efi.c 23 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
/*
 * efi.c - EFI subsystem
 *
 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
 *
 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
 * allowing the efivarfs to be mounted or the efivars module to be loaded.
 * The existance of /sys/firmware/efi may also be used by userspace to
 * determine that the system supports EFI.
 *
 * This file is released under the GPLv2.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/efi.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/io.h>
#include <linux/kexec.h>
#include <linux/platform_device.h>
#include <linux/random.h>
#include <linux/reboot.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/ucs2_string.h>
#include <linux/memblock.h>

#include <asm/early_ioremap.h>

struct efi __read_mostly efi = {
	.mps			= EFI_INVALID_TABLE_ADDR,
	.acpi			= EFI_INVALID_TABLE_ADDR,
	.acpi20			= EFI_INVALID_TABLE_ADDR,
	.smbios			= EFI_INVALID_TABLE_ADDR,
	.smbios3		= EFI_INVALID_TABLE_ADDR,
	.sal_systab		= EFI_INVALID_TABLE_ADDR,
	.boot_info		= EFI_INVALID_TABLE_ADDR,
	.hcdp			= EFI_INVALID_TABLE_ADDR,
	.uga			= EFI_INVALID_TABLE_ADDR,
	.uv_systab		= EFI_INVALID_TABLE_ADDR,
	.fw_vendor		= EFI_INVALID_TABLE_ADDR,
	.runtime		= EFI_INVALID_TABLE_ADDR,
	.config_table		= EFI_INVALID_TABLE_ADDR,
	.esrt			= EFI_INVALID_TABLE_ADDR,
	.properties_table	= EFI_INVALID_TABLE_ADDR,
	.mem_attr_table		= EFI_INVALID_TABLE_ADDR,
	.rng_seed		= EFI_INVALID_TABLE_ADDR,
};
EXPORT_SYMBOL(efi);

static unsigned long *efi_tables[] = {
	&efi.mps,
	&efi.acpi,
	&efi.acpi20,
	&efi.smbios,
	&efi.smbios3,
	&efi.sal_systab,
	&efi.boot_info,
	&efi.hcdp,
	&efi.uga,
	&efi.uv_systab,
	&efi.fw_vendor,
	&efi.runtime,
	&efi.config_table,
	&efi.esrt,
	&efi.properties_table,
	&efi.mem_attr_table,
};

static bool disable_runtime;
static int __init setup_noefi(char *arg)
{
	disable_runtime = true;
	return 0;
}
early_param("noefi", setup_noefi);

bool efi_runtime_disabled(void)
{
	return disable_runtime;
}

static int __init parse_efi_cmdline(char *str)
{
	if (!str) {
		pr_warn("need at least one option\n");
		return -EINVAL;
	}

	if (parse_option_str(str, "debug"))
		set_bit(EFI_DBG, &efi.flags);

	if (parse_option_str(str, "noruntime"))
		disable_runtime = true;

	return 0;
}
early_param("efi", parse_efi_cmdline);

struct kobject *efi_kobj;

/*
 * Let's not leave out systab information that snuck into
 * the efivars driver
 */
static ssize_t systab_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
	char *str = buf;

	if (!kobj || !buf)
		return -EINVAL;

	if (efi.mps != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "MPS=0x%lx\n", efi.mps);
	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
	/*
	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
	 * SMBIOS3 entry point shall be preferred, so we list it first to
	 * let applications stop parsing after the first match.
	 */
	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
	if (efi.hcdp != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "HCDP=0x%lx\n", efi.hcdp);
	if (efi.boot_info != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "BOOTINFO=0x%lx\n", efi.boot_info);
	if (efi.uga != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "UGA=0x%lx\n", efi.uga);

	return str - buf;
}

static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);

#define EFI_FIELD(var) efi.var

#define EFI_ATTR_SHOW(name) \
static ssize_t name##_show(struct kobject *kobj, \
				struct kobj_attribute *attr, char *buf) \
{ \
	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
}

EFI_ATTR_SHOW(fw_vendor);
EFI_ATTR_SHOW(runtime);
EFI_ATTR_SHOW(config_table);

static ssize_t fw_platform_size_show(struct kobject *kobj,
				     struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
}

static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
static struct kobj_attribute efi_attr_fw_platform_size =
	__ATTR_RO(fw_platform_size);

static struct attribute *efi_subsys_attrs[] = {
	&efi_attr_systab.attr,
	&efi_attr_fw_vendor.attr,
	&efi_attr_runtime.attr,
	&efi_attr_config_table.attr,
	&efi_attr_fw_platform_size.attr,
	NULL,
};

static umode_t efi_attr_is_visible(struct kobject *kobj,
				   struct attribute *attr, int n)
{
	if (attr == &efi_attr_fw_vendor.attr) {
		if (efi_enabled(EFI_PARAVIRT) ||
				efi.fw_vendor == EFI_INVALID_TABLE_ADDR)
			return 0;
	} else if (attr == &efi_attr_runtime.attr) {
		if (efi.runtime == EFI_INVALID_TABLE_ADDR)
			return 0;
	} else if (attr == &efi_attr_config_table.attr) {
		if (efi.config_table == EFI_INVALID_TABLE_ADDR)
			return 0;
	}

	return attr->mode;
}

static const struct attribute_group efi_subsys_attr_group = {
	.attrs = efi_subsys_attrs,
	.is_visible = efi_attr_is_visible,
};

static struct efivars generic_efivars;
static struct efivar_operations generic_ops;

static int generic_ops_register(void)
{
	generic_ops.get_variable = efi.get_variable;
	generic_ops.set_variable = efi.set_variable;
	generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
	generic_ops.get_next_variable = efi.get_next_variable;
	generic_ops.query_variable_store = efi_query_variable_store;

	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
}

static void generic_ops_unregister(void)
{
	efivars_unregister(&generic_efivars);
}

#if IS_ENABLED(CONFIG_ACPI)
#define EFIVAR_SSDT_NAME_MAX	16
static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
static int __init efivar_ssdt_setup(char *str)
{
	if (strlen(str) < sizeof(efivar_ssdt))
		memcpy(efivar_ssdt, str, strlen(str));
	else
		pr_warn("efivar_ssdt: name too long: %s\n", str);
	return 0;
}
__setup("efivar_ssdt=", efivar_ssdt_setup);

static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
				   unsigned long name_size, void *data)
{
	struct efivar_entry *entry;
	struct list_head *list = data;
	char utf8_name[EFIVAR_SSDT_NAME_MAX];
	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);

	ucs2_as_utf8(utf8_name, name, limit - 1);
	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
		return 0;

	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return 0;

	memcpy(entry->var.VariableName, name, name_size);
	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));

	efivar_entry_add(entry, list);

	return 0;
}

static __init int efivar_ssdt_load(void)
{
	LIST_HEAD(entries);
	struct efivar_entry *entry, *aux;
	unsigned long size;
	void *data;
	int ret;

	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);

	list_for_each_entry_safe(entry, aux, &entries, list) {
		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
			&entry->var.VendorGuid);

		list_del(&entry->list);

		ret = efivar_entry_size(entry, &size);
		if (ret) {
			pr_err("failed to get var size\n");
			goto free_entry;
		}

		data = kmalloc(size, GFP_KERNEL);
		if (!data) {
			ret = -ENOMEM;
			goto free_entry;
		}

		ret = efivar_entry_get(entry, NULL, &size, data);
		if (ret) {
			pr_err("failed to get var data\n");
			goto free_data;
		}

		ret = acpi_load_table(data);
		if (ret) {
			pr_err("failed to load table: %d\n", ret);
			goto free_data;
		}

		goto free_entry;

free_data:
		kfree(data);

free_entry:
		kfree(entry);
	}

	return ret;
}
#else
static inline int efivar_ssdt_load(void) { return 0; }
#endif

/*
 * We register the efi subsystem with the firmware subsystem and the
 * efivars subsystem with the efi subsystem, if the system was booted with
 * EFI.
 */
static int __init efisubsys_init(void)
{
	int error;

	if (!efi_enabled(EFI_BOOT))
		return 0;

	/* We register the efi directory at /sys/firmware/efi */
	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
	if (!efi_kobj) {
		pr_err("efi: Firmware registration failed.\n");
		return -ENOMEM;
	}

	error = generic_ops_register();
	if (error)
		goto err_put;

	if (efi_enabled(EFI_RUNTIME_SERVICES))
		efivar_ssdt_load();

	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
	if (error) {
		pr_err("efi: Sysfs attribute export failed with error %d.\n",
		       error);
		goto err_unregister;
	}

	error = efi_runtime_map_init(efi_kobj);
	if (error)
		goto err_remove_group;

	/* and the standard mountpoint for efivarfs */
	error = sysfs_create_mount_point(efi_kobj, "efivars");
	if (error) {
		pr_err("efivars: Subsystem registration failed.\n");
		goto err_remove_group;
	}

	return 0;

err_remove_group:
	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
err_unregister:
	generic_ops_unregister();
err_put:
	kobject_put(efi_kobj);
	return error;
}

subsys_initcall(efisubsys_init);

/*
 * Find the efi memory descriptor for a given physical address.  Given a
 * physical address, determine if it exists within an EFI Memory Map entry,
 * and if so, populate the supplied memory descriptor with the appropriate
 * data.
 */
int __init efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
{
	efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP)) {
		pr_err_once("EFI_MEMMAP is not enabled.\n");
		return -EINVAL;
	}

	if (!out_md) {
		pr_err_once("out_md is null.\n");
		return -EINVAL;
        }

	for_each_efi_memory_desc(md) {
		u64 size;
		u64 end;

		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
		    md->type != EFI_BOOT_SERVICES_DATA &&
		    md->type != EFI_RUNTIME_SERVICES_DATA) {
			continue;
		}

		size = md->num_pages << EFI_PAGE_SHIFT;
		end = md->phys_addr + size;
		if (phys_addr >= md->phys_addr && phys_addr < end) {
			memcpy(out_md, md, sizeof(*out_md));
			return 0;
		}
	}
	return -ENOENT;
}

/*
 * Calculate the highest address of an efi memory descriptor.
 */
u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
{
	u64 size = md->num_pages << EFI_PAGE_SHIFT;
	u64 end = md->phys_addr + size;
	return end;
}

void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}

/**
 * efi_mem_reserve - Reserve an EFI memory region
 * @addr: Physical address to reserve
 * @size: Size of reservation
 *
 * Mark a region as reserved from general kernel allocation and
 * prevent it being released by efi_free_boot_services().
 *
 * This function should be called drivers once they've parsed EFI
 * configuration tables to figure out where their data lives, e.g.
 * efi_esrt_init().
 */
void __init efi_mem_reserve(phys_addr_t addr, u64 size)
{
	if (!memblock_is_region_reserved(addr, size))
		memblock_reserve(addr, size);

	/*
	 * Some architectures (x86) reserve all boot services ranges
	 * until efi_free_boot_services() because of buggy firmware
	 * implementations. This means the above memblock_reserve() is
	 * superfluous on x86 and instead what it needs to do is
	 * ensure the @start, @size is not freed.
	 */
	efi_arch_mem_reserve(addr, size);
}

static __initdata efi_config_table_type_t common_tables[] = {
	{ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20},
	{ACPI_TABLE_GUID, "ACPI", &efi.acpi},
	{HCDP_TABLE_GUID, "HCDP", &efi.hcdp},
	{MPS_TABLE_GUID, "MPS", &efi.mps},
	{SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab},
	{SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios},
	{SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3},
	{UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga},
	{EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt},
	{EFI_PROPERTIES_TABLE_GUID, "PROP", &efi.properties_table},
	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID, "MEMATTR", &efi.mem_attr_table},
	{LINUX_EFI_RANDOM_SEED_TABLE_GUID, "RNG", &efi.rng_seed},
	{NULL_GUID, NULL, NULL},
};

static __init int match_config_table(efi_guid_t *guid,
				     unsigned long table,
				     efi_config_table_type_t *table_types)
{
	int i;

	if (table_types) {
		for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
			if (!efi_guidcmp(*guid, table_types[i].guid)) {
				*(table_types[i].ptr) = table;
				if (table_types[i].name)
					pr_cont(" %s=0x%lx ",
						table_types[i].name, table);
				return 1;
			}
		}
	}

	return 0;
}

int __init efi_config_parse_tables(void *config_tables, int count, int sz,
				   efi_config_table_type_t *arch_tables)
{
	void *tablep;
	int i;

	tablep = config_tables;
	pr_info("");
	for (i = 0; i < count; i++) {
		efi_guid_t guid;
		unsigned long table;

		if (efi_enabled(EFI_64BIT)) {
			u64 table64;
			guid = ((efi_config_table_64_t *)tablep)->guid;
			table64 = ((efi_config_table_64_t *)tablep)->table;
			table = table64;
#ifndef CONFIG_64BIT
			if (table64 >> 32) {
				pr_cont("\n");
				pr_err("Table located above 4GB, disabling EFI.\n");
				return -EINVAL;
			}
#endif
		} else {
			guid = ((efi_config_table_32_t *)tablep)->guid;
			table = ((efi_config_table_32_t *)tablep)->table;
		}

		if (!match_config_table(&guid, table, common_tables))
			match_config_table(&guid, table, arch_tables);

		tablep += sz;
	}
	pr_cont("\n");
	set_bit(EFI_CONFIG_TABLES, &efi.flags);

	if (efi.rng_seed != EFI_INVALID_TABLE_ADDR) {
		struct linux_efi_random_seed *seed;
		u32 size = 0;

		seed = early_memremap(efi.rng_seed, sizeof(*seed));
		if (seed != NULL) {
			size = seed->size;
			early_memunmap(seed, sizeof(*seed));
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
		if (size > 0) {
			seed = early_memremap(efi.rng_seed,
					      sizeof(*seed) + size);
			if (seed != NULL) {
				add_device_randomness(seed->bits, seed->size);
				early_memunmap(seed, sizeof(*seed) + size);
				pr_notice("seeding entropy pool\n");
			} else {
				pr_err("Could not map UEFI random seed!\n");
			}
		}
	}

	if (efi_enabled(EFI_MEMMAP))
		efi_memattr_init();

	/* Parse the EFI Properties table if it exists */
	if (efi.properties_table != EFI_INVALID_TABLE_ADDR) {
		efi_properties_table_t *tbl;

		tbl = early_memremap(efi.properties_table, sizeof(*tbl));
		if (tbl == NULL) {
			pr_err("Could not map Properties table!\n");
			return -ENOMEM;
		}

		if (tbl->memory_protection_attribute &
		    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
			set_bit(EFI_NX_PE_DATA, &efi.flags);

		early_memunmap(tbl, sizeof(*tbl));
	}

	return 0;
}

int __init efi_config_init(efi_config_table_type_t *arch_tables)
{
	void *config_tables;
	int sz, ret;

	if (efi_enabled(EFI_64BIT))
		sz = sizeof(efi_config_table_64_t);
	else
		sz = sizeof(efi_config_table_32_t);

	/*
	 * Let's see what config tables the firmware passed to us.
	 */
	config_tables = early_memremap(efi.systab->tables,
				       efi.systab->nr_tables * sz);
	if (config_tables == NULL) {
		pr_err("Could not map Configuration table!\n");
		return -ENOMEM;
	}

	ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz,
				      arch_tables);

	early_memunmap(config_tables, efi.systab->nr_tables * sz);
	return ret;
}

#ifdef CONFIG_EFI_VARS_MODULE
static int __init efi_load_efivars(void)
{
	struct platform_device *pdev;

	if (!efi_enabled(EFI_RUNTIME_SERVICES))
		return 0;

	pdev = platform_device_register_simple("efivars", 0, NULL, 0);
	return IS_ERR(pdev) ? PTR_ERR(pdev) : 0;
}
device_initcall(efi_load_efivars);
#endif

#ifdef CONFIG_EFI_PARAMS_FROM_FDT

#define UEFI_PARAM(name, prop, field)			   \
	{						   \
		{ name },				   \
		{ prop },				   \
		offsetof(struct efi_fdt_params, field),    \
		FIELD_SIZEOF(struct efi_fdt_params, field) \
	}

struct params {
	const char name[32];
	const char propname[32];
	int offset;
	int size;
};

static __initdata struct params fdt_params[] = {
	UEFI_PARAM("System Table", "linux,uefi-system-table", system_table),
	UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap),
	UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size),
	UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size),
	UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver)
};

static __initdata struct params xen_fdt_params[] = {
	UEFI_PARAM("System Table", "xen,uefi-system-table", system_table),
	UEFI_PARAM("MemMap Address", "xen,uefi-mmap-start", mmap),
	UEFI_PARAM("MemMap Size", "xen,uefi-mmap-size", mmap_size),
	UEFI_PARAM("MemMap Desc. Size", "xen,uefi-mmap-desc-size", desc_size),
	UEFI_PARAM("MemMap Desc. Version", "xen,uefi-mmap-desc-ver", desc_ver)
};

#define EFI_FDT_PARAMS_SIZE	ARRAY_SIZE(fdt_params)

static __initdata struct {
	const char *uname;
	const char *subnode;
	struct params *params;
} dt_params[] = {
	{ "hypervisor", "uefi", xen_fdt_params },
	{ "chosen", NULL, fdt_params },
};

struct param_info {
	int found;
	void *params;
	const char *missing;
};

static int __init __find_uefi_params(unsigned long node,
				     struct param_info *info,
				     struct params *params)
{
	const void *prop;
	void *dest;
	u64 val;
	int i, len;

	for (i = 0; i < EFI_FDT_PARAMS_SIZE; i++) {
		prop = of_get_flat_dt_prop(node, params[i].propname, &len);
		if (!prop) {
			info->missing = params[i].name;
			return 0;
		}

		dest = info->params + params[i].offset;
		info->found++;

		val = of_read_number(prop, len / sizeof(u32));

		if (params[i].size == sizeof(u32))
			*(u32 *)dest = val;
		else
			*(u64 *)dest = val;

		if (efi_enabled(EFI_DBG))
			pr_info("  %s: 0x%0*llx\n", params[i].name,
				params[i].size * 2, val);
	}

	return 1;
}

static int __init fdt_find_uefi_params(unsigned long node, const char *uname,
				       int depth, void *data)
{
	struct param_info *info = data;
	int i;

	for (i = 0; i < ARRAY_SIZE(dt_params); i++) {
		const char *subnode = dt_params[i].subnode;

		if (depth != 1 || strcmp(uname, dt_params[i].uname) != 0) {
			info->missing = dt_params[i].params[0].name;
			continue;
		}

		if (subnode) {
			int err = of_get_flat_dt_subnode_by_name(node, subnode);

			if (err < 0)
				return 0;

			node = err;
		}

		return __find_uefi_params(node, info, dt_params[i].params);
	}

	return 0;
}

int __init efi_get_fdt_params(struct efi_fdt_params *params)
{
	struct param_info info;
	int ret;

	pr_info("Getting EFI parameters from FDT:\n");

	info.found = 0;
	info.params = params;

	ret = of_scan_flat_dt(fdt_find_uefi_params, &info);
	if (!info.found)
		pr_info("UEFI not found.\n");
	else if (!ret)
		pr_err("Can't find '%s' in device tree!\n",
		       info.missing);

	return ret;
}
#endif /* CONFIG_EFI_PARAMS_FROM_FDT */

static __initdata char memory_type_name[][20] = {
	"Reserved",
	"Loader Code",
	"Loader Data",
	"Boot Code",
	"Boot Data",
	"Runtime Code",
	"Runtime Data",
	"Conventional Memory",
	"Unusable Memory",
	"ACPI Reclaim Memory",
	"ACPI Memory NVS",
	"Memory Mapped I/O",
	"MMIO Port Space",
	"PAL Code",
	"Persistent Memory",
};

char * __init efi_md_typeattr_format(char *buf, size_t size,
				     const efi_memory_desc_t *md)
{
	char *pos;
	int type_len;
	u64 attr;

	pos = buf;
	if (md->type >= ARRAY_SIZE(memory_type_name))
		type_len = snprintf(pos, size, "[type=%u", md->type);
	else
		type_len = snprintf(pos, size, "[%-*s",
				    (int)(sizeof(memory_type_name[0]) - 1),
				    memory_type_name[md->type]);
	if (type_len >= size)
		return buf;

	pos += type_len;
	size -= type_len;

	attr = md->attribute;
	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
		     EFI_MEMORY_NV |
		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
		snprintf(pos, size, "|attr=0x%016llx]",
			 (unsigned long long)attr);
	else
		snprintf(pos, size,
			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
			 attr & EFI_MEMORY_NV      ? "NV"  : "",
			 attr & EFI_MEMORY_XP      ? "XP"  : "",
			 attr & EFI_MEMORY_RP      ? "RP"  : "",
			 attr & EFI_MEMORY_WP      ? "WP"  : "",
			 attr & EFI_MEMORY_RO      ? "RO"  : "",
			 attr & EFI_MEMORY_UCE     ? "UCE" : "",
			 attr & EFI_MEMORY_WB      ? "WB"  : "",
			 attr & EFI_MEMORY_WT      ? "WT"  : "",
			 attr & EFI_MEMORY_WC      ? "WC"  : "",
			 attr & EFI_MEMORY_UC      ? "UC"  : "");
	return buf;
}

/*
 * IA64 has a funky EFI memory map that doesn't work the same way as
 * other architectures.
 */
#ifndef CONFIG_IA64
/*
 * efi_mem_attributes - lookup memmap attributes for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering
 * @phys_addr. Returns the EFI memory attributes if the region
 * was found in the memory map, 0 otherwise.
 */
u64 efi_mem_attributes(unsigned long phys_addr)
{
	efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return 0;

	for_each_efi_memory_desc(md) {
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
		    (md->num_pages << EFI_PAGE_SHIFT))))
			return md->attribute;
	}
	return 0;
}

/*
 * efi_mem_type - lookup memmap type for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering @phys_addr.
 * Returns the EFI memory type if the region was found in the memory
 * map, EFI_RESERVED_TYPE (zero) otherwise.
 */
int efi_mem_type(unsigned long phys_addr)
{
	const efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return -ENOTSUPP;

	for_each_efi_memory_desc(md) {
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
				  (md->num_pages << EFI_PAGE_SHIFT))))
			return md->type;
	}
	return -EINVAL;
}
#endif

int efi_status_to_err(efi_status_t status)
{
	int err;

	switch (status) {
	case EFI_SUCCESS:
		err = 0;
		break;
	case EFI_INVALID_PARAMETER:
		err = -EINVAL;
		break;
	case EFI_OUT_OF_RESOURCES:
		err = -ENOSPC;
		break;
	case EFI_DEVICE_ERROR:
		err = -EIO;
		break;
	case EFI_WRITE_PROTECTED:
		err = -EROFS;
		break;
	case EFI_SECURITY_VIOLATION:
		err = -EACCES;
		break;
	case EFI_NOT_FOUND:
		err = -ENOENT;
		break;
	case EFI_ABORTED:
		err = -EINTR;
		break;
	default:
		err = -EINVAL;
	}

	return err;
}

bool efi_is_table_address(unsigned long phys_addr)
{
	unsigned int i;

	if (phys_addr == EFI_INVALID_TABLE_ADDR)
		return false;

	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
		if (*(efi_tables[i]) == phys_addr)
			return true;

	return false;
}

#ifdef CONFIG_KEXEC
static int update_efi_random_seed(struct notifier_block *nb,
				  unsigned long code, void *unused)
{
	struct linux_efi_random_seed *seed;
	u32 size = 0;

	if (!kexec_in_progress)
		return NOTIFY_DONE;

	seed = memremap(efi.rng_seed, sizeof(*seed), MEMREMAP_WB);
	if (seed != NULL) {
		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
		memunmap(seed);
	} else {
		pr_err("Could not map UEFI random seed!\n");
	}
	if (size > 0) {
		seed = memremap(efi.rng_seed, sizeof(*seed) + size,
				MEMREMAP_WB);
		if (seed != NULL) {
			seed->size = size;
			get_random_bytes(seed->bits, seed->size);
			memunmap(seed);
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
	}
	return NOTIFY_DONE;
}

static struct notifier_block efi_random_seed_nb = {
	.notifier_call = update_efi_random_seed,
};

static int register_update_efi_random_seed(void)
{
	if (efi.rng_seed == EFI_INVALID_TABLE_ADDR)
		return 0;
	return register_reboot_notifier(&efi_random_seed_nb);
}
late_initcall(register_update_efi_random_seed);
#endif