intel-spi.c 18.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
/*
 * Intel PCH/PCU SPI flash driver.
 *
 * Copyright (C) 2016, Intel Corporation
 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/err.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/sizes.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/platform_data/intel-spi.h>

#include "intel-spi.h"

/* Offsets are from @ispi->base */
#define BFPREG				0x00

#define HSFSTS_CTL			0x04
#define HSFSTS_CTL_FSMIE		BIT(31)
#define HSFSTS_CTL_FDBC_SHIFT		24
#define HSFSTS_CTL_FDBC_MASK		(0x3f << HSFSTS_CTL_FDBC_SHIFT)

#define HSFSTS_CTL_FCYCLE_SHIFT		17
#define HSFSTS_CTL_FCYCLE_MASK		(0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
/* HW sequencer opcodes */
#define HSFSTS_CTL_FCYCLE_READ		(0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_WRITE		(0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_ERASE		(0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_ERASE_64K	(0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_RDID		(0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_WRSR		(0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_RDSR		(0x08 << HSFSTS_CTL_FCYCLE_SHIFT)

#define HSFSTS_CTL_FGO			BIT(16)
#define HSFSTS_CTL_FLOCKDN		BIT(15)
#define HSFSTS_CTL_FDV			BIT(14)
#define HSFSTS_CTL_SCIP			BIT(5)
#define HSFSTS_CTL_AEL			BIT(2)
#define HSFSTS_CTL_FCERR		BIT(1)
#define HSFSTS_CTL_FDONE		BIT(0)

#define FADDR				0x08
#define DLOCK				0x0c
#define FDATA(n)			(0x10 + ((n) * 4))

#define FRACC				0x50

#define FREG(n)				(0x54 + ((n) * 4))
#define FREG_BASE_MASK			0x3fff
#define FREG_LIMIT_SHIFT		16
#define FREG_LIMIT_MASK			(0x03fff << FREG_LIMIT_SHIFT)

/* Offset is from @ispi->pregs */
#define PR(n)				((n) * 4)
#define PR_WPE				BIT(31)
#define PR_LIMIT_SHIFT			16
#define PR_LIMIT_MASK			(0x3fff << PR_LIMIT_SHIFT)
#define PR_RPE				BIT(15)
#define PR_BASE_MASK			0x3fff
/* Last PR is GPR0 */
#define PR_NUM				(5 + 1)

/* Offsets are from @ispi->sregs */
#define SSFSTS_CTL			0x00
#define SSFSTS_CTL_FSMIE		BIT(23)
#define SSFSTS_CTL_DS			BIT(22)
#define SSFSTS_CTL_DBC_SHIFT		16
#define SSFSTS_CTL_SPOP			BIT(11)
#define SSFSTS_CTL_ACS			BIT(10)
#define SSFSTS_CTL_SCGO			BIT(9)
#define SSFSTS_CTL_COP_SHIFT		12
#define SSFSTS_CTL_FRS			BIT(7)
#define SSFSTS_CTL_DOFRS		BIT(6)
#define SSFSTS_CTL_AEL			BIT(4)
#define SSFSTS_CTL_FCERR		BIT(3)
#define SSFSTS_CTL_FDONE		BIT(2)
#define SSFSTS_CTL_SCIP			BIT(0)

#define PREOP_OPTYPE			0x04
#define OPMENU0				0x08
#define OPMENU1				0x0c

/* CPU specifics */
#define BYT_PR				0x74
#define BYT_SSFSTS_CTL			0x90
#define BYT_BCR				0xfc
#define BYT_BCR_WPD			BIT(0)
#define BYT_FREG_NUM			5

#define LPT_PR				0x74
#define LPT_SSFSTS_CTL			0x90
#define LPT_FREG_NUM			5

#define BXT_PR				0x84
#define BXT_SSFSTS_CTL			0xa0
#define BXT_FREG_NUM			12

#define INTEL_SPI_TIMEOUT		5000 /* ms */
#define INTEL_SPI_FIFO_SZ		64

/**
 * struct intel_spi - Driver private data
 * @dev: Device pointer
 * @info: Pointer to board specific info
 * @nor: SPI NOR layer structure
 * @base: Beginning of MMIO space
 * @pregs: Start of protection registers
 * @sregs: Start of software sequencer registers
 * @nregions: Maximum number of regions
 * @writeable: Is the chip writeable
 * @swseq: Use SW sequencer in register reads/writes
 * @erase_64k: 64k erase supported
 * @opcodes: Opcodes which are supported. This are programmed by BIOS
 *           before it locks down the controller.
 * @preopcodes: Preopcodes which are supported.
 */
struct intel_spi {
	struct device *dev;
	const struct intel_spi_boardinfo *info;
	struct spi_nor nor;
	void __iomem *base;
	void __iomem *pregs;
	void __iomem *sregs;
	size_t nregions;
	bool writeable;
	bool swseq;
	bool erase_64k;
	u8 opcodes[8];
	u8 preopcodes[2];
};

static bool writeable;
module_param(writeable, bool, 0);
MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");

static void intel_spi_dump_regs(struct intel_spi *ispi)
{
	u32 value;
	int i;

	dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));

	value = readl(ispi->base + HSFSTS_CTL);
	dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
	if (value & HSFSTS_CTL_FLOCKDN)
		dev_dbg(ispi->dev, "-> Locked\n");

	dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
	dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));

	for (i = 0; i < 16; i++)
		dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
			i, readl(ispi->base + FDATA(i)));

	dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));

	for (i = 0; i < ispi->nregions; i++)
		dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
			readl(ispi->base + FREG(i)));
	for (i = 0; i < PR_NUM; i++)
		dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
			readl(ispi->pregs + PR(i)));

	value = readl(ispi->sregs + SSFSTS_CTL);
	dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
	dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
		readl(ispi->sregs + PREOP_OPTYPE));
	dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", readl(ispi->sregs + OPMENU0));
	dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", readl(ispi->sregs + OPMENU1));

	if (ispi->info->type == INTEL_SPI_BYT)
		dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR));

	dev_dbg(ispi->dev, "Protected regions:\n");
	for (i = 0; i < PR_NUM; i++) {
		u32 base, limit;

		value = readl(ispi->pregs + PR(i));
		if (!(value & (PR_WPE | PR_RPE)))
			continue;

		limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
		base = value & PR_BASE_MASK;

		dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
			 i, base << 12, (limit << 12) | 0xfff,
			 value & PR_WPE ? 'W' : '.',
			 value & PR_RPE ? 'R' : '.');
	}

	dev_dbg(ispi->dev, "Flash regions:\n");
	for (i = 0; i < ispi->nregions; i++) {
		u32 region, base, limit;

		region = readl(ispi->base + FREG(i));
		base = region & FREG_BASE_MASK;
		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;

		if (base >= limit || (i > 0 && limit == 0))
			dev_dbg(ispi->dev, " %02d disabled\n", i);
		else
			dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
				 i, base << 12, (limit << 12) | 0xfff);
	}

	dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
		ispi->swseq ? 'S' : 'H');
}

/* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
{
	size_t bytes;
	int i = 0;

	if (size > INTEL_SPI_FIFO_SZ)
		return -EINVAL;

	while (size > 0) {
		bytes = min_t(size_t, size, 4);
		memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
		size -= bytes;
		buf += bytes;
		i++;
	}

	return 0;
}

/* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
				 size_t size)
{
	size_t bytes;
	int i = 0;

	if (size > INTEL_SPI_FIFO_SZ)
		return -EINVAL;

	while (size > 0) {
		bytes = min_t(size_t, size, 4);
		memcpy_toio(ispi->base + FDATA(i), buf, bytes);
		size -= bytes;
		buf += bytes;
		i++;
	}

	return 0;
}

static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
{
	u32 val;

	return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
				  !(val & HSFSTS_CTL_SCIP), 0,
				  INTEL_SPI_TIMEOUT * 1000);
}

static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
{
	u32 val;

	return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
				  !(val & SSFSTS_CTL_SCIP), 0,
				  INTEL_SPI_TIMEOUT * 1000);
}

static int intel_spi_init(struct intel_spi *ispi)
{
	u32 opmenu0, opmenu1, val;
	int i;

	switch (ispi->info->type) {
	case INTEL_SPI_BYT:
		ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
		ispi->pregs = ispi->base + BYT_PR;
		ispi->nregions = BYT_FREG_NUM;

		if (writeable) {
			/* Disable write protection */
			val = readl(ispi->base + BYT_BCR);
			if (!(val & BYT_BCR_WPD)) {
				val |= BYT_BCR_WPD;
				writel(val, ispi->base + BYT_BCR);
				val = readl(ispi->base + BYT_BCR);
			}

			ispi->writeable = !!(val & BYT_BCR_WPD);
		}

		break;

	case INTEL_SPI_LPT:
		ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
		ispi->pregs = ispi->base + LPT_PR;
		ispi->nregions = LPT_FREG_NUM;
		break;

	case INTEL_SPI_BXT:
		ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
		ispi->pregs = ispi->base + BXT_PR;
		ispi->nregions = BXT_FREG_NUM;
		ispi->erase_64k = true;
		break;

	default:
		return -EINVAL;
	}

	/* Disable #SMI generation */
	val = readl(ispi->base + HSFSTS_CTL);
	val &= ~HSFSTS_CTL_FSMIE;
	writel(val, ispi->base + HSFSTS_CTL);

	/*
	 * BIOS programs allowed opcodes and then locks down the register.
	 * So read back what opcodes it decided to support. That's the set
	 * we are going to support as well.
	 */
	opmenu0 = readl(ispi->sregs + OPMENU0);
	opmenu1 = readl(ispi->sregs + OPMENU1);

	/*
	 * Some controllers can only do basic operations using hardware
	 * sequencer. All other operations are supposed to be carried out
	 * using software sequencer. If we find that BIOS has programmed
	 * opcodes for the software sequencer we use that over the hardware
	 * sequencer.
	 */
	if (opmenu0 && opmenu1) {
		for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
			ispi->opcodes[i] = opmenu0 >> i * 8;
			ispi->opcodes[i + 4] = opmenu1 >> i * 8;
		}

		val = readl(ispi->sregs + PREOP_OPTYPE);
		ispi->preopcodes[0] = val;
		ispi->preopcodes[1] = val >> 8;

		/* Disable #SMI generation from SW sequencer */
		val = readl(ispi->sregs + SSFSTS_CTL);
		val &= ~SSFSTS_CTL_FSMIE;
		writel(val, ispi->sregs + SSFSTS_CTL);

		ispi->swseq = true;
	}

	intel_spi_dump_regs(ispi);

	return 0;
}

static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
		if (ispi->opcodes[i] == opcode)
			return i;
	return -EINVAL;
}

static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, u8 *buf,
			      int len)
{
	u32 val, status;
	int ret;

	val = readl(ispi->base + HSFSTS_CTL);
	val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);

	switch (opcode) {
	case SPINOR_OP_RDID:
		val |= HSFSTS_CTL_FCYCLE_RDID;
		break;
	case SPINOR_OP_WRSR:
		val |= HSFSTS_CTL_FCYCLE_WRSR;
		break;
	case SPINOR_OP_RDSR:
		val |= HSFSTS_CTL_FCYCLE_RDSR;
		break;
	default:
		return -EINVAL;
	}

	val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
	val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
	val |= HSFSTS_CTL_FGO;
	writel(val, ispi->base + HSFSTS_CTL);

	ret = intel_spi_wait_hw_busy(ispi);
	if (ret)
		return ret;

	status = readl(ispi->base + HSFSTS_CTL);
	if (status & HSFSTS_CTL_FCERR)
		return -EIO;
	else if (status & HSFSTS_CTL_AEL)
		return -EACCES;

	return 0;
}

static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, u8 *buf,
			      int len)
{
	u32 val, status;
	int ret;

	ret = intel_spi_opcode_index(ispi, opcode);
	if (ret < 0)
		return ret;

	val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
	val |= ret << SSFSTS_CTL_COP_SHIFT;
	val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
	val |= SSFSTS_CTL_SCGO;
	writel(val, ispi->sregs + SSFSTS_CTL);

	ret = intel_spi_wait_sw_busy(ispi);
	if (ret)
		return ret;

	status = readl(ispi->sregs + SSFSTS_CTL);
	if (status & SSFSTS_CTL_FCERR)
		return -EIO;
	else if (status & SSFSTS_CTL_AEL)
		return -EACCES;

	return 0;
}

static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
	struct intel_spi *ispi = nor->priv;
	int ret;

	/* Address of the first chip */
	writel(0, ispi->base + FADDR);

	if (ispi->swseq)
		ret = intel_spi_sw_cycle(ispi, opcode, buf, len);
	else
		ret = intel_spi_hw_cycle(ispi, opcode, buf, len);

	if (ret)
		return ret;

	return intel_spi_read_block(ispi, buf, len);
}

static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
	struct intel_spi *ispi = nor->priv;
	int ret;

	/*
	 * This is handled with atomic operation and preop code in Intel
	 * controller so skip it here now.
	 */
	if (opcode == SPINOR_OP_WREN)
		return 0;

	writel(0, ispi->base + FADDR);

	/* Write the value beforehand */
	ret = intel_spi_write_block(ispi, buf, len);
	if (ret)
		return ret;

	if (ispi->swseq)
		return intel_spi_sw_cycle(ispi, opcode, buf, len);
	return intel_spi_hw_cycle(ispi, opcode, buf, len);
}

static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len,
			      u_char *read_buf)
{
	struct intel_spi *ispi = nor->priv;
	size_t block_size, retlen = 0;
	u32 val, status;
	ssize_t ret;

	switch (nor->read_opcode) {
	case SPINOR_OP_READ:
	case SPINOR_OP_READ_FAST:
		break;
	default:
		return -EINVAL;
	}

	while (len > 0) {
		block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);

		writel(from, ispi->base + FADDR);

		val = readl(ispi->base + HSFSTS_CTL);
		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
		val |= HSFSTS_CTL_FCYCLE_READ;
		val |= HSFSTS_CTL_FGO;
		writel(val, ispi->base + HSFSTS_CTL);

		ret = intel_spi_wait_hw_busy(ispi);
		if (ret)
			return ret;

		status = readl(ispi->base + HSFSTS_CTL);
		if (status & HSFSTS_CTL_FCERR)
			ret = -EIO;
		else if (status & HSFSTS_CTL_AEL)
			ret = -EACCES;

		if (ret < 0) {
			dev_err(ispi->dev, "read error: %llx: %#x\n", from,
				status);
			return ret;
		}

		ret = intel_spi_read_block(ispi, read_buf, block_size);
		if (ret)
			return ret;

		len -= block_size;
		from += block_size;
		retlen += block_size;
		read_buf += block_size;
	}

	return retlen;
}

static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len,
			       const u_char *write_buf)
{
	struct intel_spi *ispi = nor->priv;
	size_t block_size, retlen = 0;
	u32 val, status;
	ssize_t ret;

	while (len > 0) {
		block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);

		writel(to, ispi->base + FADDR);

		val = readl(ispi->base + HSFSTS_CTL);
		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
		val |= HSFSTS_CTL_FCYCLE_WRITE;

		/* Write enable */
		if (ispi->preopcodes[1] == SPINOR_OP_WREN)
			val |= SSFSTS_CTL_SPOP;
		val |= SSFSTS_CTL_ACS;
		writel(val, ispi->base + HSFSTS_CTL);

		ret = intel_spi_write_block(ispi, write_buf, block_size);
		if (ret) {
			dev_err(ispi->dev, "failed to write block\n");
			return ret;
		}

		/* Start the write now */
		val = readl(ispi->base + HSFSTS_CTL);
		writel(val | HSFSTS_CTL_FGO, ispi->base + HSFSTS_CTL);

		ret = intel_spi_wait_hw_busy(ispi);
		if (ret) {
			dev_err(ispi->dev, "timeout\n");
			return ret;
		}

		status = readl(ispi->base + HSFSTS_CTL);
		if (status & HSFSTS_CTL_FCERR)
			ret = -EIO;
		else if (status & HSFSTS_CTL_AEL)
			ret = -EACCES;

		if (ret < 0) {
			dev_err(ispi->dev, "write error: %llx: %#x\n", to,
				status);
			return ret;
		}

		len -= block_size;
		to += block_size;
		retlen += block_size;
		write_buf += block_size;
	}

	return retlen;
}

static int intel_spi_erase(struct spi_nor *nor, loff_t offs)
{
	size_t erase_size, len = nor->mtd.erasesize;
	struct intel_spi *ispi = nor->priv;
	u32 val, status, cmd;
	int ret;

	/* If the hardware can do 64k erase use that when possible */
	if (len >= SZ_64K && ispi->erase_64k) {
		cmd = HSFSTS_CTL_FCYCLE_ERASE_64K;
		erase_size = SZ_64K;
	} else {
		cmd = HSFSTS_CTL_FCYCLE_ERASE;
		erase_size = SZ_4K;
	}

	while (len > 0) {
		writel(offs, ispi->base + FADDR);

		val = readl(ispi->base + HSFSTS_CTL);
		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
		val |= cmd;
		val |= HSFSTS_CTL_FGO;
		writel(val, ispi->base + HSFSTS_CTL);

		ret = intel_spi_wait_hw_busy(ispi);
		if (ret)
			return ret;

		status = readl(ispi->base + HSFSTS_CTL);
		if (status & HSFSTS_CTL_FCERR)
			return -EIO;
		else if (status & HSFSTS_CTL_AEL)
			return -EACCES;

		offs += erase_size;
		len -= erase_size;
	}

	return 0;
}

static bool intel_spi_is_protected(const struct intel_spi *ispi,
				   unsigned int base, unsigned int limit)
{
	int i;

	for (i = 0; i < PR_NUM; i++) {
		u32 pr_base, pr_limit, pr_value;

		pr_value = readl(ispi->pregs + PR(i));
		if (!(pr_value & (PR_WPE | PR_RPE)))
			continue;

		pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
		pr_base = pr_value & PR_BASE_MASK;

		if (pr_base >= base && pr_limit <= limit)
			return true;
	}

	return false;
}

/*
 * There will be a single partition holding all enabled flash regions. We
 * call this "BIOS".
 */
static void intel_spi_fill_partition(struct intel_spi *ispi,
				     struct mtd_partition *part)
{
	u64 end;
	int i;

	memset(part, 0, sizeof(*part));

	/* Start from the mandatory descriptor region */
	part->size = 4096;
	part->name = "BIOS";

	/*
	 * Now try to find where this partition ends based on the flash
	 * region registers.
	 */
	for (i = 1; i < ispi->nregions; i++) {
		u32 region, base, limit;

		region = readl(ispi->base + FREG(i));
		base = region & FREG_BASE_MASK;
		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;

		if (base >= limit || limit == 0)
			continue;

		/*
		 * If any of the regions have protection bits set, make the
		 * whole partition read-only to be on the safe side.
		 */
		if (intel_spi_is_protected(ispi, base, limit))
			ispi->writeable = false;

		end = (limit << 12) + 4096;
		if (end > part->size)
			part->size = end;
	}
}

struct intel_spi *intel_spi_probe(struct device *dev,
	struct resource *mem, const struct intel_spi_boardinfo *info)
{
	const struct spi_nor_hwcaps hwcaps = {
		.mask = SNOR_HWCAPS_READ |
			SNOR_HWCAPS_READ_FAST |
			SNOR_HWCAPS_PP,
	};
	struct mtd_partition part;
	struct intel_spi *ispi;
	int ret;

	if (!info || !mem)
		return ERR_PTR(-EINVAL);

	ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL);
	if (!ispi)
		return ERR_PTR(-ENOMEM);

	ispi->base = devm_ioremap_resource(dev, mem);
	if (IS_ERR(ispi->base))
		return ERR_CAST(ispi->base);

	ispi->dev = dev;
	ispi->info = info;
	ispi->writeable = info->writeable;

	ret = intel_spi_init(ispi);
	if (ret)
		return ERR_PTR(ret);

	ispi->nor.dev = ispi->dev;
	ispi->nor.priv = ispi;
	ispi->nor.read_reg = intel_spi_read_reg;
	ispi->nor.write_reg = intel_spi_write_reg;
	ispi->nor.read = intel_spi_read;
	ispi->nor.write = intel_spi_write;
	ispi->nor.erase = intel_spi_erase;

	ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps);
	if (ret) {
		dev_info(dev, "failed to locate the chip\n");
		return ERR_PTR(ret);
	}

	intel_spi_fill_partition(ispi, &part);

	/* Prevent writes if not explicitly enabled */
	if (!ispi->writeable || !writeable)
		ispi->nor.mtd.flags &= ~MTD_WRITEABLE;

	ret = mtd_device_parse_register(&ispi->nor.mtd, NULL, NULL, &part, 1);
	if (ret)
		return ERR_PTR(ret);

	return ispi;
}
EXPORT_SYMBOL_GPL(intel_spi_probe);

int intel_spi_remove(struct intel_spi *ispi)
{
	return mtd_device_unregister(&ispi->nor.mtd);
}
EXPORT_SYMBOL_GPL(intel_spi_remove);

MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
MODULE_LICENSE("GPL v2");