intel_scu_ipc.c 18.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
/*
 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
 *
 * (C) Copyright 2008-2010,2015 Intel Corporation
 * Author: Sreedhara DS (sreedhara.ds@intel.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 *
 * SCU running in ARC processor communicates with other entity running in IA
 * core through IPC mechanism which in turn messaging between IA core ad SCU.
 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
 * along with other APIs.
 */
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/pm.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/sfi.h>
#include <asm/intel-mid.h>
#include <asm/intel_scu_ipc.h>

/* IPC defines the following message types */
#define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
#define IPCMSG_BATTERY        0xEF /* Coulomb Counter Accumulator */
#define IPCMSG_FW_UPDATE      0xFE /* Firmware update */
#define IPCMSG_PCNTRL         0xFF /* Power controller unit read/write */
#define IPCMSG_FW_REVISION    0xF4 /* Get firmware revision */

/* Command id associated with message IPCMSG_PCNTRL */
#define IPC_CMD_PCNTRL_W      0 /* Register write */
#define IPC_CMD_PCNTRL_R      1 /* Register read */
#define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */

/*
 * IPC register summary
 *
 * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
 * To read or write information to the SCU, driver writes to IPC-1 memory
 * mapped registers. The following is the IPC mechanism
 *
 * 1. IA core cDMI interface claims this transaction and converts it to a
 *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
 *
 * 2. South Complex cDMI block receives this message and writes it to
 *    the IPC-1 register block, causing an interrupt to the SCU
 *
 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
 *    message handler is called within firmware.
 */

#define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
#define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
#define IPC_IOC	          0x100		/* IPC command register IOC bit */

#define PCI_DEVICE_ID_LINCROFT		0x082a
#define PCI_DEVICE_ID_PENWELL		0x080e
#define PCI_DEVICE_ID_CLOVERVIEW	0x08ea
#define PCI_DEVICE_ID_TANGIER		0x11a0

/* intel scu ipc driver data */
struct intel_scu_ipc_pdata_t {
	u32 i2c_base;
	u32 i2c_len;
	u8 irq_mode;
};

static const struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = {
	.i2c_base = 0xff12b000,
	.i2c_len = 0x10,
	.irq_mode = 0,
};

/* Penwell and Cloverview */
static const struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = {
	.i2c_base = 0xff12b000,
	.i2c_len = 0x10,
	.irq_mode = 1,
};

static const struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = {
	.i2c_base  = 0xff00d000,
	.i2c_len = 0x10,
	.irq_mode = 0,
};

struct intel_scu_ipc_dev {
	struct device *dev;
	void __iomem *ipc_base;
	void __iomem *i2c_base;
	struct completion cmd_complete;
	u8 irq_mode;
};

static struct intel_scu_ipc_dev  ipcdev; /* Only one for now */

/*
 * IPC Read Buffer (Read Only):
 * 16 byte buffer for receiving data from SCU, if IPC command
 * processing results in response data
 */
#define IPC_READ_BUFFER		0x90

#define IPC_I2C_CNTRL_ADDR	0
#define I2C_DATA_ADDR		0x04

static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */

/*
 * Send ipc command
 * Command Register (Write Only):
 * A write to this register results in an interrupt to the SCU core processor
 * Format:
 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
 */
static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
{
	if (scu->irq_mode) {
		reinit_completion(&scu->cmd_complete);
		writel(cmd | IPC_IOC, scu->ipc_base);
	}
	writel(cmd, scu->ipc_base);
}

/*
 * Write ipc data
 * IPC Write Buffer (Write Only):
 * 16-byte buffer for sending data associated with IPC command to
 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
 */
static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
{
	writel(data, scu->ipc_base + 0x80 + offset);
}

/*
 * Status Register (Read Only):
 * Driver will read this register to get the ready/busy status of the IPC
 * block and error status of the IPC command that was just processed by SCU
 * Format:
 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
 */
static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
{
	return __raw_readl(scu->ipc_base + 0x04);
}

/* Read ipc byte data */
static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
{
	return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
}

/* Read ipc u32 data */
static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
{
	return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
}

/* Wait till scu status is busy */
static inline int busy_loop(struct intel_scu_ipc_dev *scu)
{
	u32 status = ipc_read_status(scu);
	u32 loop_count = 100000;

	/* break if scu doesn't reset busy bit after huge retry */
	while ((status & BIT(0)) && --loop_count) {
		udelay(1); /* scu processing time is in few u secods */
		status = ipc_read_status(scu);
	}

	if (status & BIT(0)) {
		dev_err(scu->dev, "IPC timed out");
		return -ETIMEDOUT;
	}

	if (status & BIT(1))
		return -EIO;

	return 0;
}

/* Wait till ipc ioc interrupt is received or timeout in 3 HZ */
static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
{
	int status;

	if (!wait_for_completion_timeout(&scu->cmd_complete, 3 * HZ)) {
		dev_err(scu->dev, "IPC timed out\n");
		return -ETIMEDOUT;
	}

	status = ipc_read_status(scu);
	if (status & BIT(1))
		return -EIO;

	return 0;
}

static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
{
	return scu->irq_mode ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
}

/* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
{
	struct intel_scu_ipc_dev *scu = &ipcdev;
	int nc;
	u32 offset = 0;
	int err;
	u8 cbuf[IPC_WWBUF_SIZE];
	u32 *wbuf = (u32 *)&cbuf;

	memset(cbuf, 0, sizeof(cbuf));

	mutex_lock(&ipclock);

	if (scu->dev == NULL) {
		mutex_unlock(&ipclock);
		return -ENODEV;
	}

	for (nc = 0; nc < count; nc++, offset += 2) {
		cbuf[offset] = addr[nc];
		cbuf[offset + 1] = addr[nc] >> 8;
	}

	if (id == IPC_CMD_PCNTRL_R) {
		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
			ipc_data_writel(scu, wbuf[nc], offset);
		ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
	} else if (id == IPC_CMD_PCNTRL_W) {
		for (nc = 0; nc < count; nc++, offset += 1)
			cbuf[offset] = data[nc];
		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
			ipc_data_writel(scu, wbuf[nc], offset);
		ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
	} else if (id == IPC_CMD_PCNTRL_M) {
		cbuf[offset] = data[0];
		cbuf[offset + 1] = data[1];
		ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
		ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
	}

	err = intel_scu_ipc_check_status(scu);
	if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
		/* Workaround: values are read as 0 without memcpy_fromio */
		memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
		for (nc = 0; nc < count; nc++)
			data[nc] = ipc_data_readb(scu, nc);
	}
	mutex_unlock(&ipclock);
	return err;
}

/**
 *	intel_scu_ipc_ioread8		-	read a word via the SCU
 *	@addr: register on SCU
 *	@data: return pointer for read byte
 *
 *	Read a single register. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	This function may sleep.
 */
int intel_scu_ipc_ioread8(u16 addr, u8 *data)
{
	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
}
EXPORT_SYMBOL(intel_scu_ipc_ioread8);

/**
 *	intel_scu_ipc_ioread16		-	read a word via the SCU
 *	@addr: register on SCU
 *	@data: return pointer for read word
 *
 *	Read a register pair. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	This function may sleep.
 */
int intel_scu_ipc_ioread16(u16 addr, u16 *data)
{
	u16 x[2] = {addr, addr + 1};
	return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
}
EXPORT_SYMBOL(intel_scu_ipc_ioread16);

/**
 *	intel_scu_ipc_ioread32		-	read a dword via the SCU
 *	@addr: register on SCU
 *	@data: return pointer for read dword
 *
 *	Read four registers. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	This function may sleep.
 */
int intel_scu_ipc_ioread32(u16 addr, u32 *data)
{
	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
	return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
}
EXPORT_SYMBOL(intel_scu_ipc_ioread32);

/**
 *	intel_scu_ipc_iowrite8		-	write a byte via the SCU
 *	@addr: register on SCU
 *	@data: byte to write
 *
 *	Write a single register. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	This function may sleep.
 */
int intel_scu_ipc_iowrite8(u16 addr, u8 data)
{
	return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
}
EXPORT_SYMBOL(intel_scu_ipc_iowrite8);

/**
 *	intel_scu_ipc_iowrite16		-	write a word via the SCU
 *	@addr: register on SCU
 *	@data: word to write
 *
 *	Write two registers. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	This function may sleep.
 */
int intel_scu_ipc_iowrite16(u16 addr, u16 data)
{
	u16 x[2] = {addr, addr + 1};
	return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
}
EXPORT_SYMBOL(intel_scu_ipc_iowrite16);

/**
 *	intel_scu_ipc_iowrite32		-	write a dword via the SCU
 *	@addr: register on SCU
 *	@data: dword to write
 *
 *	Write four registers. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	This function may sleep.
 */
int intel_scu_ipc_iowrite32(u16 addr, u32 data)
{
	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
	return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
}
EXPORT_SYMBOL(intel_scu_ipc_iowrite32);

/**
 *	intel_scu_ipc_readvv		-	read a set of registers
 *	@addr: register list
 *	@data: bytes to return
 *	@len: length of array
 *
 *	Read registers. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	The largest array length permitted by the hardware is 5 items.
 *
 *	This function may sleep.
 */
int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
{
	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
}
EXPORT_SYMBOL(intel_scu_ipc_readv);

/**
 *	intel_scu_ipc_writev		-	write a set of registers
 *	@addr: register list
 *	@data: bytes to write
 *	@len: length of array
 *
 *	Write registers. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	The largest array length permitted by the hardware is 5 items.
 *
 *	This function may sleep.
 *
 */
int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
{
	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
}
EXPORT_SYMBOL(intel_scu_ipc_writev);

/**
 *	intel_scu_ipc_update_register	-	r/m/w a register
 *	@addr: register address
 *	@bits: bits to update
 *	@mask: mask of bits to update
 *
 *	Read-modify-write power control unit register. The first data argument
 *	must be register value and second is mask value
 *	mask is a bitmap that indicates which bits to update.
 *	0 = masked. Don't modify this bit, 1 = modify this bit.
 *	returns 0 on success or an error code.
 *
 *	This function may sleep. Locking between SCU accesses is handled
 *	for the caller.
 */
int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
{
	u8 data[2] = { bits, mask };
	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
}
EXPORT_SYMBOL(intel_scu_ipc_update_register);

/**
 *	intel_scu_ipc_simple_command	-	send a simple command
 *	@cmd: command
 *	@sub: sub type
 *
 *	Issue a simple command to the SCU. Do not use this interface if
 *	you must then access data as any data values may be overwritten
 *	by another SCU access by the time this function returns.
 *
 *	This function may sleep. Locking for SCU accesses is handled for
 *	the caller.
 */
int intel_scu_ipc_simple_command(int cmd, int sub)
{
	struct intel_scu_ipc_dev *scu = &ipcdev;
	int err;

	mutex_lock(&ipclock);
	if (scu->dev == NULL) {
		mutex_unlock(&ipclock);
		return -ENODEV;
	}
	ipc_command(scu, sub << 12 | cmd);
	err = intel_scu_ipc_check_status(scu);
	mutex_unlock(&ipclock);
	return err;
}
EXPORT_SYMBOL(intel_scu_ipc_simple_command);

/**
 *	intel_scu_ipc_command	-	command with data
 *	@cmd: command
 *	@sub: sub type
 *	@in: input data
 *	@inlen: input length in dwords
 *	@out: output data
 *	@outlein: output length in dwords
 *
 *	Issue a command to the SCU which involves data transfers. Do the
 *	data copies under the lock but leave it for the caller to interpret
 */
int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
			  u32 *out, int outlen)
{
	struct intel_scu_ipc_dev *scu = &ipcdev;
	int i, err;

	mutex_lock(&ipclock);
	if (scu->dev == NULL) {
		mutex_unlock(&ipclock);
		return -ENODEV;
	}

	for (i = 0; i < inlen; i++)
		ipc_data_writel(scu, *in++, 4 * i);

	ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
	err = intel_scu_ipc_check_status(scu);

	if (!err) {
		for (i = 0; i < outlen; i++)
			*out++ = ipc_data_readl(scu, 4 * i);
	}

	mutex_unlock(&ipclock);
	return err;
}
EXPORT_SYMBOL(intel_scu_ipc_command);

#define IPC_SPTR		0x08
#define IPC_DPTR		0x0C

/**
 * intel_scu_ipc_raw_command() - IPC command with data and pointers
 * @cmd:	IPC command code.
 * @sub:	IPC command sub type.
 * @in:		input data of this IPC command.
 * @inlen:	input data length in dwords.
 * @out:	output data of this IPC command.
 * @outlen:	output data length in dwords.
 * @sptr:	data writing to SPTR register.
 * @dptr:	data writing to DPTR register.
 *
 * Send an IPC command to SCU with input/output data and source/dest pointers.
 *
 * Return:	an IPC error code or 0 on success.
 */
int intel_scu_ipc_raw_command(int cmd, int sub, u8 *in, int inlen,
			      u32 *out, int outlen, u32 dptr, u32 sptr)
{
	struct intel_scu_ipc_dev *scu = &ipcdev;
	int inbuflen = DIV_ROUND_UP(inlen, 4);
	u32 inbuf[4];
	int i, err;

	/* Up to 16 bytes */
	if (inbuflen > 4)
		return -EINVAL;

	mutex_lock(&ipclock);
	if (scu->dev == NULL) {
		mutex_unlock(&ipclock);
		return -ENODEV;
	}

	writel(dptr, scu->ipc_base + IPC_DPTR);
	writel(sptr, scu->ipc_base + IPC_SPTR);

	/*
	 * SRAM controller doesn't support 8-bit writes, it only
	 * supports 32-bit writes, so we have to copy input data into
	 * the temporary buffer, and SCU FW will use the inlen to
	 * determine the actual input data length in the temporary
	 * buffer.
	 */
	memcpy(inbuf, in, inlen);

	for (i = 0; i < inbuflen; i++)
		ipc_data_writel(scu, inbuf[i], 4 * i);

	ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
	err = intel_scu_ipc_check_status(scu);
	if (!err) {
		for (i = 0; i < outlen; i++)
			*out++ = ipc_data_readl(scu, 4 * i);
	}

	mutex_unlock(&ipclock);
	return err;
}
EXPORT_SYMBOL_GPL(intel_scu_ipc_raw_command);

/* I2C commands */
#define IPC_I2C_WRITE 1 /* I2C Write command */
#define IPC_I2C_READ  2 /* I2C Read command */

/**
 *	intel_scu_ipc_i2c_cntrl		-	I2C read/write operations
 *	@addr: I2C address + command bits
 *	@data: data to read/write
 *
 *	Perform an an I2C read/write operation via the SCU. All locking is
 *	handled for the caller. This function may sleep.
 *
 *	Returns an error code or 0 on success.
 *
 *	This has to be in the IPC driver for the locking.
 */
int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
{
	struct intel_scu_ipc_dev *scu = &ipcdev;
	u32 cmd = 0;

	mutex_lock(&ipclock);
	if (scu->dev == NULL) {
		mutex_unlock(&ipclock);
		return -ENODEV;
	}
	cmd = (addr >> 24) & 0xFF;
	if (cmd == IPC_I2C_READ) {
		writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
		/* Write not getting updated without delay */
		mdelay(1);
		*data = readl(scu->i2c_base + I2C_DATA_ADDR);
	} else if (cmd == IPC_I2C_WRITE) {
		writel(*data, scu->i2c_base + I2C_DATA_ADDR);
		mdelay(1);
		writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
	} else {
		dev_err(scu->dev,
			"intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);

		mutex_unlock(&ipclock);
		return -EIO;
	}
	mutex_unlock(&ipclock);
	return 0;
}
EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);

/*
 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
 * When ioc bit is set to 1, caller api must wait for interrupt handler called
 * which in turn unlocks the caller api. Currently this is not used
 *
 * This is edge triggered so we need take no action to clear anything
 */
static irqreturn_t ioc(int irq, void *dev_id)
{
	struct intel_scu_ipc_dev *scu = dev_id;

	if (scu->irq_mode)
		complete(&scu->cmd_complete);

	return IRQ_HANDLED;
}

/**
 *	ipc_probe	-	probe an Intel SCU IPC
 *	@pdev: the PCI device matching
 *	@id: entry in the match table
 *
 *	Enable and install an intel SCU IPC. This appears in the PCI space
 *	but uses some hard coded addresses as well.
 */
static int ipc_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
	int err;
	struct intel_scu_ipc_dev *scu = &ipcdev;
	struct intel_scu_ipc_pdata_t *pdata;

	if (scu->dev)		/* We support only one SCU */
		return -EBUSY;

	pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data;
	if (!pdata)
		return -ENODEV;

	scu->irq_mode = pdata->irq_mode;

	err = pcim_enable_device(pdev);
	if (err)
		return err;

	err = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
	if (err)
		return err;

	init_completion(&scu->cmd_complete);

	scu->ipc_base = pcim_iomap_table(pdev)[0];

	scu->i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len);
	if (!scu->i2c_base)
		return -ENOMEM;

	err = devm_request_irq(&pdev->dev, pdev->irq, ioc, 0, "intel_scu_ipc",
			       scu);
	if (err)
		return err;

	/* Assign device at last */
	scu->dev = &pdev->dev;

	intel_scu_devices_create();

	pci_set_drvdata(pdev, scu);
	return 0;
}

#define SCU_DEVICE(id, pdata)	{PCI_VDEVICE(INTEL, id), (kernel_ulong_t)&pdata}

static const struct pci_device_id pci_ids[] = {
	SCU_DEVICE(PCI_DEVICE_ID_LINCROFT,	intel_scu_ipc_lincroft_pdata),
	SCU_DEVICE(PCI_DEVICE_ID_PENWELL,	intel_scu_ipc_penwell_pdata),
	SCU_DEVICE(PCI_DEVICE_ID_CLOVERVIEW,	intel_scu_ipc_penwell_pdata),
	SCU_DEVICE(PCI_DEVICE_ID_TANGIER,	intel_scu_ipc_tangier_pdata),
	{}
};

static struct pci_driver ipc_driver = {
	.driver = {
		.suppress_bind_attrs = true,
	},
	.name = "intel_scu_ipc",
	.id_table = pci_ids,
	.probe = ipc_probe,
};
builtin_pci_driver(ipc_driver);