powernow-k8.c 31 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
/*
 *   (c) 2003-2012 Advanced Micro Devices, Inc.
 *  Your use of this code is subject to the terms and conditions of the
 *  GNU general public license version 2. See "COPYING" or
 *  http://www.gnu.org/licenses/gpl.html
 *
 *  Maintainer:
 *  Andreas Herrmann <herrmann.der.user@googlemail.com>
 *
 *  Based on the powernow-k7.c module written by Dave Jones.
 *  (C) 2003 Dave Jones on behalf of SuSE Labs
 *  (C) 2004 Dominik Brodowski <linux@brodo.de>
 *  (C) 2004 Pavel Machek <pavel@ucw.cz>
 *  Licensed under the terms of the GNU GPL License version 2.
 *  Based upon datasheets & sample CPUs kindly provided by AMD.
 *
 *  Valuable input gratefully received from Dave Jones, Pavel Machek,
 *  Dominik Brodowski, Jacob Shin, and others.
 *  Originally developed by Paul Devriendt.
 *
 *  Processor information obtained from Chapter 9 (Power and Thermal
 *  Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
 *  the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
 *  Power Management" in BKDGs for newer AMD CPU families.
 *
 *  Tables for specific CPUs can be inferred from AMD's processor
 *  power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/cpumask.h>
#include <linux/io.h>
#include <linux/delay.h>

#include <asm/msr.h>
#include <asm/cpu_device_id.h>

#include <linux/acpi.h>
#include <linux/mutex.h>
#include <acpi/processor.h>

#define VERSION "version 2.20.00"
#include "powernow-k8.h"

/* serialize freq changes  */
static DEFINE_MUTEX(fidvid_mutex);

static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);

static struct cpufreq_driver cpufreq_amd64_driver;

/* Return a frequency in MHz, given an input fid */
static u32 find_freq_from_fid(u32 fid)
{
	return 800 + (fid * 100);
}

/* Return a frequency in KHz, given an input fid */
static u32 find_khz_freq_from_fid(u32 fid)
{
	return 1000 * find_freq_from_fid(fid);
}

/* Return the vco fid for an input fid
 *
 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
 * only from corresponding high fids. This returns "high" fid corresponding to
 * "low" one.
 */
static u32 convert_fid_to_vco_fid(u32 fid)
{
	if (fid < HI_FID_TABLE_BOTTOM)
		return 8 + (2 * fid);
	else
		return fid;
}

/*
 * Return 1 if the pending bit is set. Unless we just instructed the processor
 * to transition to a new state, seeing this bit set is really bad news.
 */
static int pending_bit_stuck(void)
{
	u32 lo, hi;

	rdmsr(MSR_FIDVID_STATUS, lo, hi);
	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
}

/*
 * Update the global current fid / vid values from the status msr.
 * Returns 1 on error.
 */
static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
{
	u32 lo, hi;
	u32 i = 0;

	do {
		if (i++ > 10000) {
			pr_debug("detected change pending stuck\n");
			return 1;
		}
		rdmsr(MSR_FIDVID_STATUS, lo, hi);
	} while (lo & MSR_S_LO_CHANGE_PENDING);

	data->currvid = hi & MSR_S_HI_CURRENT_VID;
	data->currfid = lo & MSR_S_LO_CURRENT_FID;

	return 0;
}

/* the isochronous relief time */
static void count_off_irt(struct powernow_k8_data *data)
{
	udelay((1 << data->irt) * 10);
	return;
}

/* the voltage stabilization time */
static void count_off_vst(struct powernow_k8_data *data)
{
	udelay(data->vstable * VST_UNITS_20US);
	return;
}

/* need to init the control msr to a safe value (for each cpu) */
static void fidvid_msr_init(void)
{
	u32 lo, hi;
	u8 fid, vid;

	rdmsr(MSR_FIDVID_STATUS, lo, hi);
	vid = hi & MSR_S_HI_CURRENT_VID;
	fid = lo & MSR_S_LO_CURRENT_FID;
	lo = fid | (vid << MSR_C_LO_VID_SHIFT);
	hi = MSR_C_HI_STP_GNT_BENIGN;
	pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
	wrmsr(MSR_FIDVID_CTL, lo, hi);
}

/* write the new fid value along with the other control fields to the msr */
static int write_new_fid(struct powernow_k8_data *data, u32 fid)
{
	u32 lo;
	u32 savevid = data->currvid;
	u32 i = 0;

	if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
		pr_err("internal error - overflow on fid write\n");
		return 1;
	}

	lo = fid;
	lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
	lo |= MSR_C_LO_INIT_FID_VID;

	pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
		fid, lo, data->plllock * PLL_LOCK_CONVERSION);

	do {
		wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
		if (i++ > 100) {
			pr_err("Hardware error - pending bit very stuck - no further pstate changes possible\n");
			return 1;
		}
	} while (query_current_values_with_pending_wait(data));

	count_off_irt(data);

	if (savevid != data->currvid) {
		pr_err("vid change on fid trans, old 0x%x, new 0x%x\n",
		       savevid, data->currvid);
		return 1;
	}

	if (fid != data->currfid) {
		pr_err("fid trans failed, fid 0x%x, curr 0x%x\n", fid,
			data->currfid);
		return 1;
	}

	return 0;
}

/* Write a new vid to the hardware */
static int write_new_vid(struct powernow_k8_data *data, u32 vid)
{
	u32 lo;
	u32 savefid = data->currfid;
	int i = 0;

	if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
		pr_err("internal error - overflow on vid write\n");
		return 1;
	}

	lo = data->currfid;
	lo |= (vid << MSR_C_LO_VID_SHIFT);
	lo |= MSR_C_LO_INIT_FID_VID;

	pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
		vid, lo, STOP_GRANT_5NS);

	do {
		wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
		if (i++ > 100) {
			pr_err("internal error - pending bit very stuck - no further pstate changes possible\n");
			return 1;
		}
	} while (query_current_values_with_pending_wait(data));

	if (savefid != data->currfid) {
		pr_err("fid changed on vid trans, old 0x%x new 0x%x\n",
			savefid, data->currfid);
		return 1;
	}

	if (vid != data->currvid) {
		pr_err("vid trans failed, vid 0x%x, curr 0x%x\n",
				vid, data->currvid);
		return 1;
	}

	return 0;
}

/*
 * Reduce the vid by the max of step or reqvid.
 * Decreasing vid codes represent increasing voltages:
 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
 */
static int decrease_vid_code_by_step(struct powernow_k8_data *data,
		u32 reqvid, u32 step)
{
	if ((data->currvid - reqvid) > step)
		reqvid = data->currvid - step;

	if (write_new_vid(data, reqvid))
		return 1;

	count_off_vst(data);

	return 0;
}

/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
static int transition_fid_vid(struct powernow_k8_data *data,
		u32 reqfid, u32 reqvid)
{
	if (core_voltage_pre_transition(data, reqvid, reqfid))
		return 1;

	if (core_frequency_transition(data, reqfid))
		return 1;

	if (core_voltage_post_transition(data, reqvid))
		return 1;

	if (query_current_values_with_pending_wait(data))
		return 1;

	if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
		pr_err("failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
				smp_processor_id(),
				reqfid, reqvid, data->currfid, data->currvid);
		return 1;
	}

	pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
		smp_processor_id(), data->currfid, data->currvid);

	return 0;
}

/* Phase 1 - core voltage transition ... setup voltage */
static int core_voltage_pre_transition(struct powernow_k8_data *data,
		u32 reqvid, u32 reqfid)
{
	u32 rvosteps = data->rvo;
	u32 savefid = data->currfid;
	u32 maxvid, lo, rvomult = 1;

	pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
		smp_processor_id(),
		data->currfid, data->currvid, reqvid, data->rvo);

	if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
		rvomult = 2;
	rvosteps *= rvomult;
	rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
	maxvid = 0x1f & (maxvid >> 16);
	pr_debug("ph1 maxvid=0x%x\n", maxvid);
	if (reqvid < maxvid) /* lower numbers are higher voltages */
		reqvid = maxvid;

	while (data->currvid > reqvid) {
		pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
			data->currvid, reqvid);
		if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
			return 1;
	}

	while ((rvosteps > 0) &&
			((rvomult * data->rvo + data->currvid) > reqvid)) {
		if (data->currvid == maxvid) {
			rvosteps = 0;
		} else {
			pr_debug("ph1: changing vid for rvo, req 0x%x\n",
				data->currvid - 1);
			if (decrease_vid_code_by_step(data, data->currvid-1, 1))
				return 1;
			rvosteps--;
		}
	}

	if (query_current_values_with_pending_wait(data))
		return 1;

	if (savefid != data->currfid) {
		pr_err("ph1 err, currfid changed 0x%x\n", data->currfid);
		return 1;
	}

	pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
		data->currfid, data->currvid);

	return 0;
}

/* Phase 2 - core frequency transition */
static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
{
	u32 vcoreqfid, vcocurrfid, vcofiddiff;
	u32 fid_interval, savevid = data->currvid;

	if (data->currfid == reqfid) {
		pr_err("ph2 null fid transition 0x%x\n", data->currfid);
		return 0;
	}

	pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
		smp_processor_id(),
		data->currfid, data->currvid, reqfid);

	vcoreqfid = convert_fid_to_vco_fid(reqfid);
	vcocurrfid = convert_fid_to_vco_fid(data->currfid);
	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
	    : vcoreqfid - vcocurrfid;

	if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
		vcofiddiff = 0;

	while (vcofiddiff > 2) {
		(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);

		if (reqfid > data->currfid) {
			if (data->currfid > LO_FID_TABLE_TOP) {
				if (write_new_fid(data,
						data->currfid + fid_interval))
					return 1;
			} else {
				if (write_new_fid
				    (data,
				     2 + convert_fid_to_vco_fid(data->currfid)))
					return 1;
			}
		} else {
			if (write_new_fid(data, data->currfid - fid_interval))
				return 1;
		}

		vcocurrfid = convert_fid_to_vco_fid(data->currfid);
		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
		    : vcoreqfid - vcocurrfid;
	}

	if (write_new_fid(data, reqfid))
		return 1;

	if (query_current_values_with_pending_wait(data))
		return 1;

	if (data->currfid != reqfid) {
		pr_err("ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
			data->currfid, reqfid);
		return 1;
	}

	if (savevid != data->currvid) {
		pr_err("ph2: vid changed, save 0x%x, curr 0x%x\n",
			savevid, data->currvid);
		return 1;
	}

	pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
		data->currfid, data->currvid);

	return 0;
}

/* Phase 3 - core voltage transition flow ... jump to the final vid. */
static int core_voltage_post_transition(struct powernow_k8_data *data,
		u32 reqvid)
{
	u32 savefid = data->currfid;
	u32 savereqvid = reqvid;

	pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
		smp_processor_id(),
		data->currfid, data->currvid);

	if (reqvid != data->currvid) {
		if (write_new_vid(data, reqvid))
			return 1;

		if (savefid != data->currfid) {
			pr_err("ph3: bad fid change, save 0x%x, curr 0x%x\n",
				savefid, data->currfid);
			return 1;
		}

		if (data->currvid != reqvid) {
			pr_err("ph3: failed vid transition\n, req 0x%x, curr 0x%x",
				reqvid, data->currvid);
			return 1;
		}
	}

	if (query_current_values_with_pending_wait(data))
		return 1;

	if (savereqvid != data->currvid) {
		pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
		return 1;
	}

	if (savefid != data->currfid) {
		pr_debug("ph3 failed, currfid changed 0x%x\n",
			data->currfid);
		return 1;
	}

	pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
		data->currfid, data->currvid);

	return 0;
}

static const struct x86_cpu_id powernow_k8_ids[] = {
	/* IO based frequency switching */
	{ X86_VENDOR_AMD, 0xf },
	{}
};
MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);

static void check_supported_cpu(void *_rc)
{
	u32 eax, ebx, ecx, edx;
	int *rc = _rc;

	*rc = -ENODEV;

	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);

	if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
		if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
		    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
			pr_info("Processor cpuid %x not supported\n", eax);
			return;
		}

		eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
		if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
			pr_info("No frequency change capabilities detected\n");
			return;
		}

		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
		if ((edx & P_STATE_TRANSITION_CAPABLE)
			!= P_STATE_TRANSITION_CAPABLE) {
			pr_info("Power state transitions not supported\n");
			return;
		}
		*rc = 0;
	}
}

static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
		u8 maxvid)
{
	unsigned int j;
	u8 lastfid = 0xff;

	for (j = 0; j < data->numps; j++) {
		if (pst[j].vid > LEAST_VID) {
			pr_err(FW_BUG "vid %d invalid : 0x%x\n", j,
				pst[j].vid);
			return -EINVAL;
		}
		if (pst[j].vid < data->rvo) {
			/* vid + rvo >= 0 */
			pr_err(FW_BUG "0 vid exceeded with pstate %d\n", j);
			return -ENODEV;
		}
		if (pst[j].vid < maxvid + data->rvo) {
			/* vid + rvo >= maxvid */
			pr_err(FW_BUG "maxvid exceeded with pstate %d\n", j);
			return -ENODEV;
		}
		if (pst[j].fid > MAX_FID) {
			pr_err(FW_BUG "maxfid exceeded with pstate %d\n", j);
			return -ENODEV;
		}
		if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
			/* Only first fid is allowed to be in "low" range */
			pr_err(FW_BUG "two low fids - %d : 0x%x\n", j,
				pst[j].fid);
			return -EINVAL;
		}
		if (pst[j].fid < lastfid)
			lastfid = pst[j].fid;
	}
	if (lastfid & 1) {
		pr_err(FW_BUG "lastfid invalid\n");
		return -EINVAL;
	}
	if (lastfid > LO_FID_TABLE_TOP)
		pr_info(FW_BUG "first fid not from lo freq table\n");

	return 0;
}

static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
		unsigned int entry)
{
	powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
}

static void print_basics(struct powernow_k8_data *data)
{
	int j;
	for (j = 0; j < data->numps; j++) {
		if (data->powernow_table[j].frequency !=
				CPUFREQ_ENTRY_INVALID) {
			pr_info("fid 0x%x (%d MHz), vid 0x%x\n",
				data->powernow_table[j].driver_data & 0xff,
				data->powernow_table[j].frequency/1000,
				data->powernow_table[j].driver_data >> 8);
		}
	}
	if (data->batps)
		pr_info("Only %d pstates on battery\n", data->batps);
}

static int fill_powernow_table(struct powernow_k8_data *data,
		struct pst_s *pst, u8 maxvid)
{
	struct cpufreq_frequency_table *powernow_table;
	unsigned int j;

	if (data->batps) {
		/* use ACPI support to get full speed on mains power */
		pr_warn("Only %d pstates usable (use ACPI driver for full range\n",
			data->batps);
		data->numps = data->batps;
	}

	for (j = 1; j < data->numps; j++) {
		if (pst[j-1].fid >= pst[j].fid) {
			pr_err("PST out of sequence\n");
			return -EINVAL;
		}
	}

	if (data->numps < 2) {
		pr_err("no p states to transition\n");
		return -ENODEV;
	}

	if (check_pst_table(data, pst, maxvid))
		return -EINVAL;

	powernow_table = kzalloc((sizeof(*powernow_table)
		* (data->numps + 1)), GFP_KERNEL);
	if (!powernow_table) {
		pr_err("powernow_table memory alloc failure\n");
		return -ENOMEM;
	}

	for (j = 0; j < data->numps; j++) {
		int freq;
		powernow_table[j].driver_data = pst[j].fid; /* lower 8 bits */
		powernow_table[j].driver_data |= (pst[j].vid << 8); /* upper 8 bits */
		freq = find_khz_freq_from_fid(pst[j].fid);
		powernow_table[j].frequency = freq;
	}
	powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
	powernow_table[data->numps].driver_data = 0;

	if (query_current_values_with_pending_wait(data)) {
		kfree(powernow_table);
		return -EIO;
	}

	pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
	data->powernow_table = powernow_table;
	if (cpumask_first(topology_core_cpumask(data->cpu)) == data->cpu)
		print_basics(data);

	for (j = 0; j < data->numps; j++)
		if ((pst[j].fid == data->currfid) &&
		    (pst[j].vid == data->currvid))
			return 0;

	pr_debug("currfid/vid do not match PST, ignoring\n");
	return 0;
}

/* Find and validate the PSB/PST table in BIOS. */
static int find_psb_table(struct powernow_k8_data *data)
{
	struct psb_s *psb;
	unsigned int i;
	u32 mvs;
	u8 maxvid;
	u32 cpst = 0;
	u32 thiscpuid;

	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
		/* Scan BIOS looking for the signature. */
		/* It can not be at ffff0 - it is too big. */

		psb = phys_to_virt(i);
		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
			continue;

		pr_debug("found PSB header at 0x%p\n", psb);

		pr_debug("table vers: 0x%x\n", psb->tableversion);
		if (psb->tableversion != PSB_VERSION_1_4) {
			pr_err(FW_BUG "PSB table is not v1.4\n");
			return -ENODEV;
		}

		pr_debug("flags: 0x%x\n", psb->flags1);
		if (psb->flags1) {
			pr_err(FW_BUG "unknown flags\n");
			return -ENODEV;
		}

		data->vstable = psb->vstable;
		pr_debug("voltage stabilization time: %d(*20us)\n",
				data->vstable);

		pr_debug("flags2: 0x%x\n", psb->flags2);
		data->rvo = psb->flags2 & 3;
		data->irt = ((psb->flags2) >> 2) & 3;
		mvs = ((psb->flags2) >> 4) & 3;
		data->vidmvs = 1 << mvs;
		data->batps = ((psb->flags2) >> 6) & 3;

		pr_debug("ramp voltage offset: %d\n", data->rvo);
		pr_debug("isochronous relief time: %d\n", data->irt);
		pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);

		pr_debug("numpst: 0x%x\n", psb->num_tables);
		cpst = psb->num_tables;
		if ((psb->cpuid == 0x00000fc0) ||
		    (psb->cpuid == 0x00000fe0)) {
			thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
			if ((thiscpuid == 0x00000fc0) ||
			    (thiscpuid == 0x00000fe0))
				cpst = 1;
		}
		if (cpst != 1) {
			pr_err(FW_BUG "numpst must be 1\n");
			return -ENODEV;
		}

		data->plllock = psb->plllocktime;
		pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
		pr_debug("maxfid: 0x%x\n", psb->maxfid);
		pr_debug("maxvid: 0x%x\n", psb->maxvid);
		maxvid = psb->maxvid;

		data->numps = psb->numps;
		pr_debug("numpstates: 0x%x\n", data->numps);
		return fill_powernow_table(data,
				(struct pst_s *)(psb+1), maxvid);
	}
	/*
	 * If you see this message, complain to BIOS manufacturer. If
	 * he tells you "we do not support Linux" or some similar
	 * nonsense, remember that Windows 2000 uses the same legacy
	 * mechanism that the old Linux PSB driver uses. Tell them it
	 * is broken with Windows 2000.
	 *
	 * The reference to the AMD documentation is chapter 9 in the
	 * BIOS and Kernel Developer's Guide, which is available on
	 * www.amd.com
	 */
	pr_err(FW_BUG "No PSB or ACPI _PSS objects\n");
	pr_err("Make sure that your BIOS is up to date and Cool'N'Quiet support is enabled in BIOS setup\n");
	return -ENODEV;
}

static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
		unsigned int index)
{
	u64 control;

	if (!data->acpi_data.state_count)
		return;

	control = data->acpi_data.states[index].control;
	data->irt = (control >> IRT_SHIFT) & IRT_MASK;
	data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
	data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
	data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
	data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
	data->vstable = (control >> VST_SHIFT) & VST_MASK;
}

static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
{
	struct cpufreq_frequency_table *powernow_table;
	int ret_val = -ENODEV;
	u64 control, status;

	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
		pr_debug("register performance failed: bad ACPI data\n");
		return -EIO;
	}

	/* verify the data contained in the ACPI structures */
	if (data->acpi_data.state_count <= 1) {
		pr_debug("No ACPI P-States\n");
		goto err_out;
	}

	control = data->acpi_data.control_register.space_id;
	status = data->acpi_data.status_register.space_id;

	if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
	    (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
		pr_debug("Invalid control/status registers (%llx - %llx)\n",
			control, status);
		goto err_out;
	}

	/* fill in data->powernow_table */
	powernow_table = kzalloc((sizeof(*powernow_table)
		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
	if (!powernow_table) {
		pr_debug("powernow_table memory alloc failure\n");
		goto err_out;
	}

	/* fill in data */
	data->numps = data->acpi_data.state_count;
	powernow_k8_acpi_pst_values(data, 0);

	ret_val = fill_powernow_table_fidvid(data, powernow_table);
	if (ret_val)
		goto err_out_mem;

	powernow_table[data->acpi_data.state_count].frequency =
		CPUFREQ_TABLE_END;
	data->powernow_table = powernow_table;

	if (cpumask_first(topology_core_cpumask(data->cpu)) == data->cpu)
		print_basics(data);

	/* notify BIOS that we exist */
	acpi_processor_notify_smm(THIS_MODULE);

	if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
		pr_err("unable to alloc powernow_k8_data cpumask\n");
		ret_val = -ENOMEM;
		goto err_out_mem;
	}

	return 0;

err_out_mem:
	kfree(powernow_table);

err_out:
	acpi_processor_unregister_performance(data->cpu);

	/* data->acpi_data.state_count informs us at ->exit()
	 * whether ACPI was used */
	data->acpi_data.state_count = 0;

	return ret_val;
}

static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
		struct cpufreq_frequency_table *powernow_table)
{
	int i;

	for (i = 0; i < data->acpi_data.state_count; i++) {
		u32 fid;
		u32 vid;
		u32 freq, index;
		u64 status, control;

		if (data->exttype) {
			status =  data->acpi_data.states[i].status;
			fid = status & EXT_FID_MASK;
			vid = (status >> VID_SHIFT) & EXT_VID_MASK;
		} else {
			control =  data->acpi_data.states[i].control;
			fid = control & FID_MASK;
			vid = (control >> VID_SHIFT) & VID_MASK;
		}

		pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);

		index = fid | (vid<<8);
		powernow_table[i].driver_data = index;

		freq = find_khz_freq_from_fid(fid);
		powernow_table[i].frequency = freq;

		/* verify frequency is OK */
		if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
			pr_debug("invalid freq %u kHz, ignoring\n", freq);
			invalidate_entry(powernow_table, i);
			continue;
		}

		/* verify voltage is OK -
		 * BIOSs are using "off" to indicate invalid */
		if (vid == VID_OFF) {
			pr_debug("invalid vid %u, ignoring\n", vid);
			invalidate_entry(powernow_table, i);
			continue;
		}

		if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
			pr_info("invalid freq entries %u kHz vs. %u kHz\n",
				freq, (unsigned int)
				(data->acpi_data.states[i].core_frequency
				 * 1000));
			invalidate_entry(powernow_table, i);
			continue;
		}
	}
	return 0;
}

static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
{
	if (data->acpi_data.state_count)
		acpi_processor_unregister_performance(data->cpu);
	free_cpumask_var(data->acpi_data.shared_cpu_map);
}

static int get_transition_latency(struct powernow_k8_data *data)
{
	int max_latency = 0;
	int i;
	for (i = 0; i < data->acpi_data.state_count; i++) {
		int cur_latency = data->acpi_data.states[i].transition_latency
			+ data->acpi_data.states[i].bus_master_latency;
		if (cur_latency > max_latency)
			max_latency = cur_latency;
	}
	if (max_latency == 0) {
		pr_err(FW_WARN "Invalid zero transition latency\n");
		max_latency = 1;
	}
	/* value in usecs, needs to be in nanoseconds */
	return 1000 * max_latency;
}

/* Take a frequency, and issue the fid/vid transition command */
static int transition_frequency_fidvid(struct powernow_k8_data *data,
		unsigned int index)
{
	struct cpufreq_policy *policy;
	u32 fid = 0;
	u32 vid = 0;
	int res;
	struct cpufreq_freqs freqs;

	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);

	/* fid/vid correctness check for k8 */
	/* fid are the lower 8 bits of the index we stored into
	 * the cpufreq frequency table in find_psb_table, vid
	 * are the upper 8 bits.
	 */
	fid = data->powernow_table[index].driver_data & 0xFF;
	vid = (data->powernow_table[index].driver_data & 0xFF00) >> 8;

	pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);

	if (query_current_values_with_pending_wait(data))
		return 1;

	if ((data->currvid == vid) && (data->currfid == fid)) {
		pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
			fid, vid);
		return 0;
	}

	pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
		smp_processor_id(), fid, vid);
	freqs.old = find_khz_freq_from_fid(data->currfid);
	freqs.new = find_khz_freq_from_fid(fid);

	policy = cpufreq_cpu_get(smp_processor_id());
	cpufreq_cpu_put(policy);

	cpufreq_freq_transition_begin(policy, &freqs);
	res = transition_fid_vid(data, fid, vid);
	cpufreq_freq_transition_end(policy, &freqs, res);

	return res;
}

struct powernowk8_target_arg {
	struct cpufreq_policy		*pol;
	unsigned			newstate;
};

static long powernowk8_target_fn(void *arg)
{
	struct powernowk8_target_arg *pta = arg;
	struct cpufreq_policy *pol = pta->pol;
	unsigned newstate = pta->newstate;
	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
	u32 checkfid;
	u32 checkvid;
	int ret;

	if (!data)
		return -EINVAL;

	checkfid = data->currfid;
	checkvid = data->currvid;

	if (pending_bit_stuck()) {
		pr_err("failing targ, change pending bit set\n");
		return -EIO;
	}

	pr_debug("targ: cpu %d, %d kHz, min %d, max %d\n",
		pol->cpu, data->powernow_table[newstate].frequency, pol->min,
		pol->max);

	if (query_current_values_with_pending_wait(data))
		return -EIO;

	pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
		data->currfid, data->currvid);

	if ((checkvid != data->currvid) ||
	    (checkfid != data->currfid)) {
		pr_info("error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
		       checkfid, data->currfid,
		       checkvid, data->currvid);
	}

	mutex_lock(&fidvid_mutex);

	powernow_k8_acpi_pst_values(data, newstate);

	ret = transition_frequency_fidvid(data, newstate);

	if (ret) {
		pr_err("transition frequency failed\n");
		mutex_unlock(&fidvid_mutex);
		return 1;
	}
	mutex_unlock(&fidvid_mutex);

	pol->cur = find_khz_freq_from_fid(data->currfid);

	return 0;
}

/* Driver entry point to switch to the target frequency */
static int powernowk8_target(struct cpufreq_policy *pol, unsigned index)
{
	struct powernowk8_target_arg pta = { .pol = pol, .newstate = index };

	return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
}

struct init_on_cpu {
	struct powernow_k8_data *data;
	int rc;
};

static void powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
{
	struct init_on_cpu *init_on_cpu = _init_on_cpu;

	if (pending_bit_stuck()) {
		pr_err("failing init, change pending bit set\n");
		init_on_cpu->rc = -ENODEV;
		return;
	}

	if (query_current_values_with_pending_wait(init_on_cpu->data)) {
		init_on_cpu->rc = -ENODEV;
		return;
	}

	fidvid_msr_init();

	init_on_cpu->rc = 0;
}

#define MISSING_PSS_MSG \
	FW_BUG "No compatible ACPI _PSS objects found.\n" \
	FW_BUG "First, make sure Cool'N'Quiet is enabled in the BIOS.\n" \
	FW_BUG "If that doesn't help, try upgrading your BIOS.\n"

/* per CPU init entry point to the driver */
static int powernowk8_cpu_init(struct cpufreq_policy *pol)
{
	struct powernow_k8_data *data;
	struct init_on_cpu init_on_cpu;
	int rc, cpu;

	smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
	if (rc)
		return -ENODEV;

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data) {
		pr_err("unable to alloc powernow_k8_data");
		return -ENOMEM;
	}

	data->cpu = pol->cpu;

	if (powernow_k8_cpu_init_acpi(data)) {
		/*
		 * Use the PSB BIOS structure. This is only available on
		 * an UP version, and is deprecated by AMD.
		 */
		if (num_online_cpus() != 1) {
			pr_err_once(MISSING_PSS_MSG);
			goto err_out;
		}
		if (pol->cpu != 0) {
			pr_err(FW_BUG "No ACPI _PSS objects for CPU other than CPU0. Complain to your BIOS vendor.\n");
			goto err_out;
		}
		rc = find_psb_table(data);
		if (rc)
			goto err_out;

		/* Take a crude guess here.
		 * That guess was in microseconds, so multiply with 1000 */
		pol->cpuinfo.transition_latency = (
			 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
			 ((1 << data->irt) * 30)) * 1000;
	} else /* ACPI _PSS objects available */
		pol->cpuinfo.transition_latency = get_transition_latency(data);

	/* only run on specific CPU from here on */
	init_on_cpu.data = data;
	smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
				 &init_on_cpu, 1);
	rc = init_on_cpu.rc;
	if (rc != 0)
		goto err_out_exit_acpi;

	cpumask_copy(pol->cpus, topology_core_cpumask(pol->cpu));
	data->available_cores = pol->cpus;

	/* min/max the cpu is capable of */
	if (cpufreq_table_validate_and_show(pol, data->powernow_table)) {
		pr_err(FW_BUG "invalid powernow_table\n");
		powernow_k8_cpu_exit_acpi(data);
		kfree(data->powernow_table);
		kfree(data);
		return -EINVAL;
	}

	pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
		data->currfid, data->currvid);

	/* Point all the CPUs in this policy to the same data */
	for_each_cpu(cpu, pol->cpus)
		per_cpu(powernow_data, cpu) = data;

	return 0;

err_out_exit_acpi:
	powernow_k8_cpu_exit_acpi(data);

err_out:
	kfree(data);
	return -ENODEV;
}

static int powernowk8_cpu_exit(struct cpufreq_policy *pol)
{
	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
	int cpu;

	if (!data)
		return -EINVAL;

	powernow_k8_cpu_exit_acpi(data);

	kfree(data->powernow_table);
	kfree(data);
	for_each_cpu(cpu, pol->cpus)
		per_cpu(powernow_data, cpu) = NULL;

	return 0;
}

static void query_values_on_cpu(void *_err)
{
	int *err = _err;
	struct powernow_k8_data *data = __this_cpu_read(powernow_data);

	*err = query_current_values_with_pending_wait(data);
}

static unsigned int powernowk8_get(unsigned int cpu)
{
	struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
	unsigned int khz = 0;
	int err;

	if (!data)
		return 0;

	smp_call_function_single(cpu, query_values_on_cpu, &err, true);
	if (err)
		goto out;

	khz = find_khz_freq_from_fid(data->currfid);


out:
	return khz;
}

static struct cpufreq_driver cpufreq_amd64_driver = {
	.flags		= CPUFREQ_ASYNC_NOTIFICATION,
	.verify		= cpufreq_generic_frequency_table_verify,
	.target_index	= powernowk8_target,
	.bios_limit	= acpi_processor_get_bios_limit,
	.init		= powernowk8_cpu_init,
	.exit		= powernowk8_cpu_exit,
	.get		= powernowk8_get,
	.name		= "powernow-k8",
	.attr		= cpufreq_generic_attr,
};

static void __request_acpi_cpufreq(void)
{
	const char drv[] = "acpi-cpufreq";
	const char *cur_drv;

	cur_drv = cpufreq_get_current_driver();
	if (!cur_drv)
		goto request;

	if (strncmp(cur_drv, drv, min_t(size_t, strlen(cur_drv), strlen(drv))))
		pr_warn("WTF driver: %s\n", cur_drv);

	return;

 request:
	pr_warn("This CPU is not supported anymore, using acpi-cpufreq instead.\n");
	request_module(drv);
}

/* driver entry point for init */
static int powernowk8_init(void)
{
	unsigned int i, supported_cpus = 0;
	int ret;

	if (static_cpu_has(X86_FEATURE_HW_PSTATE)) {
		__request_acpi_cpufreq();
		return -ENODEV;
	}

	if (!x86_match_cpu(powernow_k8_ids))
		return -ENODEV;

	get_online_cpus();
	for_each_online_cpu(i) {
		smp_call_function_single(i, check_supported_cpu, &ret, 1);
		if (!ret)
			supported_cpus++;
	}

	if (supported_cpus != num_online_cpus()) {
		put_online_cpus();
		return -ENODEV;
	}
	put_online_cpus();

	ret = cpufreq_register_driver(&cpufreq_amd64_driver);
	if (ret)
		return ret;

	pr_info("Found %d %s (%d cpu cores) (" VERSION ")\n",
		num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);

	return ret;
}

/* driver entry point for term */
static void __exit powernowk8_exit(void)
{
	pr_debug("exit\n");

	cpufreq_unregister_driver(&cpufreq_amd64_driver);
}

MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com>");
MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@amd.com>");
MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
MODULE_LICENSE("GPL");

late_initcall(powernowk8_init);
module_exit(powernowk8_exit);