_reserved_memory(void)
{
	const struct reserved_mem_ops *ops;
	int ret;

	if (!dma_reserved_default_memory)
		return -ENOMEM;

	ops = dma_reserved_default_memory->ops;

	/*
	 * We rely on rmem_dma_device_init() does not propagate error of
	 * dma_assign_coherent_memory() for "NULL" device.
	 */
	ret = ops->device_init(dma_reserved_default_memory, NULL);

	if (!ret) {
		dma_coherent_default_memory = dma_reserved_default_memory->priv;
		pr_info("DMA: default coherent area is set\n");
	}

	return ret;
}

core_initcall(dma_init_reserved_memory);

RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
#endif