fsl-flexspi.c 45.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
/*
 * Freescale FlexSPI driver.
 *
 * Copyright 2017 NXP
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/completion.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/mutex.h>
#include <linux/pm_qos.h>
#include <linux/pci.h>
#include <soc/imx8/sc/sci.h>
#include <linux/pm_runtime.h>

/* Board only enabled up to Quad mode, not Octal*/
#define FLEXSPI_QUIRK_QUAD_ONLY		(1 << 0)
/* Maximum clock limitation */
#define FLEXSPI_QUIRK_FREQ_LIMIT	(1 << 1)
/* Config DLL register */
#define FLEXSPI_QUIRK_CONFIG_DLL	(1 << 2)

/* runtime pm timeout */
#define FSL_FLEXSPI_RPM_TIMEOUT 50 /* 50ms */
#define FREQ_1MHz               1000000 /* 1MHz */

/* delay cell range */
#define FLEXSPI_DLL_MIN		75 /* 75ps */
#define FLEXSPI_DLL_MAX		225 /* 225ps */

/* The registers */
#define FLEXSPI_MCR0			0x00
#define FLEXSPI_MCR0_AHB_TIMEOUT_SHIFT	24
#define FLEXSPI_MCR0_AHB_TIMEOUT_MASK	(0xFF << FLEXSPI_MCR0_AHB_TIMEOUT_SHIFT)
#define FLEXSPI_MCR0_IP_TIMEOUT_SHIFT	16
#define FLEXSPI_MCR0_IP_TIMEOUT_MASK	(0xFF << FLEXSPI_MCR0_IP_TIMEOUT_SHIFT)
#define FLEXSPI_MCR0_LEARN_EN_SHIFT	15
#define FLEXSPI_MCR0_LEARN_EN_MASK	(1 << FLEXSPI_MCR0_LEARN_EN_SHIFT)
#define FLEXSPI_MCR0_SCRFRUN_EN_SHIFT	14
#define FLEXSPI_MCR0_SCRFRUN_EN_MASK	(1 << FLEXSPI_MCR0_SCRFRUN_EN_SHIFT)
#define FLEXSPI_MCR0_OCTCOMB_EN_SHIFT	13
#define FLEXSPI_MCR0_OCTCOMB_EN_MASK	(1 << FLEXSPI_MCR0_OCTCOMB_EN_SHIFT)
#define FLEXSPI_MCR0_DOZE_EN_SHIFT	12
#define FLEXSPI_MCR0_DOZE_EN_MASK	(1 << FLEXSPI_MCR0_DOZE_EN_SHIFT)
#define FLEXSPI_MCR0_HSEN_SHIFT		11
#define FLEXSPI_MCR0_HSEN_MASK		(1 << FLEXSPI_MCR0_HSEN_SHIFT)
#define FLEXSPI_MCR0_SERCLKDIV_SHIFT	8
#define FLEXSPI_MCR0_SERCLKDIV_MASK	(7 << FLEXSPI_MCR0_SERCLKDIV_SHIFT)
#define FLEXSPI_MCR0_ATDF_EN_SHIFT	7
#define FLEXSPI_MCR0_ATDF_EN_MASK	(1 << FLEXSPI_MCR0_ATDF_EN_SHIFT)
#define FLEXSPI_MCR0_ARDF_EN_SHIFT	6
#define FLEXSPI_MCR0_ARDF_EN_MASK	(1 << FLEXSPI_MCR0_ARDF_EN_SHIFT)
#define FLEXSPI_MCR0_RXCLKSRC_SHIFT	4
#define FLEXSPI_MCR0_RXCLKSRC_MASK	(3 << FLEXSPI_MCR0_RXCLKSRC_SHIFT)
#define FLEXSPI_MCR0_END_CFG_SHIFT	2
#define FLEXSPI_MCR0_END_CFG_MASK	(3 << FLEXSPI_MCR0_END_CFG_SHIFT)
#define FLEXSPI_MCR0_MDIS_SHIFT		1
#define FLEXSPI_MCR0_MDIS_MASK		(1 << FLEXSPI_MCR0_MDIS_SHIFT)
#define FLEXSPI_MCR0_SWRST_SHIFT	0
#define FLEXSPI_MCR0_SWRST_MASK		(1 << FLEXSPI_MCR0_SWRST_SHIFT)

#define FLEXSPI_MCR1			0x04
#define FLEXSPI_MCR1_SEQ_TIMEOUT_SHIFT	16
#define FLEXSPI_MCR1_SEQ_TIMEOUT_MASK	\
	(0xFFFF << FLEXSPI_MCR1_SEQ_TIMEOUT_SHIFT)
#define FLEXSPI_MCR1_AHB_TIMEOUT_SHIFT	0
#define FLEXSPI_MCR1_AHB_TIMEOUT_MASK	\
	(0xFFFF << FLEXSPI_MCR1_AHB_TIMEOUT_SHIFT)

#define FLEXSPI_MCR2			0x08
#define FLEXSPI_MCR2_IDLE_WAIT_SHIFT	24
#define FLEXSPI_MCR2_IDLE_WAIT_MASK	(0xFF << FLEXSPI_MCR2_IDLE_WAIT_SHIFT)
#define FLEXSPI_MCR2_SAMEFLASH_SHIFT	15
#define FLEXSPI_MCR2_SAMEFLASH_MASK	(1 << FLEXSPI_MCR2_SAMEFLASH_SHIFT)
#define FLEXSPI_MCR2_CLRLRPHS_SHIFT	14
#define FLEXSPI_MCR2_CLRLRPHS_MASK	(1 << FLEXSPI_MCR2_CLRLRPHS_SHIFT)
#define FLEXSPI_MCR2_ABRDATSZ_SHIFT	8
#define FLEXSPI_MCR2_ABRDATSZ_MASK	(1 << FLEXSPI_MCR2_ABRDATSZ_SHIFT)
#define FLEXSPI_MCR2_ABRLEARN_SHIFT	7
#define FLEXSPI_MCR2_ABRLEARN_MASK	(1 << FLEXSPI_MCR2_ABRLEARN_SHIFT)
#define FLEXSPI_MCR2_ABR_READ_SHIFT	6
#define FLEXSPI_MCR2_ABR_READ_MASK	(1 << FLEXSPI_MCR2_ABR_READ_SHIFT)
#define FLEXSPI_MCR2_ABRWRITE_SHIFT	5
#define FLEXSPI_MCR2_ABRWRITE_MASK	(1 << FLEXSPI_MCR2_ABRWRITE_SHIFT)
#define FLEXSPI_MCR2_ABRDUMMY_SHIFT	4
#define FLEXSPI_MCR2_ABRDUMMY_MASK	(1 << FLEXSPI_MCR2_ABRDUMMY_SHIFT)
#define FLEXSPI_MCR2_ABR_MODE_SHIFT	3
#define FLEXSPI_MCR2_ABR_MODE_MASK	(1 << FLEXSPI_MCR2_ABR_MODE_SHIFT)
#define FLEXSPI_MCR2_ABRCADDR_SHIFT	2
#define FLEXSPI_MCR2_ABRCADDR_MASK	(1 << FLEXSPI_MCR2_ABRCADDR_SHIFT)
#define FLEXSPI_MCR2_ABRRADDR_SHIFT	1
#define FLEXSPI_MCR2_ABRRADDR_MASK	(1 << FLEXSPI_MCR2_ABRRADDR_SHIFT)
#define FLEXSPI_MCR2_ABR_CMD_SHIFT	0
#define FLEXSPI_MCR2_ABR_CMD_MASK	(1 << FLEXSPI_MCR2_ABR_CMD_SHIFT)

#define FLEXSPI_AHBCR			0x0c
#define FLEXSPI_AHBCR_RDADDROPT_SHIFT	6
#define FLEXSPI_AHBCR_RDADDROPT_MASK	(1 << FLEXSPI_AHBCR_RDADDROPT_SHIFT)
#define FLEXSPI_AHBCR_PREF_EN_SHIFT	5
#define FLEXSPI_AHBCR_PREF_EN_MASK	(1 << FLEXSPI_AHBCR_PREF_EN_SHIFT)
#define FLEXSPI_AHBCR_BUFF_EN_SHIFT	4
#define FLEXSPI_AHBCR_BUFF_EN_MASK	(1 << FLEXSPI_AHBCR_BUFF_EN_SHIFT)
#define FLEXSPI_AHBCR_CACH_EN_SHIFT	3
#define FLEXSPI_AHBCR_CACH_EN_MASK	(1 << FLEXSPI_AHBCR_CACH_EN_SHIFT)
#define FLEXSPI_AHBCR_CLRTXBUF_SHIFT	2
#define FLEXSPI_AHBCR_CLRTXBUF_MASK	(1 << FLEXSPI_AHBCR_CLRTXBUF_SHIFT)
#define FLEXSPI_AHBCR_CLRRXBUF_SHIFT	1
#define FLEXSPI_AHBCR_CLRRXBUF_MASK	(1 << FLEXSPI_AHBCR_CLRRXBUF_SHIFT)
#define FLEXSPI_AHBCR_PAR_EN_SHIFT	0
#define FLEXSPI_AHBCR_PAR_EN_MASK	(1 << FLEXSPI_AHBCR_PAR_EN_SHIFT)

#define FLEXSPI_INTEN			0x10
#define FLEXSPI_INTEN_SCLKSBWR_SHIFT	9
#define FLEXSPI_INTEN_SCLKSBWR_MASK	(1 << FLEXSPI_INTEN_SCLKSBWR_SHIFT)
#define FLEXSPI_INTEN_SCLKSBRD_SHIFT	8
#define FLEXSPI_INTEN_SCLKSBRD_MASK	(1 << FLEXSPI_INTEN_SCLKSBRD_SHIFT)
#define FLEXSPI_INTEN_DATALRNFL_SHIFT	7
#define FLEXSPI_INTEN_DATALRNFL_MASK	(1 << FLEXSPI_INTEN_DATALRNFL_SHIFT)
#define FLEXSPI_INTEN_IPTXWE_SHIFT	6
#define FLEXSPI_INTEN_IPTXWE_MASK	(1 << FLEXSPI_INTEN_IPTXWE_SHIFT)
#define FLEXSPI_INTEN_IPRXWA_SHIFT	5
#define FLEXSPI_INTEN_IPRXWA_MASK	(1 << FLEXSPI_INTEN_IPRXWA_SHIFT)
#define FLEXSPI_INTEN_AHBCMDERR_SHIFT	4
#define FLEXSPI_INTEN_AHBCMDERR_MASK	(1 << FLEXSPI_INTEN_AHBCMDERR_SHIFT)
#define FLEXSPI_INTEN_IPCMDERR_SHIFT	3
#define FLEXSPI_INTEN_IPCMDERR_MASK	(1 << FLEXSPI_INTEN_IPCMDERR_SHIFT)
#define FLEXSPI_INTEN_AHBCMDGE_SHIFT	2
#define FLEXSPI_INTEN_AHBCMDGE_MASK	(1 << FLEXSPI_INTEN_AHBCMDGE_SHIFT)
#define FLEXSPI_INTEN_IPCMDGE_SHIFT	1
#define FLEXSPI_INTEN_IPCMDGE_MASK	(1 << FLEXSPI_INTEN_IPCMDGE_SHIFT)
#define FLEXSPI_INTEN_IPCMDDONE_SHIFT	0
#define FLEXSPI_INTEN_IPCMDDONE_MASK	(1 << FLEXSPI_INTEN_IPCMDDONE_SHIFT)

#define FLEXSPI_INTR			0x14
#define FLEXSPI_INTR_SCLKSBWR_SHIFT	9
#define FLEXSPI_INTR_SCLKSBWR_MASK	(1 << FLEXSPI_INTR_SCLKSBWR_SHIFT)
#define FLEXSPI_INTR_SCLKSBRD_SHIFT	8
#define FLEXSPI_INTR_SCLKSBRD_MASK	(1 << FLEXSPI_INTR_SCLKSBRD_SHIFT)
#define FLEXSPI_INTR_DATALRNFL_SHIFT	7
#define FLEXSPI_INTR_DATALRNFL_MASK	(1 << FLEXSPI_INTR_DATALRNFL_SHIFT)
#define FLEXSPI_INTR_IPTXWE_SHIFT	6
#define FLEXSPI_INTR_IPTXWE_MASK	(1 << FLEXSPI_INTR_IPTXWE_SHIFT)
#define FLEXSPI_INTR_IPRXWA_SHIFT	5
#define FLEXSPI_INTR_IPRXWA_MASK	(1 << FLEXSPI_INTR_IPRXWA_SHIFT)
#define FLEXSPI_INTR_AHBCMDERR_SHIFT	4
#define FLEXSPI_INTR_AHBCMDERR_MASK	(1 << FLEXSPI_INTR_AHBCMDERR_SHIFT)
#define FLEXSPI_INTR_IPCMDERR_SHIFT	3
#define FLEXSPI_INTR_IPCMDERR_MASK	(1 << FLEXSPI_INTR_IPCMDERR_SHIFT)
#define FLEXSPI_INTR_AHBCMDGE_SHIFT	2
#define FLEXSPI_INTR_AHBCMDGE_MASK	(1 << FLEXSPI_INTR_AHBCMDGE_SHIFT)
#define FLEXSPI_INTR_IPCMDGE_SHIFT	1
#define FLEXSPI_INTR_IPCMDGE_MASK	(1 << FLEXSPI_INTR_IPCMDGE_SHIFT)
#define FLEXSPI_INTR_IPCMDDONE_SHIFT	0
#define FLEXSPI_INTR_IPCMDDONE_MASK	(1 << FLEXSPI_INTR_IPCMDDONE_SHIFT)

#define FLEXSPI_LUTKEY			0x18
#define FLEXSPI_LUTKEY_VALUE		0x5AF05AF0

#define FLEXSPI_LCKCR			0x1C
#define FLEXSPI_LCKER_LOCK		0x1
#define FLEXSPI_LCKER_UNLOCK		0x2

#define FLEXSPI_BUFXCR_INVALID_MSTRID	0xe
#define FLEXSPI_AHBRX_BUF0CR0		0x20
#define FLEXSPI_AHBRX_BUF1CR0		0x24
#define FLEXSPI_AHBRX_BUF2CR0		0x28
#define FLEXSPI_AHBRX_BUF3CR0		0x2C
#define FLEXSPI_AHBRX_BUF4CR0		0x30
#define FLEXSPI_AHBRX_BUF5CR0		0x34
#define FLEXSPI_AHBRX_BUF6CR0		0x38
#define FLEXSPI_AHBRX_BUF7CR0		0x3C
#define FLEXSPI_AHBRXBUF0CR7_PREF_SHIFT	31
#define FLEXSPI_AHBRXBUF0CR7_PREF_MASK	(1 << FLEXSPI_AHBRXBUF0CR7_PREF_SHIFT)

#define FLEXSPI_AHBRX_BUF0CR1		0x40
#define FLEXSPI_AHBRX_BUF1CR1		0x44
#define FLEXSPI_AHBRX_BUF2CR1		0x48
#define FLEXSPI_AHBRX_BUF3CR1		0x4C
#define FLEXSPI_AHBRX_BUF4CR1		0x50
#define FLEXSPI_AHBRX_BUF5CR1		0x54
#define FLEXSPI_AHBRX_BUF6CR1		0x58
#define FLEXSPI_AHBRX_BUF7CR1		0x5C
#define FLEXSPI_BUFXCR1_MSID_SHIFT	0
#define FLEXSPI_BUFXCR1_MSID_MASK	(0xF << FLEXSPI_BUFXCR1_MSID_SHIFT)
#define FLEXSPI_BUFXCR1_PRIO_SHIFT	8
#define FLEXSPI_BUFXCR1_PRIO_MASK	(0x7 << FLEXSPI_BUFXCR1_PRIO_SHIFT)

#define FLEXSPI_FLSHA1CR0		0x60
#define FLEXSPI_FLSHA2CR0		0x64
#define FLEXSPI_FLSHB1CR0		0x68
#define FLEXSPI_FLSHB2CR0		0x6C
#define FLEXSPI_FLSHXCR0_SZ_SHIFT	10
#define FLEXSPI_FLSHXCR0_SZ_MASK	(0x3FFFFF << FLEXSPI_FLSHXCR0_SZ_SHIFT)

#define FLEXSPI_FLSHA1CR1		0x70
#define FLEXSPI_FLSHA2CR1		0x74
#define FLEXSPI_FLSHB1CR1		0x78
#define FLEXSPI_FLSHB2CR1		0x7C
#define FLEXSPI_FLSHXCR1_CSINTR_SHIFT	16
#define FLEXSPI_FLSHXCR1_CSINTR_MASK	\
	(0xFFFF << FLEXSPI_FLSHXCR1_CSINTR_SHIFT)
#define FLEXSPI_FLSHXCR1_CAS_SHIFT	11
#define FLEXSPI_FLSHXCR1_CAS_MASK	(0xF << FLEXSPI_FLSHXCR1_CAS_SHIFT)
#define FLEXSPI_FLSHXCR1_WA_SHIFT	10
#define FLEXSPI_FLSHXCR1_WA_MASK	(1 << FLEXSPI_FLSHXCR1_WA_SHIFT)
#define FLEXSPI_FLSHXCR1_TCSH_SHIFT	5
#define FLEXSPI_FLSHXCR1_TCSH_MASK	(0x1F << FLEXSPI_FLSHXCR1_TCSH_SHIFT)
#define FLEXSPI_FLSHXCR1_TCSS_SHIFT	0
#define FLEXSPI_FLSHXCR1_TCSS_MASK	(0x1F << FLEXSPI_FLSHXCR1_TCSS_SHIFT)

#define FLEXSPI_FLSHA1CR2		0x80
#define FLEXSPI_FLSHA2CR2		0x84
#define FLEXSPI_FLSHB1CR2		0x88
#define FLEXSPI_FLSHB2CR2		0x8C
#define FLEXSPI_FLSHXCR2_CLRINSP_SHIFT	24
#define FLEXSPI_FLSHXCR2_CLRINSP_MASK	(1 << FLEXSPI_FLSHXCR2_CLRINSP_SHIFT)
#define FLEXSPI_FLSHXCR2_AWRWAIT_SHIFT	16
#define FLEXSPI_FLSHXCR2_AWRWAIT_MASK	(0xFF << FLEXSPI_FLSHXCR2_AWRWAIT_SHIFT)
#define FLEXSPI_FLSHXCR2_AWRSEQN_SHIFT	13
#define FLEXSPI_FLSHXCR2_AWRSEQN_MASK	(0x7 << FLEXSPI_FLSHXCR2_AWRSEQN_SHIFT)
#define FLEXSPI_FLSHXCR2_AWRSEQI_SHIFT	8
#define FLEXSPI_FLSHXCR2_AWRSEQI_MASK	(0xF << FLEXSPI_FLSHXCR2_AWRSEQI_SHIFT)
#define FLEXSPI_FLSHXCR2_ARDSEQN_SHIFT	5
#define FLEXSPI_FLSHXCR2_ARDSEQN_MASK	(0x7 << FLEXSPI_FLSHXCR2_ARDSEQN_SHIFT)
#define FLEXSPI_FLSHXCR2_ARDSEQI_SHIFT	0
#define FLEXSPI_FLSHXCR2_ARDSEQI_MASK	(0xF << FLEXSPI_FLSHXCR2_ARDSEQI_SHIFT)

#define FLEXSPI_IPCR0			0xA0

#define FLEXSPI_IPCR1			0xA4
#define FLEXSPI_IPCR1_IPAREN_SHIFT	31
#define FLEXSPI_IPCR1_IPAREN_MASK	(1 << FLEXSPI_IPCR1_IPAREN_SHIFT)
#define FLEXSPI_IPCR1_SEQNUM_SHIFT	24
#define FLEXSPI_IPCR1_SEQNUM_MASK	(0xF << FLEXSPI_IPCR1_SEQNUM_SHIFT)
#define FLEXSPI_IPCR1_SEQID_SHIFT	16
#define FLEXSPI_IPCR1_SEQID_MASK	(0xF << FLEXSPI_IPCR1_SEQID_SHIFT)
#define FLEXSPI_IPCR1_IDATSZ_SHIFT	0
#define FLEXSPI_IPCR1_IDATSZ_MASK	(0xFFFF << FLEXSPI_IPCR1_IDATSZ_SHIFT)

#define FLEXSPI_IPCMD			0xB0
#define FLEXSPI_IPCMD_TRG_SHIFT		0
#define FLEXSPI_IPCMD_TRG_MASK		(1 << FLEXSPI_IPCMD_TRG_SHIFT)

#define FLEXSPI_DLPR			0xB4

#define FLEXSPI_IPRXFCR			0xB8
#define FLEXSPI_IPRXFCR_CLR_SHIFT	0
#define FLEXSPI_IPRXFCR_CLR_MASK	(1 << FLEXSPI_IPRXFCR_CLR_SHIFT)
#define FLEXSPI_IPRXFCR_DMA_EN_SHIFT	1
#define FLEXSPI_IPRXFCR_DMA_EN_MASK	(1 << FLEXSPI_IPRXFCR_DMA_EN_SHIFT)
#define FLEXSPI_IPRXFCR_WMRK_SHIFT	2
#define FLEXSPI_IPRXFCR_WMRK_MASK	(0x1F << FLEXSPI_IPRXFCR_WMRK_SHIFT)

#define FLEXSPI_IPTXFCR			0xBC
#define FLEXSPI_IPTXFCR_CLR_SHIFT	0
#define FLEXSPI_IPTXFCR_CLR_MASK	(1 << FLEXSPI_IPTXFCR_CLR_SHIFT)
#define FLEXSPI_IPTXFCR_DMA_EN_SHIFT	1
#define FLEXSPI_IPTXFCR_DMA_EN_MASK	(1 << FLEXSPI_IPTXFCR_DMA_EN_SHIFT)
#define FLEXSPI_IPTXFCR_WMRK_SHIFT	2
#define FLEXSPI_IPTXFCR_WMRK_MASK	(0x1F << FLEXSPI_IPTXFCR_WMRK_SHIFT)

#define FLEXSPI_DLLACR			0xC0
#define FLEXSPI_DLLACR_REFUPDINT_SHIFT	28
#define FLEXSPI_DLLACR_REFUPDINT_MASK	(0xF << FLEXSPI_DLLACR_REFUPDINT_SHIFT)
#define FLEXSPI_DLLACR_OVRDVAL_SHIFT	9
#define FLEXSPI_DLLACR_OVRDVAL_MASK	(0x3F << FLEXSPI_DLLACR_OVRDVAL_SHIFT)
#define FLEXSPI_DLLACR_OVRDEN_SHIFT	8
#define FLEXSPI_DLLACR_OVRDEN_MASK	(1 << FLEXSPI_DLLACR_OVRDEN_SHIFT)
#define FLEXSPI_DLLACR_SLVDLYTGT_SHIFT	3
#define FLEXSPI_DLLACR_SLVDLYTGT_MASK	(0xF << FLEXSPI_DLLACR_SLVDLYTGT_SHIFT)
#define FLEXSPI_DLLACR_DLLRST_SHIFT	1
#define FLEXSPI_DLLACR_DLLRST_MASK	(1 << FLEXSPI_DLLACR_DLLRST_SHIFT)
#define FLEXSPI_DLLACR_DLLEN_SHIFT	0
#define FLEXSPI_DLLACR_DLLEN_MASK	(1 << FLEXSPI_DLLACR_DLLEN_SHIFT)

#define FLEXSPI_DLLBCR			0xC4
#define FLEXSPI_DLLBCR_REFUPDINT_SHIFT	28
#define FLEXSPI_DLLBCR_REFUPDINT_MASK	(0xF << FLEXSPI_DLLBCR_REFUPDINT_SHIFT)
#define FLEXSPI_DLLBCR_OVRDVAL_SHIFT	9
#define FLEXSPI_DLLBCR_OVRDVAL_MASK	(0x3F << FLEXSPI_DLLBCR_OVRDVAL_SHIFT)
#define FLEXSPI_DLLBCR_OVRDEN_SHIFT	8
#define FLEXSPI_DLLBCR_OVRDEN_MASK	(1 << FLEXSPI_DLLBCR_OVRDEN_SHIFT)
#define FLEXSPI_DLLBCR_SLVDLYTGT_SHIFT	3
#define FLEXSPI_DLLBCR_SLVDLYTGT_MASK	(0xF << FLEXSPI_DLLBCR_SLVDLYTGT_SHIFT)
#define FLEXSPI_DLLBCR_DLLRST_SHIFT	1
#define FLEXSPI_DLLBCR_DLLRST_MASK	(1 << FLEXSPI_DLLBCR_DLLRST_SHIFT)
#define FLEXSPI_DLLBCR_DLLEN_SHIFT	0
#define FLEXSPI_DLLBCR_DLLEN_MASK	(1 << FLEXSPI_DLLBCR_DLLEN_SHIFT)

#define FLEXSPI_STS0			0xE0
#define FLEXSPI_STS0_DLPHA_SHIFT	9
#define FLEXSPI_STS0_DLPHA_MASK		(0x1F << FLEXSPI_STS0_DLPHA_SHIFT)
#define FLEXSPI_STS0_DLPHB_SHIFT	4
#define FLEXSPI_STS0_DLPHB_MASK		(0x1F << FLEXSPI_STS0_DLPHB_SHIFT)
#define FLEXSPI_STS0_CMD_SRC_SHIFT	2
#define FLEXSPI_STS0_CMD_SRC_MASK	(3 << FLEXSPI_STS0_CMD_SRC_SHIFT)
#define FLEXSPI_STS0_ARB_IDLE_SHIFT	1
#define FLEXSPI_STS0_ARB_IDLE_MASK	(1 << FLEXSPI_STS0_ARB_IDLE_SHIFT)
#define FLEXSPI_STS0_SEQ_IDLE_SHIFT	0
#define FLEXSPI_STS0_SEQ_IDLE_MASK	(1 << FLEXSPI_STS0_SEQ_IDLE_SHIFT)

#define FLEXSPI_STS1			0xE4
#define FLEXSPI_STS1_IP_ERRCD_SHIFT	24
#define FLEXSPI_STS1_IP_ERRCD_MASK	(0xF << FLEXSPI_STS1_IP_ERRCD_SHIFT)
#define FLEXSPI_STS1_IP_ERRID_SHIFT	16
#define FLEXSPI_STS1_IP_ERRID_MASK	(0xF << FLEXSPI_STS1_IP_ERRID_SHIFT)
#define FLEXSPI_STS1_AHB_ERRCD_SHIFT	8
#define FLEXSPI_STS1_AHB_ERRCD_MASK	(0xF << FLEXSPI_STS1_AHB_ERRCD_SHIFT)
#define FLEXSPI_STS1_AHB_ERRID_SHIFT	0
#define FLEXSPI_STS1_AHB_ERRID_MASK	(0xF << FLEXSPI_STS1_AHB_ERRID_SHIFT)

#define FLEXSPI_AHBSPNST		0xEC
#define FLEXSPI_AHBSPNST_DATLFT_SHIFT	16
#define FLEXSPI_AHBSPNST_DATLFT_MASK	\
	(0xFFFF << FLEXSPI_AHBSPNST_DATLFT_SHIFT)
#define FLEXSPI_AHBSPNST_BUFID_SHIFT	1
#define FLEXSPI_AHBSPNST_BUFID_MASK	(7 << FLEXSPI_AHBSPNST_BUFID_SHIFT)
#define FLEXSPI_AHBSPNST_ACTIVE_SHIFT	0
#define FLEXSPI_AHBSPNST_ACTIVE_MASK	(1 << FLEXSPI_AHBSPNST_ACTIVE_SHIFT)

#define FLEXSPI_IPRXFSTS		0xF0
#define FLEXSPI_IPRXFSTS_RDCNTR_SHIFT	16
#define FLEXSPI_IPRXFSTS_RDCNTR_MASK	\
	(0xFFFF << FLEXSPI_IPRXFSTS_RDCNTR_SHIFT)
#define FLEXSPI_IPRXFSTS_FILL_SHIFT	0
#define FLEXSPI_IPRXFSTS_FILL_MASK	(0xFF << FLEXSPI_IPRXFSTS_FILL_SHIFT)

#define FLEXSPI_IPTXFSTS		0xF4
#define FLEXSPI_IPTXFSTS_WRCNTR_SHIFT	16
#define FLEXSPI_IPTXFSTS_WRCNTR_MASK	\
	(0xFFFF << FLEXSPI_IPTXFSTS_WRCNTR_SHIFT)
#define FLEXSPI_IPTXFSTS_FILL_SHIFT	0
#define FLEXSPI_IPTXFSTS_FILL_MASK	(0xFF << FLEXSPI_IPTXFSTS_FILL_SHIFT)

#define FLEXSPI_RFDR			0x100
#define FLEXSPI_TFDR			0x180

#define FLEXSPI_LUT_BASE		0x200

/* register map end */

/*
 * The definition of the LUT register shows below:
 *
 *  ---------------------------------------------------
 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 *  ---------------------------------------------------
 */
#define OPRND0_SHIFT		0
#define PAD0_SHIFT		8
#define INSTR0_SHIFT		10
#define OPRND1_SHIFT		16

/* Instruction set for the LUT register. */

#define LUT_STOP		0x00
#define LUT_CMD		0x01
#define LUT_ADDR		0x02
#define LUT_CADDR_SDR		0x03
#define LUT_MODE		0x04
#define LUT_MODE2		0x05
#define LUT_MODE4		0x06
#define LUT_MODE8		0x07
#define LUT_FSL_WRITE		0x08
#define LUT_FSL_READ		0x09
#define LUT_LEARN_SDR		0x0A
#define LUT_DATSZ_SDR		0x0B
#define LUT_DUMMY		0x0C
#define LUT_DUMMY_RWDS_SDR	0x0D
#define LUT_JMP_ON_CS		0x1F
#define LUT_CMD_DDR		0x21
#define LUT_ADDR_DDR		0x22
#define LUT_CADDR_DDR		0x23
#define LUT_MODE_DDR		0x24
#define LUT_MODE2_DDR		0x25
#define LUT_MODE4_DDR		0x26
#define LUT_MODE8_DDR		0x27
#define LUT_WRITE_DDR		0x28
#define LUT_READ_DDR		0x29
#define LUT_LEARN_DDR		0x2A
#define LUT_DATSZ_DDR		0x2B
#define LUT_DUMMY_DDR		0x2C
#define LUT_DUMMY_RWDS_DDR	0x2D


/*
 * The PAD definitions for LUT register.
 *
 * The pad stands for the lines number of IO[0:3].
 * For example, the Quad read need four IO lines, so you should
 * set LUT_PAD4 which means we use four IO lines.
 */
#define LUT_PAD1		0
#define LUT_PAD2		1
#define LUT_PAD4		2
#define LUT_PAD8		3

/* Oprands for the LUT register. */
#define ADDR24BIT		0x18
#define ADDR32BIT		0x20

/* Macros for constructing the LUT register. */
#define LUT0(ins, pad, opr)						\
		(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
		((LUT_##ins) << INSTR0_SHIFT))

#define LUT1(ins, pad, opr)	(LUT0(ins, pad, opr) << OPRND1_SHIFT)

/* other macros for LUT register. */
#define FLEXSPI_LUT(x)          (FLEXSPI_LUT_BASE + (x) * 4)
#define FLEXSPI_LUT_NUM		64

/* SEQID -- we can have 16 seqids at most. */
#define SEQID_QUAD_READ		0
#define SEQID_WREN		1
#define SEQID_WRDI		2
#define SEQID_RDSR		3
#define SEQID_SE		4
#define SEQID_CHIP_ERASE	5
#define SEQID_PP		6
#define SEQID_RDID		7
#define SEQID_WRSR		8
#define SEQID_RDCR		9
#define SEQID_EN4B		10
#define SEQID_BRWR		11
#define SEQID_RD_EVCR		12
#define SEQID_WD_EVCR		13
#define SEQID_RD_SFDP		14

#define FLEXSPI_MIN_IOMAP	SZ_4M

enum fsl_flexspi_devtype {
	FSL_FLEXSPI_IMX8QM,
	FSL_FLEXSPI_IMX8QXP,
	FSL_FLEXSPI_IMX8MM,
};

struct fsl_flexspi_devtype_data {
	enum fsl_flexspi_devtype devtype;
	int rxfifo;
	int txfifo;
	int ahb_buf_size;
	int driver_data;
	int dllvalue;
};

static struct fsl_flexspi_devtype_data imx8qm_data = {
	.devtype = FSL_FLEXSPI_IMX8QM,
	.rxfifo = 1024,
	.txfifo = 1024,
	.ahb_buf_size = 2048,
	.driver_data = FLEXSPI_QUIRK_CONFIG_DLL,
	.dllvalue = 80, /* unit is 0.1 ns, this is 8ns */
};

static struct fsl_flexspi_devtype_data imx8qxp_data = {
	.devtype = FSL_FLEXSPI_IMX8QXP,
	.rxfifo = 1024,
	.txfifo = 1024,
	.ahb_buf_size = 2048,
	.driver_data = FLEXSPI_QUIRK_CONFIG_DLL,
	.dllvalue = 80, /* unit is 0.1 ns, this is 8ns */
};

static struct fsl_flexspi_devtype_data imx8mm_data = {
	.devtype = FSL_FLEXSPI_IMX8MM,
	.rxfifo = 1024,
	.txfifo = 1024,
	.ahb_buf_size = 2048,
	.driver_data = FLEXSPI_QUIRK_QUAD_ONLY | FLEXSPI_QUIRK_FREQ_LIMIT,
	.dllvalue = 0,
};

#define FSL_FLEXSPI_MAX_CHIP	4
struct fsl_flexspi {
	struct mtd_info mtd[FSL_FLEXSPI_MAX_CHIP];
	struct spi_nor nor[FSL_FLEXSPI_MAX_CHIP];
	void __iomem *iobase;
	void __iomem *ahb_addr;
	u32 memmap_phy;
	u32 memmap_offs;
	u32 memmap_len;
	struct clk *clk;
	struct device *dev;
	struct completion c;
	struct fsl_flexspi_devtype_data *devtype_data;
	u32 nor_size;
	u32 nor_num;
	u32 clk_rate;
	unsigned int chip_base_addr; /* We may support two chips. */
	bool has_second_chip;
	u32 ddr_smp;
	struct mutex lock;
	struct pm_qos_request pm_qos_req;

#define FLEXSPI_INITILIZED	(1 << 0)
	int flags;
};

static inline int fsl_flexspi_need_config_dll(struct fsl_flexspi *flex)
{
	return flex->devtype_data->driver_data & FLEXSPI_QUIRK_CONFIG_DLL;
}

static inline int fsl_flexspi_freq_limit(struct fsl_flexspi *flex)
{
	return flex->devtype_data->driver_data & FLEXSPI_QUIRK_FREQ_LIMIT;
}

static inline int fsl_flexspi_quad_only(struct fsl_flexspi *flex)
{
	return flex->devtype_data->driver_data & FLEXSPI_QUIRK_QUAD_ONLY;
}

static inline void fsl_flexspi_unlock_lut(struct fsl_flexspi *flex)
{
	writel(FLEXSPI_LUTKEY_VALUE, flex->iobase + FLEXSPI_LUTKEY);
	writel(FLEXSPI_LCKER_UNLOCK, flex->iobase + FLEXSPI_LCKCR);
}

static inline void fsl_flexspi_lock_lut(struct fsl_flexspi *flex)
{
	writel(FLEXSPI_LUTKEY_VALUE, flex->iobase + FLEXSPI_LUTKEY);
	writel(FLEXSPI_LCKER_LOCK, flex->iobase + FLEXSPI_LCKCR);
}

static irqreturn_t fsl_flexspi_irq_handler(int irq, void *dev_id)
{
	struct fsl_flexspi *flex = dev_id;
	u32 reg;

	reg = readl(flex->iobase + FLEXSPI_INTR);
	writel(FLEXSPI_INTR_IPCMDDONE_MASK, flex->iobase + FLEXSPI_INTR);
	if (reg & FLEXSPI_INTR_IPCMDDONE_MASK)
		complete(&flex->c);

	return IRQ_HANDLED;
}

static void fsl_flexspi_init_lut(struct fsl_flexspi *flex)
{
	void __iomem *base = flex->iobase;
	struct spi_nor *nor = &flex->nor[0];
	u8 addrlen = (nor->addr_width == 3) ? ADDR24BIT : ADDR32BIT;
	u32 lut_base;
	u8 op, dm;
	int i;

	fsl_flexspi_unlock_lut(flex);

	/* Clear all the LUT table */
	for (i = 0; i < FLEXSPI_LUT_NUM; i++)
		writel(0, base + FLEXSPI_LUT_BASE + i * 4);

	/* Quad Read and DDR Quad Read*/
	lut_base = SEQID_QUAD_READ * 4;
	op = nor->read_opcode;
	dm = nor->read_dummy;

	/* Normal Read as the default read setting*/
	if (op == SPINOR_OP_READ || op == 0) {
		writel(LUT0(CMD, PAD1, SPINOR_OP_READ) |
		       LUT1(ADDR, PAD1, addrlen),
		       base + FLEXSPI_LUT(lut_base));

		writel(LUT0(FSL_READ, PAD1, 0),
		       base + FLEXSPI_LUT(lut_base + 1));
	/* Octal DDR Read */
	} else if (op == SPINOR_OP_READ_1_8_8_DTR_4B) {
		writel(LUT0(CMD, PAD1, op) |
		       LUT1(ADDR_DDR, PAD1, addrlen),
		       base + FLEXSPI_LUT(lut_base));

		writel(LUT0(DUMMY_DDR, PAD8, dm * 2)
			| LUT1(READ_DDR, PAD8, 0),
			base + FLEXSPI_LUT(lut_base + 1));
	/* QUAD Fast Read */
	} else if (op == SPINOR_OP_READ_1_1_4 || op == SPINOR_OP_READ_1_1_4_4B) {
		/* read mode : 1-1-4 */
		writel(LUT0(CMD, PAD1, op) | LUT1(ADDR, PAD1, addrlen),
		       base + FLEXSPI_LUT(lut_base));

		writel(LUT0(DUMMY, PAD4, dm) |
		       LUT1(FSL_READ, PAD4, 0),
		       base + FLEXSPI_LUT(lut_base + 1));
	/* DDR Quad I/O Read 	 */
	} else if (op == SPINOR_OP_READ_1_4_4_DTR || op == SPINOR_OP_READ_1_4_4_DTR_4B) {
		/* read mode : 1-4-4, such as Spansion s25fl128s. */
		writel(LUT0(CMD, PAD1, op) |
		       LUT1(ADDR_DDR, PAD4, addrlen),
		       base + FLEXSPI_LUT(lut_base));

		writel(LUT0(DUMMY_DDR, PAD4, dm * 2) |
		       LUT1(READ_DDR, PAD4, 0),
		       base + FLEXSPI_LUT(lut_base + 1));

		writel(LUT0(JMP_ON_CS, PAD1, 0),
		       base + FLEXSPI_LUT(lut_base + 2));
	/* DDR Quad Fast Read 	 */
	} else if (op == SPINOR_OP_READ_1_1_4_DTR) {
		/* read mode : 1-1-4, such as Micron N25Q256A. */
		writel(LUT0(CMD, PAD1, op) |
		       LUT1(ADDR_DDR, PAD1, addrlen),
		       base + FLEXSPI_LUT(lut_base));

		writel(LUT0(DUMMY_DDR, PAD4, dm * 2) |
		       LUT1(READ_DDR, PAD4, 0),
		       base + FLEXSPI_LUT(lut_base + 1));

		writel(LUT0(JMP_ON_CS, PAD1, 0),
		       base + FLEXSPI_LUT(lut_base + 2));
	}

	/* Write enable */
	lut_base = SEQID_WREN * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + FLEXSPI_LUT(lut_base));

	/* Page Program */
	lut_base = SEQID_PP * 4;
	writel(LUT0(CMD, PAD1, nor->program_opcode) | LUT1(ADDR, PAD1, addrlen),
			base + FLEXSPI_LUT(lut_base));
	writel(LUT0(FSL_WRITE, PAD1, 0), base + FLEXSPI_LUT(lut_base + 1));

	/* Read Status */
	lut_base = SEQID_RDSR * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(FSL_READ, PAD1, 0x1),
			base + FLEXSPI_LUT(lut_base));

	/* Erase a sector */
	lut_base = SEQID_SE * 4;
	writel(LUT0(CMD, PAD1, nor->erase_opcode) | LUT1(ADDR, PAD1, addrlen),
			base + FLEXSPI_LUT(lut_base));

	/* Erase the whole chip */
	lut_base = SEQID_CHIP_ERASE * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
			base + FLEXSPI_LUT(lut_base));

	/* READ ID */
	lut_base = SEQID_RDID * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(FSL_READ, PAD1, 0x8),
			base + FLEXSPI_LUT(lut_base));

	/* Write Register */
	lut_base = SEQID_WRSR * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(FSL_WRITE, PAD1, 0x2),
			base + FLEXSPI_LUT(lut_base));

	/* Read Configuration Register */
	lut_base = SEQID_RDCR * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(FSL_READ, PAD1, 0x1),
			base + FLEXSPI_LUT(lut_base));

	/* Write disable */
	lut_base = SEQID_WRDI * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + FLEXSPI_LUT(lut_base));

	/* Enter 4 Byte Mode (Micron) */
	lut_base = SEQID_EN4B * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + FLEXSPI_LUT(lut_base));

	/* Enter 4 Byte Mode (Spansion) */
	lut_base = SEQID_BRWR * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + FLEXSPI_LUT(lut_base));

	/* Read EVCR register */
	lut_base = SEQID_RD_EVCR * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_RD_EVCR),
	       base + FLEXSPI_LUT(lut_base));

	/* Write EVCR register */
	lut_base = SEQID_WD_EVCR * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_WD_EVCR),
	       base + FLEXSPI_LUT(lut_base));

	/* Read SFDP*/
	lut_base = SEQID_RD_SFDP * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_RDSFDP) | LUT1(ADDR, PAD1, ADDR24BIT),
	       base + FLEXSPI_LUT(lut_base));
	writel(LUT0(DUMMY, PAD1, 8) | LUT1(FSL_READ, PAD1, 16),
	       base + FLEXSPI_LUT(lut_base + 1));
	fsl_flexspi_lock_lut(flex);
}

/* Get the SEQID for the command */
static int fsl_flexspi_get_seqid(struct fsl_flexspi *flex, u8 cmd)
{

	switch (cmd) {
	case SPINOR_OP_READ_1_1_4_DTR:
	case SPINOR_OP_READ_1_8_8_DTR_4B:
	case SPINOR_OP_READ_1_4_4_DTR:
	case SPINOR_OP_READ_1_4_4_DTR_4B:
	case SPINOR_OP_READ_1_1_4_4B:
	case SPINOR_OP_READ_1_1_4:
	case SPINOR_OP_READ_4B:
	case SPINOR_OP_READ:
		return SEQID_QUAD_READ;
	case SPINOR_OP_WREN:
		return SEQID_WREN;
	case SPINOR_OP_WRDI:
		return SEQID_WRDI;
	case SPINOR_OP_RDSR:
		return SEQID_RDSR;
	case SPINOR_OP_BE_4K:
	case SPINOR_OP_SE:
		return SEQID_SE;
	case SPINOR_OP_CHIP_ERASE:
		return SEQID_CHIP_ERASE;
	case SPINOR_OP_PP:
		return SEQID_PP;
	case SPINOR_OP_RDID:
		return SEQID_RDID;
	case SPINOR_OP_WRSR:
		return SEQID_WRSR;
	case SPINOR_OP_RDCR:
		return SEQID_RDCR;
	case SPINOR_OP_EN4B:
		return SEQID_EN4B;
	case SPINOR_OP_BRWR:
		return SEQID_BRWR;
	case SPINOR_OP_RD_EVCR:
		return SEQID_RD_EVCR;
	case SPINOR_OP_WD_EVCR:
		return SEQID_WD_EVCR;
	case SPINOR_OP_RDSFDP:
		return SEQID_RD_SFDP;
	default:
		dev_err(flex->dev, "Unsupported cmd 0x%.2x\n", cmd);
		break;
	}
	return -EINVAL;
}

static int
fsl_flexspi_runcmd(struct fsl_flexspi *flex, u8 cmd, unsigned int addr, int len)
{
	void __iomem *base = flex->iobase;
	int seqid;
	int seqnum = 0;
	u32 reg;
	int err;

	init_completion(&flex->c);
	dev_dbg(flex->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
			flex->chip_base_addr, addr, len, cmd);

	/* write address */
	writel(flex->chip_base_addr + addr, base + FLEXSPI_IPCR0);

	seqid = fsl_flexspi_get_seqid(flex, cmd);

	writel((seqnum << FLEXSPI_IPCR1_SEQNUM_SHIFT) |
			(seqid << FLEXSPI_IPCR1_SEQID_SHIFT) | len,
			base + FLEXSPI_IPCR1);

	/* wait till controller is idle */
	do {
		reg = readl(base + FLEXSPI_STS0);
		if ((reg & FLEXSPI_STS0_ARB_IDLE_MASK) &&
		    (reg & FLEXSPI_STS0_SEQ_IDLE_MASK))
			break;
		udelay(1);
	} while (1);

	/* trigger the LUT now */
	writel(1, base + FLEXSPI_IPCMD);

	/* Wait for the interrupt. */
	if (!wait_for_completion_timeout(&flex->c, msecs_to_jiffies(1000))) {
		dev_dbg(flex->dev,
			"cmd 0x%.2x timeout, addr@%.8x, Status0:0x%.8x, Status1:0x%.8x\n",
			cmd, addr, readl(base + FLEXSPI_STS0),
			readl(base + FLEXSPI_STS1));
		err = -ETIMEDOUT;
	} else {
		err = 0;
	}

	return err;
}

/* Read out the data from the FLEXSPI_RBDR buffer registers. */
static void fsl_flexspi_read_data(struct fsl_flexspi *flex, int len, u8 *rxbuf)
{
	/* u64 tmp; */
	int i = 0;
	int size;

	/* invalid RXFIFO first */
	writel(FLEXSPI_IPRXFCR_CLR_MASK, flex->iobase + FLEXSPI_IPRXFCR);
	while (len > 0) {

		size = len / 8;

		for (i = 0; i < size; ++i) {
			/* Wait for RXFIFO available*/
			while (!(readl(flex->iobase + FLEXSPI_INTR)
				 & FLEXSPI_INTR_IPRXWA_MASK))
				;

			/* read 64 bit data once */
			memcpy(rxbuf, flex->iobase + FLEXSPI_RFDR, 8);
			rxbuf += 8;

			/* move the FIFO pointer */
			writel(FLEXSPI_INTR_IPRXWA_MASK,
			       flex->iobase + FLEXSPI_INTR);
			len -= 8;
		}

		size = len % 8;

		if (size) {
			/* Wait for RXFIFO available*/
			while (!(readl(flex->iobase + FLEXSPI_INTR)
				 & FLEXSPI_INTR_IPRXWA_MASK))
				;

			memcpy(rxbuf, flex->iobase + FLEXSPI_RFDR, size);
			len -= size;
		}

		writel(FLEXSPI_INTR_IPRXWA_MASK,
		       flex->iobase + FLEXSPI_INTR);

		/* invalid the RXFIFO */
		writel(FLEXSPI_IPRXFCR_CLR_MASK,
		       flex->iobase + FLEXSPI_IPRXFCR);
	}
}

/*
 * If we have changed the content of the flash by writing or erasing,
 * we need to invalidate the AHB buffer. If we do not do so, we may read out
 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
 * domain at the same time.
 */
static inline void fsl_flexspi_invalid(struct fsl_flexspi *flex)
{
	u32 reg;

	reg = readl(flex->iobase + FLEXSPI_MCR0);
	writel(reg | FLEXSPI_MCR0_SWRST_MASK, flex->iobase + FLEXSPI_MCR0);

	/*
	 * The minimum delay : 1 AHB + 2 SFCK clocks.
	 * Delay 1 us is enough.
	 */
	while (readl(flex->iobase + FLEXSPI_MCR0) & FLEXSPI_MCR0_SWRST_MASK)
		;

}

static ssize_t fsl_flexspi_nor_write(struct fsl_flexspi *flex,
				     struct spi_nor *nor, u8 opcode,
				     unsigned int to, u32 *txbuf,
				     unsigned int count)
{
	int ret, i;
	int size;

	dev_dbg(flex->dev, "nor write to 0x%.8x:0x%.8x, len : %d\n",
		flex->chip_base_addr, to, count);

	/* clear the TX FIFO. */
	writel(FLEXSPI_IPTXFCR_CLR_MASK, flex->iobase + FLEXSPI_IPTXFCR);

	size = count / 8;
	for (i = 0; i < size; i++) {
		/* Wait for TXFIFO empty*/
		while (!(readl(flex->iobase + FLEXSPI_INTR)
			 & FLEXSPI_INTR_IPTXWE_MASK))
			;

		memcpy(flex->iobase + FLEXSPI_TFDR, txbuf, 8);
		txbuf += 2;
		writel(FLEXSPI_INTR_IPTXWE_MASK, flex->iobase + FLEXSPI_INTR);
	}

	size = count % 8;
	if (size) {
		/* Wait for TXFIFO empty*/
		while (!(readl(flex->iobase + FLEXSPI_INTR)
			 & FLEXSPI_INTR_IPTXWE_MASK))
			;

		memcpy(flex->iobase + FLEXSPI_TFDR, txbuf, size);
		writel(FLEXSPI_INTR_IPTXWE_MASK, flex->iobase + FLEXSPI_INTR);
	}

	/* Trigger it */
	ret = fsl_flexspi_runcmd(flex, opcode, to, count);

	if (ret == 0)
		return count;

	return ret;
}

static void fsl_flexspi_set_map_addr(struct fsl_flexspi *flex)
{
	int nor_size = flex->nor_size >> 10;
	void __iomem *base = flex->iobase;

	writel(nor_size, base + FLEXSPI_FLSHA1CR0);
	writel(nor_size * 2, base + FLEXSPI_FLSHA2CR0);
	writel(nor_size * 3, base + FLEXSPI_FLSHB1CR0);
	writel(nor_size * 4, base + FLEXSPI_FLSHB2CR0);
}

/*
 * There are two different ways to read out the data from the flash:
 *  the "IP Command Read" and the "AHB Command Read".
 *
 * The IC guy suggests we use the "AHB Command Read" which is faster
 * then the "IP Command Read". (What's more is that there is a bug in
 * the "IP Command Read" in the Vybrid.)
 *
 * After we set up the registers for the "AHB Command Read", we can use
 * the memcpy to read the data directly. A "missed" access to the buffer
 * causes the controller to clear the buffer, and use the sequence pointed
 * by the FLEXSPI_BFGENCR[SEQID] to initiate a read from the flash.
 */
static void fsl_flexspi_init_ahb_read(struct fsl_flexspi *flex)
{
	void __iomem *base = flex->iobase;
	struct spi_nor *nor = &flex->nor[0];
	int seqid;
	int i;

	/* AHB configuration for access buffer 0/1/2 .*/
	for (i = 0; i < 7; i++)
		writel(0, base + FLEXSPI_AHBRX_BUF0CR0 + 4 * i);
	/*
	 * Set ADATSZ with the maximum AHB buffer size to improve the
	 * read performance.
	 */
	writel((flex->devtype_data->ahb_buf_size / 8 |
		FLEXSPI_AHBRXBUF0CR7_PREF_MASK),
	       base + FLEXSPI_AHBRX_BUF7CR0);

	/* no start address alignment limitation */
	writel(FLEXSPI_AHBCR_RDADDROPT_MASK, base + FLEXSPI_AHBCR);

	/* Set the default lut sequence for AHB Read. */
	seqid = fsl_flexspi_get_seqid(flex, nor->read_opcode);

	writel(seqid, flex->iobase + FLEXSPI_FLSHA1CR2);
}

static void fsl_flexspi_ahb_pref_en(struct fsl_flexspi *flex)
{
	void __iomem *base = flex->iobase;
	u32 reg;

	reg = readl(base + FLEXSPI_AHBCR);
	writel(FLEXSPI_AHBCR_PREF_EN_MASK | reg, base + FLEXSPI_AHBCR);
}

/* This function was used to prepare and enable QSPI clock */
static int fsl_flexspi_clk_prep_enable(struct fsl_flexspi *flex)
{
	int ret;

	ret = clk_prepare_enable(flex->clk);
	if (ret) {
		dev_err(flex->dev, "failed to enable the clock\n");
		return ret;
	}

	return 0;
}

/* This function was used to disable and unprepare QSPI clock */
static void fsl_flexspi_clk_disable_unprep(struct fsl_flexspi *flex)
{
	clk_disable_unprepare(flex->clk);
}

static int fsl_flexspi_init_rpm(struct fsl_flexspi *flex)
{
	struct device *dev = flex->dev;

	pm_runtime_enable(dev);
	pm_runtime_set_autosuspend_delay(dev, FSL_FLEXSPI_RPM_TIMEOUT);
	pm_runtime_use_autosuspend(dev);

	return 0;
}

static void fsl_flexspi_config_dll(struct fsl_flexspi *flex, int rate)
{
	int tmp, dll;
	u32 reg;

	if (!fsl_flexspi_need_config_dll(flex))
		return;

	if (rate >= 100 * FREQ_1MHz) {
		writel(FLEXSPI_DLLACR_DLLEN_MASK | FLEXSPI_DLLACR_SLVDLYTGT_MASK,
			flex->iobase + FLEXSPI_DLLACR);
		writel(FLEXSPI_DLLBCR_DLLEN_MASK | FLEXSPI_DLLBCR_SLVDLYTGT_MASK,
			flex->iobase + FLEXSPI_DLLBCR);
	} else {
	/*
	 * If Serial root closk is lower than 100MHz, DLL is unable to lock on
	 * half cycle of serial root clock because the dealy cell number is limited
	 * in delay chain, Then DLL should be configured as following instead:
	 * OVRDEN = 0x01
	 * OVRDVAL=N; each dealy cell in DLL is about 75ps - 225ps.
	 * The delay of DLL delay chain ( N * delay_cell_delay) should be larger
	 * than device output data valid time (from SCK edge to data valid).
	 */

		/* 0.1 ns to ps */
		tmp = flex->devtype_data->dllvalue * 100;
		dll = tmp / FLEXSPI_DLL_MIN;

		if (dll >= FLEXSPI_DLLACR_OVRDVAL_MASK)
			dll = FLEXSPI_DLLACR_OVRDVAL_MASK;
		else if (dll * FLEXSPI_DLL_MIN < tmp)
			dll++;

	writel(FLEXSPI_DLLACR_OVRDEN_MASK | (dll << FLEXSPI_DLLACR_OVRDVAL_SHIFT) |
		FLEXSPI_DLLACR_DLLRST_MASK, flex->iobase + FLEXSPI_DLLACR);
	udelay(1);
	reg = readl(flex->iobase + FLEXSPI_DLLACR);
	writel(reg & ~FLEXSPI_DLLACR_DLLRST_MASK, flex->iobase + FLEXSPI_DLLACR);

	writel(FLEXSPI_DLLBCR_OVRDEN_MASK | (dll << FLEXSPI_DLLBCR_OVRDVAL_SHIFT) |
		FLEXSPI_DLLBCR_DLLRST_MASK, flex->iobase + FLEXSPI_DLLBCR);
	udelay(1);
	reg = readl(flex->iobase + FLEXSPI_DLLBCR);
	writel(reg & ~FLEXSPI_DLLBCR_DLLRST_MASK, flex->iobase + FLEXSPI_DLLBCR);
	}
}

/* We use this function to do some basic init for spi_nor_scan(). */
static int fsl_flexspi_nor_setup(struct fsl_flexspi *flex)
{
	void __iomem *base = flex->iobase;
	int ret;

	/* disable and unprepare clock to avoid glitch pass to controller */
	fsl_flexspi_clk_disable_unprep(flex);

	/* set rate to 24Mhz as safe clock rate to probe */
	ret = clk_set_rate(flex->clk, 24 * FREQ_1MHz);
	if (ret)
		return ret;

	ret = fsl_flexspi_clk_prep_enable(flex);
	if (ret)
		return ret;

	/* Reset the module */
	writel(FLEXSPI_MCR0_SWRST_MASK, base + FLEXSPI_MCR0);
	do {
		udelay(1);
	} while (0x1 & readl(base + FLEXSPI_MCR0));

	/* Disable the module */
	writel(FLEXSPI_MCR0_MDIS_MASK, base + FLEXSPI_MCR0);

	/* enable module */
	writel(FLEXSPI_MCR0_AHB_TIMEOUT_MASK | FLEXSPI_MCR0_IP_TIMEOUT_MASK |
	       FLEXSPI_MCR0_OCTCOMB_EN_MASK, base + FLEXSPI_MCR0);

	/* Reset the FLASHxCR2 */
	writel(0, base + FLEXSPI_FLSHA1CR2);
	writel(0, base + FLEXSPI_FLSHA2CR2);
	writel(0, base + FLEXSPI_FLSHB1CR2);
	writel(0, base + FLEXSPI_FLSHB2CR2);

	/* Init the LUT table. */
	fsl_flexspi_init_lut(flex);

	/* enable the interrupt */
	writel(FLEXSPI_INTEN_IPCMDDONE_MASK, flex->iobase + FLEXSPI_INTEN);

	return 0;
}

static int fsl_flexspi_nor_setup_last(struct fsl_flexspi *flex)
{
	unsigned long rate = flex->clk_rate;
	int ret;

	/* set to the assigned clock rate */
	fsl_flexspi_clk_disable_unprep(flex);

	/* clock limitation for i.MX8MM, no more than 160Mhz */
	if (fsl_flexspi_freq_limit(flex))
		rate = rate > 160 * FREQ_1MHz ? 160 * FREQ_1MHz : rate;

	ret = clk_set_rate(flex->clk, rate);
	if (ret)
		return ret;

	ret = fsl_flexspi_clk_prep_enable(flex);
	if (ret)
		return ret;

	/* setup the DLL value */
	fsl_flexspi_config_dll(flex, rate);

	/* Init the LUT table again. */
	fsl_flexspi_init_lut(flex);

	/* Init for AHB read */
	fsl_flexspi_init_ahb_read(flex);

	/* enable AHB prefetch */
	fsl_flexspi_ahb_pref_en(flex);

	return 0;
}

static void fsl_flexspi_set_base_addr(struct fsl_flexspi *flex,
				      struct spi_nor *nor)
{
	flex->chip_base_addr = flex->nor_size * (nor - flex->nor);
}

static int fsl_flexspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
				int len)
{
	int ret;
	struct fsl_flexspi *flex = nor->priv;

	ret = fsl_flexspi_runcmd(flex, opcode, 0, len);
	if (ret)
		return ret;

	fsl_flexspi_read_data(flex, len, buf);
	return 0;
}

static int fsl_flexspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
				 int len)
{
	struct fsl_flexspi *flex = nor->priv;
	int ret;

	if (!buf) {
		ret = fsl_flexspi_runcmd(flex, opcode, 0, 1);
		if (ret)
			return ret;

		if (opcode == SPINOR_OP_CHIP_ERASE)
			fsl_flexspi_invalid(flex);

	} else if (len > 0) {
		ret = fsl_flexspi_nor_write(flex, nor, opcode, 0,
					(u32 *)buf, len);
	} else {
		dev_err(flex->dev, "invalid cmd %d\n", opcode);
		ret = -EINVAL;
	}

	return ret;
}

static ssize_t fsl_flexspi_write(struct spi_nor *nor, loff_t to,
		size_t len, const u_char *buf)
{
	struct fsl_flexspi *flex = nor->priv;

	ssize_t ret = fsl_flexspi_nor_write(flex, nor, nor->program_opcode, to,
				(u32 *)buf, len);

	/* invalid the data in the AHB buffer. */
	fsl_flexspi_invalid(flex);
	return ret;
}

static ssize_t fsl_flexspi_read(struct spi_nor *nor, loff_t from,
		size_t len, u_char *buf)
{
	struct fsl_flexspi *flex = nor->priv;

	/* for read sfdp only */
	if (nor->read_opcode == SPINOR_OP_RDSFDP)
		fsl_flexspi_init_ahb_read(flex);

	/* if necessary,ioremap buffer before AHB read, */
	if (!flex->ahb_addr) {
		flex->memmap_offs = flex->chip_base_addr + from;
		flex->memmap_len = len > FLEXSPI_MIN_IOMAP ?
			len : FLEXSPI_MIN_IOMAP;

		flex->ahb_addr = ioremap_wc(
				flex->memmap_phy + flex->memmap_offs,
				flex->memmap_len);
		if (!flex->ahb_addr) {
			dev_err(flex->dev, "ioremap failed\n");
			return -ENOMEM;
		}
	/* ioremap if the data requested is out of range */
	} else if (flex->chip_base_addr + from < flex->memmap_offs
			|| flex->chip_base_addr + from + len >
			flex->memmap_offs + flex->memmap_len) {
		iounmap(flex->ahb_addr);

		flex->memmap_offs = flex->chip_base_addr + from;
		flex->memmap_len = len > FLEXSPI_MIN_IOMAP ?
			len : FLEXSPI_MIN_IOMAP;
		flex->ahb_addr = ioremap_wc(
				flex->memmap_phy + flex->memmap_offs,
				flex->memmap_len);
		if (!flex->ahb_addr) {
			dev_err(flex->dev, "ioremap failed\n");
			return -ENOMEM;
		}
	}

	memcpy(buf, flex->ahb_addr + flex->chip_base_addr + from
	       - flex->memmap_offs, len);

	return len;
}

static int fsl_flexspi_erase(struct spi_nor *nor, loff_t offs)
{
	struct fsl_flexspi *flex = nor->priv;
	int ret;

	dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
		nor->mtd.erasesize / 1024, flex->chip_base_addr, (u32)offs);

	ret = fsl_flexspi_runcmd(flex, nor->erase_opcode, offs, 0);
	if (ret)
		return ret;

	fsl_flexspi_invalid(flex);
	return 0;
}

static int fsl_flexspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_flexspi *flex = nor->priv;
	int ret;

	mutex_lock(&flex->lock);

	ret = pm_runtime_get_sync(flex->dev);
	if (ret < 0) {
		dev_err(flex->dev, "Failed to enable clock %d\n", __LINE__);
		goto err_mutex;
	}

	fsl_flexspi_set_base_addr(flex, nor);
	return 0;

err_mutex:
	mutex_unlock(&flex->lock);
	return ret;
}

static void fsl_flexspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_flexspi *flex = nor->priv;

	pm_runtime_mark_last_busy(flex->dev);
	pm_runtime_put_autosuspend(flex->dev);
	mutex_unlock(&flex->lock);
}

static const struct of_device_id fsl_flexspi_dt_ids[] = {
	{ .compatible = "fsl,imx8qm-flexspi", .data = (void *)&imx8qm_data, },
	{ .compatible = "fsl,imx8qxp-flexspi", .data = (void *)&imx8qxp_data, },
	{ .compatible = "fsl,imx8mm-flexspi", .data = (void *)&imx8mm_data, },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_flexspi_dt_ids);

static int fsl_flexspi_probe(struct platform_device *pdev)
{
	struct spi_nor_hwcaps hwcaps = {
		.mask = SNOR_HWCAPS_PP,
	};
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	struct fsl_flexspi *flex;
	struct resource *res;
	struct spi_nor *nor;
	struct mtd_info *mtd;
	int ret, i = 0;

	const struct of_device_id *of_id =
			of_match_device(fsl_flexspi_dt_ids, &pdev->dev);

	flex = devm_kzalloc(dev, sizeof(*flex), GFP_KERNEL);
	if (!flex)
		return -ENOMEM;

	flex->nor_num = of_get_child_count(dev->of_node);
	if (!flex->nor_num || flex->nor_num > 4)
		return -ENODEV;

	flex->dev = dev;
	flex->devtype_data = (struct fsl_flexspi_devtype_data *)of_id->data;
	platform_set_drvdata(pdev, flex);
	dev_set_drvdata(dev, flex);

	/* find the resources */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "FlexSPI");
	if (!res) {
		dev_err(dev, "FlexSPI get resource IORESOURCE_MEM failed\n");
		return -ENODEV;
	}

	flex->iobase = devm_ioremap_resource(dev, res);
	if (IS_ERR(flex->iobase))
		return PTR_ERR(flex->iobase);

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
					"FlexSPI-memory");
	if (!res) {
		dev_err(dev,
			"FlexSPI-memory get resource IORESOURCE_MEM failed\n");
		return -ENODEV;
	}

	if (!devm_request_mem_region(dev, res->start, resource_size(res),
				     res->name)) {
		dev_err(dev, "can't request region for resource %pR\n", res);
		return -EBUSY;
	}

	flex->memmap_phy = res->start;

	/* find the clocks */
	flex->clk = devm_clk_get(dev, "fspi");
	if (IS_ERR(flex->clk))
		return PTR_ERR(flex->clk);

	/* find ddrsmp value */
	ret = of_property_read_u32(dev->of_node, "ddrsmp",
				&flex->ddr_smp);
	if (ret)
		flex->ddr_smp = 0;

	/* enable the rpm*/
	ret = fsl_flexspi_init_rpm(flex);
	if (ret) {
		dev_err(dev, "can not enable the clock\n");
		goto clk_failed;
	}

	/* find the irq */
	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "failed to get the irq: %d\n", ret);
		goto rpm_failed;
	}

	ret = devm_request_irq(dev, ret,
			fsl_flexspi_irq_handler, 0, pdev->name, flex);
	if (ret) {
		dev_err(dev, "failed to request irq: %d\n", ret);
		goto rpm_failed;
	}

	/* enable the clock*/
	ret = pm_runtime_get_sync(flex->dev);
	if (ret < 0) {
		dev_err(flex->dev, "Failed to enable clock %d\n", __LINE__);
		goto rpm_failed;
	}


	ret = fsl_flexspi_nor_setup(flex);
	if (ret)
		goto rpm_failed;

	if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
		flex->has_second_chip = true;

	mutex_init(&flex->lock);

	/* iterate the subnodes. */
	for_each_available_child_of_node(dev->of_node, np) {
		u32 dummy = 0;

		/* skip the holes */
		if (!flex->has_second_chip)
			i *= 2;

		nor = &flex->nor[i];
		mtd = &nor->mtd;

		nor->dev = dev;
		spi_nor_set_flash_node(nor, np);
		nor->priv = flex;

		/* fill the hooks */
		nor->read_reg = fsl_flexspi_read_reg;
		nor->write_reg = fsl_flexspi_write_reg;
		nor->read = fsl_flexspi_read;
		nor->write = fsl_flexspi_write;
		nor->erase = fsl_flexspi_erase;

		nor->prepare = fsl_flexspi_prep;
		nor->unprepare = fsl_flexspi_unprep;

		ret = of_property_read_u32(np, "spi-max-frequency",
				&flex->clk_rate);
		if (ret < 0)
			goto mutex_failed;

		/* Can we enable the DDR Quad Read? */
		ret = of_property_read_u32(np, "spi-nor,ddr-quad-read-dummy",
					&dummy);
		if (!ret && dummy > 0)
			hwcaps.mask |= fsl_flexspi_quad_only(flex) ?
				    SNOR_HWCAPS_READ_1_4_4_DTR : SNOR_HWCAPS_READ_1_8_8_DTR;
		else
			hwcaps.mask |= SNOR_HWCAPS_READ;

		/* set the chip address for READID */
		fsl_flexspi_set_base_addr(flex, nor);


		ret = spi_nor_scan(nor, NULL, &hwcaps);
		if (ret)
			goto mutex_failed;

		ret = mtd_device_register(mtd, NULL, 0);
		if (ret)
			goto mutex_failed;

		/* Set the correct NOR size now. */
		if (flex->nor_size == 0) {
			flex->nor_size = mtd->size;

			/* Map the SPI NOR to accessiable address */
			fsl_flexspi_set_map_addr(flex);
		}

		/*
		 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
		 * may writes 265 bytes per time. The write is working in the
		 * unit of the TX FIFO, not in the unit of the SPI NOR's page
		 * size.
		 *
		 * So shrink the spi_nor->page_size if it is larger then the
		 * TX FIFO.
		 */
		if (nor->page_size > flex->devtype_data->txfifo)
			nor->page_size = flex->devtype_data->txfifo;

		i++;
	}

	/* finish the rest init. */
	ret = fsl_flexspi_nor_setup_last(flex);
	if (ret)
		goto last_init_failed;

	pm_runtime_mark_last_busy(flex->dev);
	pm_runtime_put_autosuspend(flex->dev);

	/* indicate the controller has been initialized */
	flex->flags |= FLEXSPI_INITILIZED;

	return 0;

last_init_failed:
	for (i = 0; i < flex->nor_num; i++) {
		/* skip the holes */
		if (!flex->has_second_chip)
			i *= 2;
		mtd_device_unregister(&flex->mtd[i]);
	}
mutex_failed:
	mutex_destroy(&flex->lock);
rpm_failed:
	pm_runtime_dont_use_autosuspend(flex->dev);
	pm_runtime_disable(flex->dev);
clk_failed:
	dev_err(dev, "Freescale FlexSPI probe failed\n");
	return ret;
}

static int fsl_flexspi_remove(struct platform_device *pdev)
{
	struct fsl_flexspi *flex = platform_get_drvdata(pdev);
	int i;

	for (i = 0; i < flex->nor_num; i++) {
		/* skip the holes */
		if (!flex->has_second_chip)
			i *= 2;
		mtd_device_unregister(&flex->nor[i].mtd);
	}

	/* disable the hardware */
	writel(FLEXSPI_MCR0_MDIS_MASK, flex->iobase + FLEXSPI_MCR0);

	pm_runtime_disable(flex->dev);

	mutex_destroy(&flex->lock);

	if (flex->ahb_addr)
		iounmap(flex->ahb_addr);

	return 0;
}

static int fsl_flexspi_initialized(struct fsl_flexspi *flex)
{
	return flex->flags & FLEXSPI_INITILIZED;
}

static int fsl_flexspi_need_reinit(struct fsl_flexspi *flex)
{
	/* we always use the controller in combination mode, so we check this */
	/* register bit to determine if the controller once lost power, such as */
	/* suspend/resume, and need to be re-init */

	return !(readl(flex->iobase + FLEXSPI_MCR0) & FLEXSPI_MCR0_OCTCOMB_EN_MASK);
}

int fsl_flexspi_runtime_suspend(struct device *dev)
{
	struct fsl_flexspi *flex = dev_get_drvdata(dev);

	fsl_flexspi_clk_disable_unprep(flex);

	return 0;
}

int fsl_flexspi_runtime_resume(struct device *dev)
{
	struct fsl_flexspi *flex = dev_get_drvdata(dev);

	fsl_flexspi_clk_prep_enable(flex);

	if (fsl_flexspi_initialized(flex) &&
			fsl_flexspi_need_reinit(flex)) {
		fsl_flexspi_nor_setup(flex);
		fsl_flexspi_set_map_addr(flex);
		fsl_flexspi_nor_setup_last(flex);
	}

	return 0;
}

static const struct dev_pm_ops fsl_flexspi_pm_ops = {
	SET_RUNTIME_PM_OPS(fsl_flexspi_runtime_suspend, fsl_flexspi_runtime_resume, NULL)
	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
};

static struct platform_driver fsl_flexspi_driver = {
	.driver = {
		.name	= "fsl-flexspi",
		.bus	= &platform_bus_type,
		.pm	= &fsl_flexspi_pm_ops,
		.of_match_table = fsl_flexspi_dt_ids,
	},
	.probe          = fsl_flexspi_probe,
	.remove		= fsl_flexspi_remove,
};
module_platform_driver(fsl_flexspi_driver);


MODULE_DESCRIPTION("Freescale FlexSPI Controller Driver");
MODULE_AUTHOR("Freescale Semiconductor Inc.");
MODULE_LICENSE("GPL v2");