exynos-iommu.c 38.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
/*
 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#ifdef CONFIG_EXYNOS_IOMMU_DEBUG
#define DEBUG
#endif

#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/of.h>
#include <linux/of_iommu.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/dma-iommu.h>

typedef u32 sysmmu_iova_t;
typedef u32 sysmmu_pte_t;

/* We do not consider super section mapping (16MB) */
#define SECT_ORDER 20
#define LPAGE_ORDER 16
#define SPAGE_ORDER 12

#define SECT_SIZE (1 << SECT_ORDER)
#define LPAGE_SIZE (1 << LPAGE_ORDER)
#define SPAGE_SIZE (1 << SPAGE_ORDER)

#define SECT_MASK (~(SECT_SIZE - 1))
#define LPAGE_MASK (~(LPAGE_SIZE - 1))
#define SPAGE_MASK (~(SPAGE_SIZE - 1))

#define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
			   ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
#define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
#define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
#define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
			  ((*(sent) & 3) == 1))
#define lv1ent_section(sent) ((*(sent) & 3) == 2)

#define lv2ent_fault(pent) ((*(pent) & 3) == 0)
#define lv2ent_small(pent) ((*(pent) & 2) == 2)
#define lv2ent_large(pent) ((*(pent) & 3) == 1)

/*
 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
 * v5.0 introduced support for 36bit physical address space by shifting
 * all page entry values by 4 bits.
 * All SYSMMU controllers in the system support the address spaces of the same
 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
 * value (0 or 4).
 */
static short PG_ENT_SHIFT = -1;
#define SYSMMU_PG_ENT_SHIFT 0
#define SYSMMU_V5_PG_ENT_SHIFT 4

static const sysmmu_pte_t *LV1_PROT;
static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
	((0 << 15) | (0 << 10)), /* no access */
	((1 << 15) | (1 << 10)), /* IOMMU_READ only */
	((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
	((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
};
static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
	(0 << 4), /* no access */
	(1 << 4), /* IOMMU_READ only */
	(2 << 4), /* IOMMU_WRITE only */
	(3 << 4), /* IOMMU_READ | IOMMU_WRITE */
};

static const sysmmu_pte_t *LV2_PROT;
static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
	((0 << 9) | (0 << 4)), /* no access */
	((1 << 9) | (1 << 4)), /* IOMMU_READ only */
	((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
	((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
};
static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
	(0 << 2), /* no access */
	(1 << 2), /* IOMMU_READ only */
	(2 << 2), /* IOMMU_WRITE only */
	(3 << 2), /* IOMMU_READ | IOMMU_WRITE */
};

#define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)

#define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
#define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
#define section_offs(iova) (iova & (SECT_SIZE - 1))
#define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
#define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
#define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
#define spage_offs(iova) (iova & (SPAGE_SIZE - 1))

#define NUM_LV1ENTRIES 4096
#define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)

static u32 lv1ent_offset(sysmmu_iova_t iova)
{
	return iova >> SECT_ORDER;
}

static u32 lv2ent_offset(sysmmu_iova_t iova)
{
	return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
}

#define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
#define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))

#define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
#define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))

#define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
#define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
#define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
#define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)

#define CTRL_ENABLE	0x5
#define CTRL_BLOCK	0x7
#define CTRL_DISABLE	0x0

#define CFG_LRU		0x1
#define CFG_EAP		(1 << 2)
#define CFG_QOS(n)	((n & 0xF) << 7)
#define CFG_ACGEN	(1 << 24) /* System MMU 3.3 only */
#define CFG_SYSSEL	(1 << 22) /* System MMU 3.2 only */
#define CFG_FLPDCACHE	(1 << 20) /* System MMU 3.2+ only */

/* common registers */
#define REG_MMU_CTRL		0x000
#define REG_MMU_CFG		0x004
#define REG_MMU_STATUS		0x008
#define REG_MMU_VERSION		0x034

#define MMU_MAJ_VER(val)	((val) >> 7)
#define MMU_MIN_VER(val)	((val) & 0x7F)
#define MMU_RAW_VER(reg)	(((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */

#define MAKE_MMU_VER(maj, min)	((((maj) & 0xF) << 7) | ((min) & 0x7F))

/* v1.x - v3.x registers */
#define REG_MMU_FLUSH		0x00C
#define REG_MMU_FLUSH_ENTRY	0x010
#define REG_PT_BASE_ADDR	0x014
#define REG_INT_STATUS		0x018
#define REG_INT_CLEAR		0x01C

#define REG_PAGE_FAULT_ADDR	0x024
#define REG_AW_FAULT_ADDR	0x028
#define REG_AR_FAULT_ADDR	0x02C
#define REG_DEFAULT_SLAVE_ADDR	0x030

/* v5.x registers */
#define REG_V5_PT_BASE_PFN	0x00C
#define REG_V5_MMU_FLUSH_ALL	0x010
#define REG_V5_MMU_FLUSH_ENTRY	0x014
#define REG_V5_MMU_FLUSH_RANGE	0x018
#define REG_V5_MMU_FLUSH_START	0x020
#define REG_V5_MMU_FLUSH_END	0x024
#define REG_V5_INT_STATUS	0x060
#define REG_V5_INT_CLEAR	0x064
#define REG_V5_FAULT_AR_VA	0x070
#define REG_V5_FAULT_AW_VA	0x080

#define has_sysmmu(dev)		(dev->archdata.iommu != NULL)

static struct device *dma_dev;
static struct kmem_cache *lv2table_kmem_cache;
static sysmmu_pte_t *zero_lv2_table;
#define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))

static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
{
	return pgtable + lv1ent_offset(iova);
}

static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
{
	return (sysmmu_pte_t *)phys_to_virt(
				lv2table_base(sent)) + lv2ent_offset(iova);
}

/*
 * IOMMU fault information register
 */
struct sysmmu_fault_info {
	unsigned int bit;	/* bit number in STATUS register */
	unsigned short addr_reg; /* register to read VA fault address */
	const char *name;	/* human readable fault name */
	unsigned int type;	/* fault type for report_iommu_fault */
};

static const struct sysmmu_fault_info sysmmu_faults[] = {
	{ 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
	{ 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
	{ 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
	{ 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
	{ 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
	{ 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
	{ 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
	{ 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
};

static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
	{ 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
	{ 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
	{ 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
	{ 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
	{ 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
	{ 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
	{ 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
	{ 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
	{ 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
	{ 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
};

/*
 * This structure is attached to dev.archdata.iommu of the master device
 * on device add, contains a list of SYSMMU controllers defined by device tree,
 * which are bound to given master device. It is usually referenced by 'owner'
 * pointer.
*/
struct exynos_iommu_owner {
	struct list_head controllers;	/* list of sysmmu_drvdata.owner_node */
	struct iommu_domain *domain;	/* domain this device is attached */
	struct mutex rpm_lock;		/* for runtime pm of all sysmmus */
};

/*
 * This structure exynos specific generalization of struct iommu_domain.
 * It contains list of SYSMMU controllers from all master devices, which has
 * been attached to this domain and page tables of IO address space defined by
 * it. It is usually referenced by 'domain' pointer.
 */
struct exynos_iommu_domain {
	struct list_head clients; /* list of sysmmu_drvdata.domain_node */
	sysmmu_pte_t *pgtable;	/* lv1 page table, 16KB */
	short *lv2entcnt;	/* free lv2 entry counter for each section */
	spinlock_t lock;	/* lock for modyfying list of clients */
	spinlock_t pgtablelock;	/* lock for modifying page table @ pgtable */
	struct iommu_domain domain; /* generic domain data structure */
};

/*
 * This structure hold all data of a single SYSMMU controller, this includes
 * hw resources like registers and clocks, pointers and list nodes to connect
 * it to all other structures, internal state and parameters read from device
 * tree. It is usually referenced by 'data' pointer.
 */
struct sysmmu_drvdata {
	struct device *sysmmu;		/* SYSMMU controller device */
	struct device *master;		/* master device (owner) */
	void __iomem *sfrbase;		/* our registers */
	struct clk *clk;		/* SYSMMU's clock */
	struct clk *aclk;		/* SYSMMU's aclk clock */
	struct clk *pclk;		/* SYSMMU's pclk clock */
	struct clk *clk_master;		/* master's device clock */
	spinlock_t lock;		/* lock for modyfying state */
	bool active;			/* current status */
	struct exynos_iommu_domain *domain; /* domain we belong to */
	struct list_head domain_node;	/* node for domain clients list */
	struct list_head owner_node;	/* node for owner controllers list */
	phys_addr_t pgtable;		/* assigned page table structure */
	unsigned int version;		/* our version */

	struct iommu_device iommu;	/* IOMMU core handle */
};

static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct exynos_iommu_domain, domain);
}

static void sysmmu_unblock(struct sysmmu_drvdata *data)
{
	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
}

static bool sysmmu_block(struct sysmmu_drvdata *data)
{
	int i = 120;

	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
	while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
		--i;

	if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
		sysmmu_unblock(data);
		return false;
	}

	return true;
}

static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
{
	if (MMU_MAJ_VER(data->version) < 5)
		writel(0x1, data->sfrbase + REG_MMU_FLUSH);
	else
		writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
}

static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
				sysmmu_iova_t iova, unsigned int num_inv)
{
	unsigned int i;

	if (MMU_MAJ_VER(data->version) < 5) {
		for (i = 0; i < num_inv; i++) {
			writel((iova & SPAGE_MASK) | 1,
				     data->sfrbase + REG_MMU_FLUSH_ENTRY);
			iova += SPAGE_SIZE;
		}
	} else {
		if (num_inv == 1) {
			writel((iova & SPAGE_MASK) | 1,
				     data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
		} else {
			writel((iova & SPAGE_MASK),
				     data->sfrbase + REG_V5_MMU_FLUSH_START);
			writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
				     data->sfrbase + REG_V5_MMU_FLUSH_END);
			writel(1, data->sfrbase + REG_V5_MMU_FLUSH_RANGE);
		}
	}
}

static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
{
	if (MMU_MAJ_VER(data->version) < 5)
		writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
	else
		writel(pgd >> PAGE_SHIFT,
			     data->sfrbase + REG_V5_PT_BASE_PFN);

	__sysmmu_tlb_invalidate(data);
}

static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
{
	BUG_ON(clk_prepare_enable(data->clk_master));
	BUG_ON(clk_prepare_enable(data->clk));
	BUG_ON(clk_prepare_enable(data->pclk));
	BUG_ON(clk_prepare_enable(data->aclk));
}

static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
{
	clk_disable_unprepare(data->aclk);
	clk_disable_unprepare(data->pclk);
	clk_disable_unprepare(data->clk);
	clk_disable_unprepare(data->clk_master);
}

static void __sysmmu_get_version(struct sysmmu_drvdata *data)
{
	u32 ver;

	__sysmmu_enable_clocks(data);

	ver = readl(data->sfrbase + REG_MMU_VERSION);

	/* controllers on some SoCs don't report proper version */
	if (ver == 0x80000001u)
		data->version = MAKE_MMU_VER(1, 0);
	else
		data->version = MMU_RAW_VER(ver);

	dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
		MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));

	__sysmmu_disable_clocks(data);
}

static void show_fault_information(struct sysmmu_drvdata *data,
				   const struct sysmmu_fault_info *finfo,
				   sysmmu_iova_t fault_addr)
{
	sysmmu_pte_t *ent;

	dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
		dev_name(data->master), finfo->name, fault_addr);
	dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
	ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
	dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
	if (lv1ent_page(ent)) {
		ent = page_entry(ent, fault_addr);
		dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
	}
}

static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
{
	/* SYSMMU is in blocked state when interrupt occurred. */
	struct sysmmu_drvdata *data = dev_id;
	const struct sysmmu_fault_info *finfo;
	unsigned int i, n, itype;
	sysmmu_iova_t fault_addr = -1;
	unsigned short reg_status, reg_clear;
	int ret = -ENOSYS;

	WARN_ON(!data->active);

	if (MMU_MAJ_VER(data->version) < 5) {
		reg_status = REG_INT_STATUS;
		reg_clear = REG_INT_CLEAR;
		finfo = sysmmu_faults;
		n = ARRAY_SIZE(sysmmu_faults);
	} else {
		reg_status = REG_V5_INT_STATUS;
		reg_clear = REG_V5_INT_CLEAR;
		finfo = sysmmu_v5_faults;
		n = ARRAY_SIZE(sysmmu_v5_faults);
	}

	spin_lock(&data->lock);

	clk_enable(data->clk_master);

	itype = __ffs(readl(data->sfrbase + reg_status));
	for (i = 0; i < n; i++, finfo++)
		if (finfo->bit == itype)
			break;
	/* unknown/unsupported fault */
	BUG_ON(i == n);

	/* print debug message */
	fault_addr = readl(data->sfrbase + finfo->addr_reg);
	show_fault_information(data, finfo, fault_addr);

	if (data->domain)
		ret = report_iommu_fault(&data->domain->domain,
					data->master, fault_addr, finfo->type);
	/* fault is not recovered by fault handler */
	BUG_ON(ret != 0);

	writel(1 << itype, data->sfrbase + reg_clear);

	sysmmu_unblock(data);

	clk_disable(data->clk_master);

	spin_unlock(&data->lock);

	return IRQ_HANDLED;
}

static void __sysmmu_disable(struct sysmmu_drvdata *data)
{
	unsigned long flags;

	clk_enable(data->clk_master);

	spin_lock_irqsave(&data->lock, flags);
	writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
	writel(0, data->sfrbase + REG_MMU_CFG);
	data->active = false;
	spin_unlock_irqrestore(&data->lock, flags);

	__sysmmu_disable_clocks(data);
}

static void __sysmmu_init_config(struct sysmmu_drvdata *data)
{
	unsigned int cfg;

	if (data->version <= MAKE_MMU_VER(3, 1))
		cfg = CFG_LRU | CFG_QOS(15);
	else if (data->version <= MAKE_MMU_VER(3, 2))
		cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
	else
		cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;

	cfg |= CFG_EAP; /* enable access protection bits check */

	writel(cfg, data->sfrbase + REG_MMU_CFG);
}

static void __sysmmu_enable(struct sysmmu_drvdata *data)
{
	unsigned long flags;

	__sysmmu_enable_clocks(data);

	spin_lock_irqsave(&data->lock, flags);
	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
	__sysmmu_init_config(data);
	__sysmmu_set_ptbase(data, data->pgtable);
	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
	data->active = true;
	spin_unlock_irqrestore(&data->lock, flags);

	/*
	 * SYSMMU driver keeps master's clock enabled only for the short
	 * time, while accessing the registers. For performing address
	 * translation during DMA transaction it relies on the client
	 * driver to enable it.
	 */
	clk_disable(data->clk_master);
}

static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
					    sysmmu_iova_t iova)
{
	unsigned long flags;

	spin_lock_irqsave(&data->lock, flags);
	if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
		clk_enable(data->clk_master);
		if (sysmmu_block(data)) {
			if (data->version >= MAKE_MMU_VER(5, 0))
				__sysmmu_tlb_invalidate(data);
			else
				__sysmmu_tlb_invalidate_entry(data, iova, 1);
			sysmmu_unblock(data);
		}
		clk_disable(data->clk_master);
	}
	spin_unlock_irqrestore(&data->lock, flags);
}

static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
					sysmmu_iova_t iova, size_t size)
{
	unsigned long flags;

	spin_lock_irqsave(&data->lock, flags);
	if (data->active) {
		unsigned int num_inv = 1;

		clk_enable(data->clk_master);

		/*
		 * L2TLB invalidation required
		 * 4KB page: 1 invalidation
		 * 64KB page: 16 invalidations
		 * 1MB page: 64 invalidations
		 * because it is set-associative TLB
		 * with 8-way and 64 sets.
		 * 1MB page can be cached in one of all sets.
		 * 64KB page can be one of 16 consecutive sets.
		 */
		if (MMU_MAJ_VER(data->version) == 2)
			num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);

		if (sysmmu_block(data)) {
			__sysmmu_tlb_invalidate_entry(data, iova, num_inv);
			sysmmu_unblock(data);
		}
		clk_disable(data->clk_master);
	}
	spin_unlock_irqrestore(&data->lock, flags);
}

static const struct iommu_ops exynos_iommu_ops;

static int __init exynos_sysmmu_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct device *dev = &pdev->dev;
	struct sysmmu_drvdata *data;
	struct resource *res;

	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	data->sfrbase = devm_ioremap_resource(dev, res);
	if (IS_ERR(data->sfrbase))
		return PTR_ERR(data->sfrbase);

	irq = platform_get_irq(pdev, 0);
	if (irq <= 0) {
		dev_err(dev, "Unable to find IRQ resource\n");
		return irq;
	}

	ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
				dev_name(dev), data);
	if (ret) {
		dev_err(dev, "Unabled to register handler of irq %d\n", irq);
		return ret;
	}

	data->clk = devm_clk_get(dev, "sysmmu");
	if (PTR_ERR(data->clk) == -ENOENT)
		data->clk = NULL;
	else if (IS_ERR(data->clk))
		return PTR_ERR(data->clk);

	data->aclk = devm_clk_get(dev, "aclk");
	if (PTR_ERR(data->aclk) == -ENOENT)
		data->aclk = NULL;
	else if (IS_ERR(data->aclk))
		return PTR_ERR(data->aclk);

	data->pclk = devm_clk_get(dev, "pclk");
	if (PTR_ERR(data->pclk) == -ENOENT)
		data->pclk = NULL;
	else if (IS_ERR(data->pclk))
		return PTR_ERR(data->pclk);

	if (!data->clk && (!data->aclk || !data->pclk)) {
		dev_err(dev, "Failed to get device clock(s)!\n");
		return -ENOSYS;
	}

	data->clk_master = devm_clk_get(dev, "master");
	if (PTR_ERR(data->clk_master) == -ENOENT)
		data->clk_master = NULL;
	else if (IS_ERR(data->clk_master))
		return PTR_ERR(data->clk_master);

	data->sysmmu = dev;
	spin_lock_init(&data->lock);

	ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
				     dev_name(data->sysmmu));
	if (ret)
		return ret;

	iommu_device_set_ops(&data->iommu, &exynos_iommu_ops);
	iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode);

	ret = iommu_device_register(&data->iommu);
	if (ret)
		return ret;

	platform_set_drvdata(pdev, data);

	__sysmmu_get_version(data);
	if (PG_ENT_SHIFT < 0) {
		if (MMU_MAJ_VER(data->version) < 5) {
			PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
			LV1_PROT = SYSMMU_LV1_PROT;
			LV2_PROT = SYSMMU_LV2_PROT;
		} else {
			PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
			LV1_PROT = SYSMMU_V5_LV1_PROT;
			LV2_PROT = SYSMMU_V5_LV2_PROT;
		}
	}

	/*
	 * use the first registered sysmmu device for performing
	 * dma mapping operations on iommu page tables (cpu cache flush)
	 */
	if (!dma_dev)
		dma_dev = &pdev->dev;

	pm_runtime_enable(dev);

	return 0;
}

static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
{
	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
	struct device *master = data->master;

	if (master) {
		struct exynos_iommu_owner *owner = master->archdata.iommu;

		mutex_lock(&owner->rpm_lock);
		if (data->domain) {
			dev_dbg(data->sysmmu, "saving state\n");
			__sysmmu_disable(data);
		}
		mutex_unlock(&owner->rpm_lock);
	}
	return 0;
}

static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
{
	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
	struct device *master = data->master;

	if (master) {
		struct exynos_iommu_owner *owner = master->archdata.iommu;

		mutex_lock(&owner->rpm_lock);
		if (data->domain) {
			dev_dbg(data->sysmmu, "restoring state\n");
			__sysmmu_enable(data);
		}
		mutex_unlock(&owner->rpm_lock);
	}
	return 0;
}

static const struct dev_pm_ops sysmmu_pm_ops = {
	SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
				pm_runtime_force_resume)
};

static const struct of_device_id sysmmu_of_match[] = {
	{ .compatible	= "samsung,exynos-sysmmu", },
	{ },
};

static struct platform_driver exynos_sysmmu_driver __refdata = {
	.probe	= exynos_sysmmu_probe,
	.driver	= {
		.name		= "exynos-sysmmu",
		.of_match_table	= sysmmu_of_match,
		.pm		= &sysmmu_pm_ops,
		.suppress_bind_attrs = true,
	}
};

static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
{
	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
				DMA_TO_DEVICE);
	*ent = cpu_to_le32(val);
	dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
				   DMA_TO_DEVICE);
}

static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
{
	struct exynos_iommu_domain *domain;
	dma_addr_t handle;
	int i;

	/* Check if correct PTE offsets are initialized */
	BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
		return NULL;

	if (type == IOMMU_DOMAIN_DMA) {
		if (iommu_get_dma_cookie(&domain->domain) != 0)
			goto err_pgtable;
	} else if (type != IOMMU_DOMAIN_UNMANAGED) {
		goto err_pgtable;
	}

	domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
	if (!domain->pgtable)
		goto err_dma_cookie;

	domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
	if (!domain->lv2entcnt)
		goto err_counter;

	/* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
	for (i = 0; i < NUM_LV1ENTRIES; i++)
		domain->pgtable[i] = ZERO_LV2LINK;

	handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
				DMA_TO_DEVICE);
	/* For mapping page table entries we rely on dma == phys */
	BUG_ON(handle != virt_to_phys(domain->pgtable));
	if (dma_mapping_error(dma_dev, handle))
		goto err_lv2ent;

	spin_lock_init(&domain->lock);
	spin_lock_init(&domain->pgtablelock);
	INIT_LIST_HEAD(&domain->clients);

	domain->domain.geometry.aperture_start = 0;
	domain->domain.geometry.aperture_end   = ~0UL;
	domain->domain.geometry.force_aperture = true;

	return &domain->domain;

err_lv2ent:
	free_pages((unsigned long)domain->lv2entcnt, 1);
err_counter:
	free_pages((unsigned long)domain->pgtable, 2);
err_dma_cookie:
	if (type == IOMMU_DOMAIN_DMA)
		iommu_put_dma_cookie(&domain->domain);
err_pgtable:
	kfree(domain);
	return NULL;
}

static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
{
	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
	struct sysmmu_drvdata *data, *next;
	unsigned long flags;
	int i;

	WARN_ON(!list_empty(&domain->clients));

	spin_lock_irqsave(&domain->lock, flags);

	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
		spin_lock(&data->lock);
		__sysmmu_disable(data);
		data->pgtable = 0;
		data->domain = NULL;
		list_del_init(&data->domain_node);
		spin_unlock(&data->lock);
	}

	spin_unlock_irqrestore(&domain->lock, flags);

	if (iommu_domain->type == IOMMU_DOMAIN_DMA)
		iommu_put_dma_cookie(iommu_domain);

	dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
			 DMA_TO_DEVICE);

	for (i = 0; i < NUM_LV1ENTRIES; i++)
		if (lv1ent_page(domain->pgtable + i)) {
			phys_addr_t base = lv2table_base(domain->pgtable + i);

			dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
					 DMA_TO_DEVICE);
			kmem_cache_free(lv2table_kmem_cache,
					phys_to_virt(base));
		}

	free_pages((unsigned long)domain->pgtable, 2);
	free_pages((unsigned long)domain->lv2entcnt, 1);
	kfree(domain);
}

static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
				    struct device *dev)
{
	struct exynos_iommu_owner *owner = dev->archdata.iommu;
	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
	struct sysmmu_drvdata *data, *next;
	unsigned long flags;

	if (!has_sysmmu(dev) || owner->domain != iommu_domain)
		return;

	mutex_lock(&owner->rpm_lock);

	list_for_each_entry(data, &owner->controllers, owner_node) {
		pm_runtime_get_noresume(data->sysmmu);
		if (pm_runtime_active(data->sysmmu))
			__sysmmu_disable(data);
		pm_runtime_put(data->sysmmu);
	}

	spin_lock_irqsave(&domain->lock, flags);
	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
		spin_lock(&data->lock);
		data->pgtable = 0;
		data->domain = NULL;
		list_del_init(&data->domain_node);
		spin_unlock(&data->lock);
	}
	owner->domain = NULL;
	spin_unlock_irqrestore(&domain->lock, flags);

	mutex_unlock(&owner->rpm_lock);

	dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
		&pagetable);
}

static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
				   struct device *dev)
{
	struct exynos_iommu_owner *owner = dev->archdata.iommu;
	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
	struct sysmmu_drvdata *data;
	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
	unsigned long flags;

	if (!has_sysmmu(dev))
		return -ENODEV;

	if (owner->domain)
		exynos_iommu_detach_device(owner->domain, dev);

	mutex_lock(&owner->rpm_lock);

	spin_lock_irqsave(&domain->lock, flags);
	list_for_each_entry(data, &owner->controllers, owner_node) {
		spin_lock(&data->lock);
		data->pgtable = pagetable;
		data->domain = domain;
		list_add_tail(&data->domain_node, &domain->clients);
		spin_unlock(&data->lock);
	}
	owner->domain = iommu_domain;
	spin_unlock_irqrestore(&domain->lock, flags);

	list_for_each_entry(data, &owner->controllers, owner_node) {
		pm_runtime_get_noresume(data->sysmmu);
		if (pm_runtime_active(data->sysmmu))
			__sysmmu_enable(data);
		pm_runtime_put(data->sysmmu);
	}

	mutex_unlock(&owner->rpm_lock);

	dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
		&pagetable);

	return 0;
}

static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
		sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
{
	if (lv1ent_section(sent)) {
		WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
		return ERR_PTR(-EADDRINUSE);
	}

	if (lv1ent_fault(sent)) {
		dma_addr_t handle;
		sysmmu_pte_t *pent;
		bool need_flush_flpd_cache = lv1ent_zero(sent);

		pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
		BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
		if (!pent)
			return ERR_PTR(-ENOMEM);

		update_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
		kmemleak_ignore(pent);
		*pgcounter = NUM_LV2ENTRIES;
		handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
					DMA_TO_DEVICE);
		if (dma_mapping_error(dma_dev, handle)) {
			kmem_cache_free(lv2table_kmem_cache, pent);
			return ERR_PTR(-EADDRINUSE);
		}

		/*
		 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
		 * FLPD cache may cache the address of zero_l2_table. This
		 * function replaces the zero_l2_table with new L2 page table
		 * to write valid mappings.
		 * Accessing the valid area may cause page fault since FLPD
		 * cache may still cache zero_l2_table for the valid area
		 * instead of new L2 page table that has the mapping
		 * information of the valid area.
		 * Thus any replacement of zero_l2_table with other valid L2
		 * page table must involve FLPD cache invalidation for System
		 * MMU v3.3.
		 * FLPD cache invalidation is performed with TLB invalidation
		 * by VPN without blocking. It is safe to invalidate TLB without
		 * blocking because the target address of TLB invalidation is
		 * not currently mapped.
		 */
		if (need_flush_flpd_cache) {
			struct sysmmu_drvdata *data;

			spin_lock(&domain->lock);
			list_for_each_entry(data, &domain->clients, domain_node)
				sysmmu_tlb_invalidate_flpdcache(data, iova);
			spin_unlock(&domain->lock);
		}
	}

	return page_entry(sent, iova);
}

static int lv1set_section(struct exynos_iommu_domain *domain,
			  sysmmu_pte_t *sent, sysmmu_iova_t iova,
			  phys_addr_t paddr, int prot, short *pgcnt)
{
	if (lv1ent_section(sent)) {
		WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
			iova);
		return -EADDRINUSE;
	}

	if (lv1ent_page(sent)) {
		if (*pgcnt != NUM_LV2ENTRIES) {
			WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
				iova);
			return -EADDRINUSE;
		}

		kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
		*pgcnt = 0;
	}

	update_pte(sent, mk_lv1ent_sect(paddr, prot));

	spin_lock(&domain->lock);
	if (lv1ent_page_zero(sent)) {
		struct sysmmu_drvdata *data;
		/*
		 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
		 * entry by speculative prefetch of SLPD which has no mapping.
		 */
		list_for_each_entry(data, &domain->clients, domain_node)
			sysmmu_tlb_invalidate_flpdcache(data, iova);
	}
	spin_unlock(&domain->lock);

	return 0;
}

static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
		       int prot, short *pgcnt)
{
	if (size == SPAGE_SIZE) {
		if (WARN_ON(!lv2ent_fault(pent)))
			return -EADDRINUSE;

		update_pte(pent, mk_lv2ent_spage(paddr, prot));
		*pgcnt -= 1;
	} else { /* size == LPAGE_SIZE */
		int i;
		dma_addr_t pent_base = virt_to_phys(pent);

		dma_sync_single_for_cpu(dma_dev, pent_base,
					sizeof(*pent) * SPAGES_PER_LPAGE,
					DMA_TO_DEVICE);
		for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
			if (WARN_ON(!lv2ent_fault(pent))) {
				if (i > 0)
					memset(pent - i, 0, sizeof(*pent) * i);
				return -EADDRINUSE;
			}

			*pent = mk_lv2ent_lpage(paddr, prot);
		}
		dma_sync_single_for_device(dma_dev, pent_base,
					   sizeof(*pent) * SPAGES_PER_LPAGE,
					   DMA_TO_DEVICE);
		*pgcnt -= SPAGES_PER_LPAGE;
	}

	return 0;
}

/*
 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
 *
 * System MMU v3.x has advanced logic to improve address translation
 * performance with caching more page table entries by a page table walk.
 * However, the logic has a bug that while caching faulty page table entries,
 * System MMU reports page fault if the cached fault entry is hit even though
 * the fault entry is updated to a valid entry after the entry is cached.
 * To prevent caching faulty page table entries which may be updated to valid
 * entries later, the virtual memory manager should care about the workaround
 * for the problem. The following describes the workaround.
 *
 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
 *
 * Precisely, any start address of I/O virtual region must be aligned with
 * the following sizes for System MMU v3.1 and v3.2.
 * System MMU v3.1: 128KiB
 * System MMU v3.2: 256KiB
 *
 * Because System MMU v3.3 caches page table entries more aggressively, it needs
 * more workarounds.
 * - Any two consecutive I/O virtual regions must have a hole of size larger
 *   than or equal to 128KiB.
 * - Start address of an I/O virtual region must be aligned by 128KiB.
 */
static int exynos_iommu_map(struct iommu_domain *iommu_domain,
			    unsigned long l_iova, phys_addr_t paddr, size_t size,
			    int prot)
{
	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
	sysmmu_pte_t *entry;
	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
	unsigned long flags;
	int ret = -ENOMEM;

	BUG_ON(domain->pgtable == NULL);
	prot &= SYSMMU_SUPPORTED_PROT_BITS;

	spin_lock_irqsave(&domain->pgtablelock, flags);

	entry = section_entry(domain->pgtable, iova);

	if (size == SECT_SIZE) {
		ret = lv1set_section(domain, entry, iova, paddr, prot,
				     &domain->lv2entcnt[lv1ent_offset(iova)]);
	} else {
		sysmmu_pte_t *pent;

		pent = alloc_lv2entry(domain, entry, iova,
				      &domain->lv2entcnt[lv1ent_offset(iova)]);

		if (IS_ERR(pent))
			ret = PTR_ERR(pent);
		else
			ret = lv2set_page(pent, paddr, size, prot,
				       &domain->lv2entcnt[lv1ent_offset(iova)]);
	}

	if (ret)
		pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
			__func__, ret, size, iova);

	spin_unlock_irqrestore(&domain->pgtablelock, flags);

	return ret;
}

static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
					      sysmmu_iova_t iova, size_t size)
{
	struct sysmmu_drvdata *data;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	list_for_each_entry(data, &domain->clients, domain_node)
		sysmmu_tlb_invalidate_entry(data, iova, size);

	spin_unlock_irqrestore(&domain->lock, flags);
}

static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
				 unsigned long l_iova, size_t size)
{
	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
	sysmmu_pte_t *ent;
	size_t err_pgsize;
	unsigned long flags;

	BUG_ON(domain->pgtable == NULL);

	spin_lock_irqsave(&domain->pgtablelock, flags);

	ent = section_entry(domain->pgtable, iova);

	if (lv1ent_section(ent)) {
		if (WARN_ON(size < SECT_SIZE)) {
			err_pgsize = SECT_SIZE;
			goto err;
		}

		/* workaround for h/w bug in System MMU v3.3 */
		update_pte(ent, ZERO_LV2LINK);
		size = SECT_SIZE;
		goto done;
	}

	if (unlikely(lv1ent_fault(ent))) {
		if (size > SECT_SIZE)
			size = SECT_SIZE;
		goto done;
	}

	/* lv1ent_page(sent) == true here */

	ent = page_entry(ent, iova);

	if (unlikely(lv2ent_fault(ent))) {
		size = SPAGE_SIZE;
		goto done;
	}

	if (lv2ent_small(ent)) {
		update_pte(ent, 0);
		size = SPAGE_SIZE;
		domain->lv2entcnt[lv1ent_offset(iova)] += 1;
		goto done;
	}

	/* lv1ent_large(ent) == true here */
	if (WARN_ON(size < LPAGE_SIZE)) {
		err_pgsize = LPAGE_SIZE;
		goto err;
	}

	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
				sizeof(*ent) * SPAGES_PER_LPAGE,
				DMA_TO_DEVICE);
	memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
	dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
				   sizeof(*ent) * SPAGES_PER_LPAGE,
				   DMA_TO_DEVICE);
	size = LPAGE_SIZE;
	domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
done:
	spin_unlock_irqrestore(&domain->pgtablelock, flags);

	exynos_iommu_tlb_invalidate_entry(domain, iova, size);

	return size;
err:
	spin_unlock_irqrestore(&domain->pgtablelock, flags);

	pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
		__func__, size, iova, err_pgsize);

	return 0;
}

static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
					  dma_addr_t iova)
{
	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
	sysmmu_pte_t *entry;
	unsigned long flags;
	phys_addr_t phys = 0;

	spin_lock_irqsave(&domain->pgtablelock, flags);

	entry = section_entry(domain->pgtable, iova);

	if (lv1ent_section(entry)) {
		phys = section_phys(entry) + section_offs(iova);
	} else if (lv1ent_page(entry)) {
		entry = page_entry(entry, iova);

		if (lv2ent_large(entry))
			phys = lpage_phys(entry) + lpage_offs(iova);
		else if (lv2ent_small(entry))
			phys = spage_phys(entry) + spage_offs(iova);
	}

	spin_unlock_irqrestore(&domain->pgtablelock, flags);

	return phys;
}

static struct iommu_group *get_device_iommu_group(struct device *dev)
{
	struct iommu_group *group;

	group = iommu_group_get(dev);
	if (!group)
		group = iommu_group_alloc();

	return group;
}

static int exynos_iommu_add_device(struct device *dev)
{
	struct iommu_group *group;

	if (!has_sysmmu(dev))
		return -ENODEV;

	group = iommu_group_get_for_dev(dev);

	if (IS_ERR(group))
		return PTR_ERR(group);

	iommu_group_put(group);

	return 0;
}

static void exynos_iommu_remove_device(struct device *dev)
{
	struct exynos_iommu_owner *owner = dev->archdata.iommu;

	if (!has_sysmmu(dev))
		return;

	if (owner->domain) {
		struct iommu_group *group = iommu_group_get(dev);

		if (group) {
			WARN_ON(owner->domain !=
				iommu_group_default_domain(group));
			exynos_iommu_detach_device(owner->domain, dev);
			iommu_group_put(group);
		}
	}
	iommu_group_remove_device(dev);
}

static int exynos_iommu_of_xlate(struct device *dev,
				 struct of_phandle_args *spec)
{
	struct exynos_iommu_owner *owner = dev->archdata.iommu;
	struct platform_device *sysmmu = of_find_device_by_node(spec->np);
	struct sysmmu_drvdata *data, *entry;

	if (!sysmmu)
		return -ENODEV;

	data = platform_get_drvdata(sysmmu);
	if (!data)
		return -ENODEV;

	if (!owner) {
		owner = kzalloc(sizeof(*owner), GFP_KERNEL);
		if (!owner)
			return -ENOMEM;

		INIT_LIST_HEAD(&owner->controllers);
		mutex_init(&owner->rpm_lock);
		dev->archdata.iommu = owner;
	}

	list_for_each_entry(entry, &owner->controllers, owner_node)
		if (entry == data)
			return 0;

	list_add_tail(&data->owner_node, &owner->controllers);
	data->master = dev;

	/*
	 * SYSMMU will be runtime activated via device link (dependency) to its
	 * master device, so there are no direct calls to pm_runtime_get/put
	 * in this driver.
	 */
	device_link_add(dev, data->sysmmu, DL_FLAG_PM_RUNTIME);

	return 0;
}

static const struct iommu_ops exynos_iommu_ops = {
	.domain_alloc = exynos_iommu_domain_alloc,
	.domain_free = exynos_iommu_domain_free,
	.attach_dev = exynos_iommu_attach_device,
	.detach_dev = exynos_iommu_detach_device,
	.map = exynos_iommu_map,
	.unmap = exynos_iommu_unmap,
	.map_sg = default_iommu_map_sg,
	.iova_to_phys = exynos_iommu_iova_to_phys,
	.device_group = get_device_iommu_group,
	.add_device = exynos_iommu_add_device,
	.remove_device = exynos_iommu_remove_device,
	.pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
	.of_xlate = exynos_iommu_of_xlate,
};

static int __init exynos_iommu_init(void)
{
	struct device_node *np;
	int ret;

	np = of_find_matching_node(NULL, sysmmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

	lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
				LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
	if (!lv2table_kmem_cache) {
		pr_err("%s: Failed to create kmem cache\n", __func__);
		return -ENOMEM;
	}

	ret = platform_driver_register(&exynos_sysmmu_driver);
	if (ret) {
		pr_err("%s: Failed to register driver\n", __func__);
		goto err_reg_driver;
	}

	zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
	if (zero_lv2_table == NULL) {
		pr_err("%s: Failed to allocate zero level2 page table\n",
			__func__);
		ret = -ENOMEM;
		goto err_zero_lv2;
	}

	ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
	if (ret) {
		pr_err("%s: Failed to register exynos-iommu driver.\n",
								__func__);
		goto err_set_iommu;
	}

	return 0;
err_set_iommu:
	kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
err_zero_lv2:
	platform_driver_unregister(&exynos_sysmmu_driver);
err_reg_driver:
	kmem_cache_destroy(lv2table_kmem_cache);
	return ret;
}
core_initcall(exynos_iommu_init);

IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu", NULL);