audit_tree.c 21 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
#include "audit.h"
#include <linux/inotify.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/kthread.h>
#include <linux/slab.h>

struct audit_tree;
struct audit_chunk;

struct audit_tree {
	atomic_t count;
	int goner;
	struct audit_chunk *root;
	struct list_head chunks;
	struct list_head rules;
	struct list_head list;
	struct list_head same_root;
	struct rcu_head head;
	char pathname[];
};

struct audit_chunk {
	struct list_head hash;
	struct inotify_watch watch;
	struct list_head trees;		/* with root here */
	int dead;
	int count;
	atomic_long_t refs;
	struct rcu_head head;
	struct node {
		struct list_head list;
		struct audit_tree *owner;
		unsigned index;		/* index; upper bit indicates 'will prune' */
	} owners[];
};

static LIST_HEAD(tree_list);
static LIST_HEAD(prune_list);

/*
 * One struct chunk is attached to each inode of interest.
 * We replace struct chunk on tagging/untagging.
 * Rules have pointer to struct audit_tree.
 * Rules have struct list_head rlist forming a list of rules over
 * the same tree.
 * References to struct chunk are collected at audit_inode{,_child}()
 * time and used in AUDIT_TREE rule matching.
 * These references are dropped at the same time we are calling
 * audit_free_names(), etc.
 *
 * Cyclic lists galore:
 * tree.chunks anchors chunk.owners[].list			hash_lock
 * tree.rules anchors rule.rlist				audit_filter_mutex
 * chunk.trees anchors tree.same_root				hash_lock
 * chunk.hash is a hash with middle bits of watch.inode as
 * a hash function.						RCU, hash_lock
 *
 * tree is refcounted; one reference for "some rules on rules_list refer to
 * it", one for each chunk with pointer to it.
 *
 * chunk is refcounted by embedded inotify_watch + .refs (non-zero refcount
 * of watch contributes 1 to .refs).
 *
 * node.index allows to get from node.list to containing chunk.
 * MSB of that sucker is stolen to mark taggings that we might have to
 * revert - several operations have very unpleasant cleanup logics and
 * that makes a difference.  Some.
 */

static struct inotify_handle *rtree_ih;

static struct audit_tree *alloc_tree(const char *s)
{
	struct audit_tree *tree;

	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
	if (tree) {
		atomic_set(&tree->count, 1);
		tree->goner = 0;
		INIT_LIST_HEAD(&tree->chunks);
		INIT_LIST_HEAD(&tree->rules);
		INIT_LIST_HEAD(&tree->list);
		INIT_LIST_HEAD(&tree->same_root);
		tree->root = NULL;
		strcpy(tree->pathname, s);
	}
	return tree;
}

static inline void get_tree(struct audit_tree *tree)
{
	atomic_inc(&tree->count);
}

static void __put_tree(struct rcu_head *rcu)
{
	struct audit_tree *tree = container_of(rcu, struct audit_tree, head);
	kfree(tree);
}

static inline void put_tree(struct audit_tree *tree)
{
	if (atomic_dec_and_test(&tree->count))
		call_rcu(&tree->head, __put_tree);
}

/* to avoid bringing the entire thing in audit.h */
const char *audit_tree_path(struct audit_tree *tree)
{
	return tree->pathname;
}

static struct audit_chunk *alloc_chunk(int count)
{
	struct audit_chunk *chunk;
	size_t size;
	int i;

	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
	chunk = kzalloc(size, GFP_KERNEL);
	if (!chunk)
		return NULL;

	INIT_LIST_HEAD(&chunk->hash);
	INIT_LIST_HEAD(&chunk->trees);
	chunk->count = count;
	atomic_long_set(&chunk->refs, 1);
	for (i = 0; i < count; i++) {
		INIT_LIST_HEAD(&chunk->owners[i].list);
		chunk->owners[i].index = i;
	}
	inotify_init_watch(&chunk->watch);
	return chunk;
}

static void free_chunk(struct audit_chunk *chunk)
{
	int i;

	for (i = 0; i < chunk->count; i++) {
		if (chunk->owners[i].owner)
			put_tree(chunk->owners[i].owner);
	}
	kfree(chunk);
}

void audit_put_chunk(struct audit_chunk *chunk)
{
	if (atomic_long_dec_and_test(&chunk->refs))
		free_chunk(chunk);
}

static void __put_chunk(struct rcu_head *rcu)
{
	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
	audit_put_chunk(chunk);
}

enum {HASH_SIZE = 128};
static struct list_head chunk_hash_heads[HASH_SIZE];
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);

static inline struct list_head *chunk_hash(const struct inode *inode)
{
	unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
	return chunk_hash_heads + n % HASH_SIZE;
}

/* hash_lock is held by caller */
static void insert_hash(struct audit_chunk *chunk)
{
	struct list_head *list = chunk_hash(chunk->watch.inode);
	list_add_rcu(&chunk->hash, list);
}

/* called under rcu_read_lock */
struct audit_chunk *audit_tree_lookup(const struct inode *inode)
{
	struct list_head *list = chunk_hash(inode);
	struct audit_chunk *p;

	list_for_each_entry_rcu(p, list, hash) {
		if (p->watch.inode == inode) {
			atomic_long_inc(&p->refs);
			return p;
		}
	}
	return NULL;
}

int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
{
	int n;
	for (n = 0; n < chunk->count; n++)
		if (chunk->owners[n].owner == tree)
			return 1;
	return 0;
}

/* tagging and untagging inodes with trees */

static struct audit_chunk *find_chunk(struct node *p)
{
	int index = p->index & ~(1U<<31);
	p -= index;
	return container_of(p, struct audit_chunk, owners[0]);
}

static void untag_chunk(struct node *p)
{
	struct audit_chunk *chunk = find_chunk(p);
	struct audit_chunk *new;
	struct audit_tree *owner;
	int size = chunk->count - 1;
	int i, j;

	if (!pin_inotify_watch(&chunk->watch)) {
		/*
		 * Filesystem is shutting down; all watches are getting
		 * evicted, just take it off the node list for this
		 * tree and let the eviction logics take care of the
		 * rest.
		 */
		owner = p->owner;
		if (owner->root == chunk) {
			list_del_init(&owner->same_root);
			owner->root = NULL;
		}
		list_del_init(&p->list);
		p->owner = NULL;
		put_tree(owner);
		return;
	}

	spin_unlock(&hash_lock);

	/*
	 * pin_inotify_watch() succeeded, so the watch won't go away
	 * from under us.
	 */
	mutex_lock(&chunk->watch.inode->inotify_mutex);
	if (chunk->dead) {
		mutex_unlock(&chunk->watch.inode->inotify_mutex);
		goto out;
	}

	owner = p->owner;

	if (!size) {
		chunk->dead = 1;
		spin_lock(&hash_lock);
		list_del_init(&chunk->trees);
		if (owner->root == chunk)
			owner->root = NULL;
		list_del_init(&p->list);
		list_del_rcu(&chunk->hash);
		spin_unlock(&hash_lock);
		inotify_evict_watch(&chunk->watch);
		mutex_unlock(&chunk->watch.inode->inotify_mutex);
		put_inotify_watch(&chunk->watch);
		goto out;
	}

	new = alloc_chunk(size);
	if (!new)
		goto Fallback;
	if (inotify_clone_watch(&chunk->watch, &new->watch) < 0) {
		free_chunk(new);
		goto Fallback;
	}

	chunk->dead = 1;
	spin_lock(&hash_lock);
	list_replace_init(&chunk->trees, &new->trees);
	if (owner->root == chunk) {
		list_del_init(&owner->same_root);
		owner->root = NULL;
	}

	for (i = j = 0; j <= size; i++, j++) {
		struct audit_tree *s;
		if (&chunk->owners[j] == p) {
			list_del_init(&p->list);
			i--;
			continue;
		}
		s = chunk->owners[j].owner;
		new->owners[i].owner = s;
		new->owners[i].index = chunk->owners[j].index - j + i;
		if (!s) /* result of earlier fallback */
			continue;
		get_tree(s);
		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
	}

	list_replace_rcu(&chunk->hash, &new->hash);
	list_for_each_entry(owner, &new->trees, same_root)
		owner->root = new;
	spin_unlock(&hash_lock);
	inotify_evict_watch(&chunk->watch);
	mutex_unlock(&chunk->watch.inode->inotify_mutex);
	put_inotify_watch(&chunk->watch);
	goto out;

Fallback:
	// do the best we can
	spin_lock(&hash_lock);
	if (owner->root == chunk) {
		list_del_init(&owner->same_root);
		owner->root = NULL;
	}
	list_del_init(&p->list);
	p->owner = NULL;
	put_tree(owner);
	spin_unlock(&hash_lock);
	mutex_unlock(&chunk->watch.inode->inotify_mutex);
out:
	unpin_inotify_watch(&chunk->watch);
	spin_lock(&hash_lock);
}

static int create_chunk(struct inode *inode, struct audit_tree *tree)
{
	struct audit_chunk *chunk = alloc_chunk(1);
	if (!chunk)
		return -ENOMEM;

	if (inotify_add_watch(rtree_ih, &chunk->watch, inode, IN_IGNORED | IN_DELETE_SELF) < 0) {
		free_chunk(chunk);
		return -ENOSPC;
	}

	mutex_lock(&inode->inotify_mutex);
	spin_lock(&hash_lock);
	if (tree->goner) {
		spin_unlock(&hash_lock);
		chunk->dead = 1;
		inotify_evict_watch(&chunk->watch);
		mutex_unlock(&inode->inotify_mutex);
		put_inotify_watch(&chunk->watch);
		return 0;
	}
	chunk->owners[0].index = (1U << 31);
	chunk->owners[0].owner = tree;
	get_tree(tree);
	list_add(&chunk->owners[0].list, &tree->chunks);
	if (!tree->root) {
		tree->root = chunk;
		list_add(&tree->same_root, &chunk->trees);
	}
	insert_hash(chunk);
	spin_unlock(&hash_lock);
	mutex_unlock(&inode->inotify_mutex);
	return 0;
}

/* the first tagged inode becomes root of tree */
static int tag_chunk(struct inode *inode, struct audit_tree *tree)
{
	struct inotify_watch *watch;
	struct audit_tree *owner;
	struct audit_chunk *chunk, *old;
	struct node *p;
	int n;

	if (inotify_find_watch(rtree_ih, inode, &watch) < 0)
		return create_chunk(inode, tree);

	old = container_of(watch, struct audit_chunk, watch);

	/* are we already there? */
	spin_lock(&hash_lock);
	for (n = 0; n < old->count; n++) {
		if (old->owners[n].owner == tree) {
			spin_unlock(&hash_lock);
			put_inotify_watch(&old->watch);
			return 0;
		}
	}
	spin_unlock(&hash_lock);

	chunk = alloc_chunk(old->count + 1);
	if (!chunk) {
		put_inotify_watch(&old->watch);
		return -ENOMEM;
	}

	mutex_lock(&inode->inotify_mutex);
	if (inotify_clone_watch(&old->watch, &chunk->watch) < 0) {
		mutex_unlock(&inode->inotify_mutex);
		put_inotify_watch(&old->watch);
		free_chunk(chunk);
		return -ENOSPC;
	}
	spin_lock(&hash_lock);
	if (tree->goner) {
		spin_unlock(&hash_lock);
		chunk->dead = 1;
		inotify_evict_watch(&chunk->watch);
		mutex_unlock(&inode->inotify_mutex);
		put_inotify_watch(&old->watch);
		put_inotify_watch(&chunk->watch);
		return 0;
	}
	list_replace_init(&old->trees, &chunk->trees);
	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
		struct audit_tree *s = old->owners[n].owner;
		p->owner = s;
		p->index = old->owners[n].index;
		if (!s) /* result of fallback in untag */
			continue;
		get_tree(s);
		list_replace_init(&old->owners[n].list, &p->list);
	}
	p->index = (chunk->count - 1) | (1U<<31);
	p->owner = tree;
	get_tree(tree);
	list_add(&p->list, &tree->chunks);
	list_replace_rcu(&old->hash, &chunk->hash);
	list_for_each_entry(owner, &chunk->trees, same_root)
		owner->root = chunk;
	old->dead = 1;
	if (!tree->root) {
		tree->root = chunk;
		list_add(&tree->same_root, &chunk->trees);
	}
	spin_unlock(&hash_lock);
	inotify_evict_watch(&old->watch);
	mutex_unlock(&inode->inotify_mutex);
	put_inotify_watch(&old->watch); /* pair to inotify_find_watch */
	put_inotify_watch(&old->watch); /* and kill it */
	return 0;
}

static void kill_rules(struct audit_tree *tree)
{
	struct audit_krule *rule, *next;
	struct audit_entry *entry;
	struct audit_buffer *ab;

	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
		entry = container_of(rule, struct audit_entry, rule);

		list_del_init(&rule->rlist);
		if (rule->tree) {
			/* not a half-baked one */
			ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
			audit_log_format(ab, "op=");
			audit_log_string(ab, "remove rule");
			audit_log_format(ab, " dir=");
			audit_log_untrustedstring(ab, rule->tree->pathname);
			audit_log_key(ab, rule->filterkey);
			audit_log_format(ab, " list=%d res=1", rule->listnr);
			audit_log_end(ab);
			rule->tree = NULL;
			list_del_rcu(&entry->list);
			list_del(&entry->rule.list);
			call_rcu(&entry->rcu, audit_free_rule_rcu);
		}
	}
}

/*
 * finish killing struct audit_tree
 */
static void prune_one(struct audit_tree *victim)
{
	spin_lock(&hash_lock);
	while (!list_empty(&victim->chunks)) {
		struct node *p;

		p = list_entry(victim->chunks.next, struct node, list);

		untag_chunk(p);
	}
	spin_unlock(&hash_lock);
	put_tree(victim);
}

/* trim the uncommitted chunks from tree */

static void trim_marked(struct audit_tree *tree)
{
	struct list_head *p, *q;
	spin_lock(&hash_lock);
	if (tree->goner) {
		spin_unlock(&hash_lock);
		return;
	}
	/* reorder */
	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
		struct node *node = list_entry(p, struct node, list);
		q = p->next;
		if (node->index & (1U<<31)) {
			list_del_init(p);
			list_add(p, &tree->chunks);
		}
	}

	while (!list_empty(&tree->chunks)) {
		struct node *node;

		node = list_entry(tree->chunks.next, struct node, list);

		/* have we run out of marked? */
		if (!(node->index & (1U<<31)))
			break;

		untag_chunk(node);
	}
	if (!tree->root && !tree->goner) {
		tree->goner = 1;
		spin_unlock(&hash_lock);
		mutex_lock(&audit_filter_mutex);
		kill_rules(tree);
		list_del_init(&tree->list);
		mutex_unlock(&audit_filter_mutex);
		prune_one(tree);
	} else {
		spin_unlock(&hash_lock);
	}
}

static void audit_schedule_prune(void);

/* called with audit_filter_mutex */
int audit_remove_tree_rule(struct audit_krule *rule)
{
	struct audit_tree *tree;
	tree = rule->tree;
	if (tree) {
		spin_lock(&hash_lock);
		list_del_init(&rule->rlist);
		if (list_empty(&tree->rules) && !tree->goner) {
			tree->root = NULL;
			list_del_init(&tree->same_root);
			tree->goner = 1;
			list_move(&tree->list, &prune_list);
			rule->tree = NULL;
			spin_unlock(&hash_lock);
			audit_schedule_prune();
			return 1;
		}
		rule->tree = NULL;
		spin_unlock(&hash_lock);
		return 1;
	}
	return 0;
}

static int compare_root(struct vfsmount *mnt, void *arg)
{
	return mnt->mnt_root->d_inode == arg;
}

void audit_trim_trees(void)
{
	struct list_head cursor;

	mutex_lock(&audit_filter_mutex);
	list_add(&cursor, &tree_list);
	while (cursor.next != &tree_list) {
		struct audit_tree *tree;
		struct path path;
		struct vfsmount *root_mnt;
		struct node *node;
		int err;

		tree = container_of(cursor.next, struct audit_tree, list);
		get_tree(tree);
		list_del(&cursor);
		list_add(&cursor, &tree->list);
		mutex_unlock(&audit_filter_mutex);

		err = kern_path(tree->pathname, 0, &path);
		if (err)
			goto skip_it;

		root_mnt = collect_mounts(&path);
		path_put(&path);
		if (!root_mnt)
			goto skip_it;

		spin_lock(&hash_lock);
		list_for_each_entry(node, &tree->chunks, list) {
			struct inode *inode = find_chunk(node)->watch.inode;
			node->index |= 1U<<31;
			if (iterate_mounts(compare_root, inode, root_mnt))
				node->index &= ~(1U<<31);
		}
		spin_unlock(&hash_lock);
		trim_marked(tree);
		put_tree(tree);
		drop_collected_mounts(root_mnt);
skip_it:
		mutex_lock(&audit_filter_mutex);
	}
	list_del(&cursor);
	mutex_unlock(&audit_filter_mutex);
}

int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
{

	if (pathname[0] != '/' ||
	    rule->listnr != AUDIT_FILTER_EXIT ||
	    op != Audit_equal ||
	    rule->inode_f || rule->watch || rule->tree)
		return -EINVAL;
	rule->tree = alloc_tree(pathname);
	if (!rule->tree)
		return -ENOMEM;
	return 0;
}

void audit_put_tree(struct audit_tree *tree)
{
	put_tree(tree);
}

static int tag_mount(struct vfsmount *mnt, void *arg)
{
	return tag_chunk(mnt->mnt_root->d_inode, arg);
}

/* called with audit_filter_mutex */
int audit_add_tree_rule(struct audit_krule *rule)
{
	struct audit_tree *seed = rule->tree, *tree;
	struct path path;
	struct vfsmount *mnt;
	int err;

	list_for_each_entry(tree, &tree_list, list) {
		if (!strcmp(seed->pathname, tree->pathname)) {
			put_tree(seed);
			rule->tree = tree;
			list_add(&rule->rlist, &tree->rules);
			return 0;
		}
	}
	tree = seed;
	list_add(&tree->list, &tree_list);
	list_add(&rule->rlist, &tree->rules);
	/* do not set rule->tree yet */
	mutex_unlock(&audit_filter_mutex);

	err = kern_path(tree->pathname, 0, &path);
	if (err)
		goto Err;
	mnt = collect_mounts(&path);
	path_put(&path);
	if (!mnt) {
		err = -ENOMEM;
		goto Err;
	}

	get_tree(tree);
	err = iterate_mounts(tag_mount, tree, mnt);
	drop_collected_mounts(mnt);

	if (!err) {
		struct node *node;
		spin_lock(&hash_lock);
		list_for_each_entry(node, &tree->chunks, list)
			node->index &= ~(1U<<31);
		spin_unlock(&hash_lock);
	} else {
		trim_marked(tree);
		goto Err;
	}

	mutex_lock(&audit_filter_mutex);
	if (list_empty(&rule->rlist)) {
		put_tree(tree);
		return -ENOENT;
	}
	rule->tree = tree;
	put_tree(tree);

	return 0;
Err:
	mutex_lock(&audit_filter_mutex);
	list_del_init(&tree->list);
	list_del_init(&tree->rules);
	put_tree(tree);
	return err;
}

int audit_tag_tree(char *old, char *new)
{
	struct list_head cursor, barrier;
	int failed = 0;
	struct path path1, path2;
	struct vfsmount *tagged;
	int err;

	err = kern_path(new, 0, &path2);
	if (err)
		return err;
	tagged = collect_mounts(&path2);
	path_put(&path2);
	if (!tagged)
		return -ENOMEM;

	err = kern_path(old, 0, &path1);
	if (err) {
		drop_collected_mounts(tagged);
		return err;
	}

	mutex_lock(&audit_filter_mutex);
	list_add(&barrier, &tree_list);
	list_add(&cursor, &barrier);

	while (cursor.next != &tree_list) {
		struct audit_tree *tree;
		int good_one = 0;

		tree = container_of(cursor.next, struct audit_tree, list);
		get_tree(tree);
		list_del(&cursor);
		list_add(&cursor, &tree->list);
		mutex_unlock(&audit_filter_mutex);

		err = kern_path(tree->pathname, 0, &path2);
		if (!err) {
			good_one = path_is_under(&path1, &path2);
			path_put(&path2);
		}

		if (!good_one) {
			put_tree(tree);
			mutex_lock(&audit_filter_mutex);
			continue;
		}

		failed = iterate_mounts(tag_mount, tree, tagged);
		if (failed) {
			put_tree(tree);
			mutex_lock(&audit_filter_mutex);
			break;
		}

		mutex_lock(&audit_filter_mutex);
		spin_lock(&hash_lock);
		if (!tree->goner) {
			list_del(&tree->list);
			list_add(&tree->list, &tree_list);
		}
		spin_unlock(&hash_lock);
		put_tree(tree);
	}

	while (barrier.prev != &tree_list) {
		struct audit_tree *tree;

		tree = container_of(barrier.prev, struct audit_tree, list);
		get_tree(tree);
		list_del(&tree->list);
		list_add(&tree->list, &barrier);
		mutex_unlock(&audit_filter_mutex);

		if (!failed) {
			struct node *node;
			spin_lock(&hash_lock);
			list_for_each_entry(node, &tree->chunks, list)
				node->index &= ~(1U<<31);
			spin_unlock(&hash_lock);
		} else {
			trim_marked(tree);
		}

		put_tree(tree);
		mutex_lock(&audit_filter_mutex);
	}
	list_del(&barrier);
	list_del(&cursor);
	mutex_unlock(&audit_filter_mutex);
	path_put(&path1);
	drop_collected_mounts(tagged);
	return failed;
}

/*
 * That gets run when evict_chunk() ends up needing to kill audit_tree.
 * Runs from a separate thread.
 */
static int prune_tree_thread(void *unused)
{
	mutex_lock(&audit_cmd_mutex);
	mutex_lock(&audit_filter_mutex);

	while (!list_empty(&prune_list)) {
		struct audit_tree *victim;

		victim = list_entry(prune_list.next, struct audit_tree, list);
		list_del_init(&victim->list);

		mutex_unlock(&audit_filter_mutex);

		prune_one(victim);

		mutex_lock(&audit_filter_mutex);
	}

	mutex_unlock(&audit_filter_mutex);
	mutex_unlock(&audit_cmd_mutex);
	return 0;
}

static void audit_schedule_prune(void)
{
	kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
}

/*
 * ... and that one is done if evict_chunk() decides to delay until the end
 * of syscall.  Runs synchronously.
 */
void audit_kill_trees(struct list_head *list)
{
	mutex_lock(&audit_cmd_mutex);
	mutex_lock(&audit_filter_mutex);

	while (!list_empty(list)) {
		struct audit_tree *victim;

		victim = list_entry(list->next, struct audit_tree, list);
		kill_rules(victim);
		list_del_init(&victim->list);

		mutex_unlock(&audit_filter_mutex);

		prune_one(victim);

		mutex_lock(&audit_filter_mutex);
	}

	mutex_unlock(&audit_filter_mutex);
	mutex_unlock(&audit_cmd_mutex);
}

/*
 *  Here comes the stuff asynchronous to auditctl operations
 */

/* inode->inotify_mutex is locked */
static void evict_chunk(struct audit_chunk *chunk)
{
	struct audit_tree *owner;
	struct list_head *postponed = audit_killed_trees();
	int need_prune = 0;
	int n;

	if (chunk->dead)
		return;

	chunk->dead = 1;
	mutex_lock(&audit_filter_mutex);
	spin_lock(&hash_lock);
	while (!list_empty(&chunk->trees)) {
		owner = list_entry(chunk->trees.next,
				   struct audit_tree, same_root);
		owner->goner = 1;
		owner->root = NULL;
		list_del_init(&owner->same_root);
		spin_unlock(&hash_lock);
		if (!postponed) {
			kill_rules(owner);
			list_move(&owner->list, &prune_list);
			need_prune = 1;
		} else {
			list_move(&owner->list, postponed);
		}
		spin_lock(&hash_lock);
	}
	list_del_rcu(&chunk->hash);
	for (n = 0; n < chunk->count; n++)
		list_del_init(&chunk->owners[n].list);
	spin_unlock(&hash_lock);
	if (need_prune)
		audit_schedule_prune();
	mutex_unlock(&audit_filter_mutex);
}

static void handle_event(struct inotify_watch *watch, u32 wd, u32 mask,
                         u32 cookie, const char *dname, struct inode *inode)
{
	struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);

	if (mask & IN_IGNORED) {
		evict_chunk(chunk);
		put_inotify_watch(watch);
	}
}

static void destroy_watch(struct inotify_watch *watch)
{
	struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
	call_rcu(&chunk->head, __put_chunk);
}

static const struct inotify_operations rtree_inotify_ops = {
	.handle_event	= handle_event,
	.destroy_watch	= destroy_watch,
};

static int __init audit_tree_init(void)
{
	int i;

	rtree_ih = inotify_init(&rtree_inotify_ops);
	if (IS_ERR(rtree_ih))
		audit_panic("cannot initialize inotify handle for rectree watches");

	for (i = 0; i < HASH_SIZE; i++)
		INIT_LIST_HEAD(&chunk_hash_heads[i]);

	return 0;
}
__initcall(audit_tree_init);