async-thread.c 10.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 * Copyright (C) 2014 Fujitsu.  All rights reserved.
 */

#include <linux/kthread.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/freezer.h>
#include "async-thread.h"
#include "ctree.h"

enum {
	WORK_DONE_BIT,
	WORK_ORDER_DONE_BIT,
	WORK_HIGH_PRIO_BIT,
};

#define NO_THRESHOLD (-1)
#define DFT_THRESHOLD (32)

struct __btrfs_workqueue {
	struct workqueue_struct *normal_wq;

	/* File system this workqueue services */
	struct btrfs_fs_info *fs_info;

	/* List head pointing to ordered work list */
	struct list_head ordered_list;

	/* Spinlock for ordered_list */
	spinlock_t list_lock;

	/* Thresholding related variants */
	atomic_t pending;

	/* Up limit of concurrency workers */
	int limit_active;

	/* Current number of concurrency workers */
	int current_active;

	/* Threshold to change current_active */
	int thresh;
	unsigned int count;
	spinlock_t thres_lock;
};

struct btrfs_workqueue {
	struct __btrfs_workqueue *normal;
	struct __btrfs_workqueue *high;
};

struct btrfs_fs_info * __pure btrfs_workqueue_owner(const struct __btrfs_workqueue *wq)
{
	return wq->fs_info;
}

struct btrfs_fs_info * __pure btrfs_work_owner(const struct btrfs_work *work)
{
	return work->wq->fs_info;
}

bool btrfs_workqueue_normal_congested(const struct btrfs_workqueue *wq)
{
	/*
	 * We could compare wq->normal->pending with num_online_cpus()
	 * to support "thresh == NO_THRESHOLD" case, but it requires
	 * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's
	 * postpone it until someone needs the support of that case.
	 */
	if (wq->normal->thresh == NO_THRESHOLD)
		return false;

	return atomic_read(&wq->normal->pending) > wq->normal->thresh * 2;
}

static struct __btrfs_workqueue *
__btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info, const char *name,
			unsigned int flags, int limit_active, int thresh)
{
	struct __btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);

	if (!ret)
		return NULL;

	ret->fs_info = fs_info;
	ret->limit_active = limit_active;
	atomic_set(&ret->pending, 0);
	if (thresh == 0)
		thresh = DFT_THRESHOLD;
	/* For low threshold, disabling threshold is a better choice */
	if (thresh < DFT_THRESHOLD) {
		ret->current_active = limit_active;
		ret->thresh = NO_THRESHOLD;
	} else {
		/*
		 * For threshold-able wq, let its concurrency grow on demand.
		 * Use minimal max_active at alloc time to reduce resource
		 * usage.
		 */
		ret->current_active = 1;
		ret->thresh = thresh;
	}

	if (flags & WQ_HIGHPRI)
		ret->normal_wq = alloc_workqueue("btrfs-%s-high", flags,
						 ret->current_active, name);
	else
		ret->normal_wq = alloc_workqueue("btrfs-%s", flags,
						 ret->current_active, name);
	if (!ret->normal_wq) {
		kfree(ret);
		return NULL;
	}

	INIT_LIST_HEAD(&ret->ordered_list);
	spin_lock_init(&ret->list_lock);
	spin_lock_init(&ret->thres_lock);
	trace_btrfs_workqueue_alloc(ret, name, flags & WQ_HIGHPRI);
	return ret;
}

static inline void
__btrfs_destroy_workqueue(struct __btrfs_workqueue *wq);

struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info,
					      const char *name,
					      unsigned int flags,
					      int limit_active,
					      int thresh)
{
	struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);

	if (!ret)
		return NULL;

	ret->normal = __btrfs_alloc_workqueue(fs_info, name,
					      flags & ~WQ_HIGHPRI,
					      limit_active, thresh);
	if (!ret->normal) {
		kfree(ret);
		return NULL;
	}

	if (flags & WQ_HIGHPRI) {
		ret->high = __btrfs_alloc_workqueue(fs_info, name, flags,
						    limit_active, thresh);
		if (!ret->high) {
			__btrfs_destroy_workqueue(ret->normal);
			kfree(ret);
			return NULL;
		}
	}
	return ret;
}

/*
 * Hook for threshold which will be called in btrfs_queue_work.
 * This hook WILL be called in IRQ handler context,
 * so workqueue_set_max_active MUST NOT be called in this hook
 */
static inline void thresh_queue_hook(struct __btrfs_workqueue *wq)
{
	if (wq->thresh == NO_THRESHOLD)
		return;
	atomic_inc(&wq->pending);
}

/*
 * Hook for threshold which will be called before executing the work,
 * This hook is called in kthread content.
 * So workqueue_set_max_active is called here.
 */
static inline void thresh_exec_hook(struct __btrfs_workqueue *wq)
{
	int new_current_active;
	long pending;
	int need_change = 0;

	if (wq->thresh == NO_THRESHOLD)
		return;

	atomic_dec(&wq->pending);
	spin_lock(&wq->thres_lock);
	/*
	 * Use wq->count to limit the calling frequency of
	 * workqueue_set_max_active.
	 */
	wq->count++;
	wq->count %= (wq->thresh / 4);
	if (!wq->count)
		goto  out;
	new_current_active = wq->current_active;

	/*
	 * pending may be changed later, but it's OK since we really
	 * don't need it so accurate to calculate new_max_active.
	 */
	pending = atomic_read(&wq->pending);
	if (pending > wq->thresh)
		new_current_active++;
	if (pending < wq->thresh / 2)
		new_current_active--;
	new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
	if (new_current_active != wq->current_active)  {
		need_change = 1;
		wq->current_active = new_current_active;
	}
out:
	spin_unlock(&wq->thres_lock);

	if (need_change) {
		workqueue_set_max_active(wq->normal_wq, wq->current_active);
	}
}

static void run_ordered_work(struct __btrfs_workqueue *wq,
			     struct btrfs_work *self)
{
	struct list_head *list = &wq->ordered_list;
	struct btrfs_work *work;
	spinlock_t *lock = &wq->list_lock;
	unsigned long flags;
	bool free_self = false;

	while (1) {
		spin_lock_irqsave(lock, flags);
		if (list_empty(list))
			break;
		work = list_entry(list->next, struct btrfs_work,
				  ordered_list);
		if (!test_bit(WORK_DONE_BIT, &work->flags))
			break;

		/*
		 * we are going to call the ordered done function, but
		 * we leave the work item on the list as a barrier so
		 * that later work items that are done don't have their
		 * functions called before this one returns
		 */
		if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
			break;
		trace_btrfs_ordered_sched(work);
		spin_unlock_irqrestore(lock, flags);
		work->ordered_func(work);

		/* now take the lock again and drop our item from the list */
		spin_lock_irqsave(lock, flags);
		list_del(&work->ordered_list);
		spin_unlock_irqrestore(lock, flags);

		if (work == self) {
			/*
			 * This is the work item that the worker is currently
			 * executing.
			 *
			 * The kernel workqueue code guarantees non-reentrancy
			 * of work items. I.e., if a work item with the same
			 * address and work function is queued twice, the second
			 * execution is blocked until the first one finishes. A
			 * work item may be freed and recycled with the same
			 * work function; the workqueue code assumes that the
			 * original work item cannot depend on the recycled work
			 * item in that case (see find_worker_executing_work()).
			 *
			 * Note that different types of Btrfs work can depend on
			 * each other, and one type of work on one Btrfs
			 * filesystem may even depend on the same type of work
			 * on another Btrfs filesystem via, e.g., a loop device.
			 * Therefore, we must not allow the current work item to
			 * be recycled until we are really done, otherwise we
			 * break the above assumption and can deadlock.
			 */
			free_self = true;
		} else {
			/*
			 * We don't want to call the ordered free functions with
			 * the lock held.
			 */
			work->ordered_free(work);
			/* NB: work must not be dereferenced past this point. */
			trace_btrfs_all_work_done(wq->fs_info, work);
		}
	}
	spin_unlock_irqrestore(lock, flags);

	if (free_self) {
		self->ordered_free(self);
		/* NB: self must not be dereferenced past this point. */
		trace_btrfs_all_work_done(wq->fs_info, self);
	}
}

static void btrfs_work_helper(struct work_struct *normal_work)
{
	struct btrfs_work *work = container_of(normal_work, struct btrfs_work,
					       normal_work);
	struct __btrfs_workqueue *wq;
	int need_order = 0;

	/*
	 * We should not touch things inside work in the following cases:
	 * 1) after work->func() if it has no ordered_free
	 *    Since the struct is freed in work->func().
	 * 2) after setting WORK_DONE_BIT
	 *    The work may be freed in other threads almost instantly.
	 * So we save the needed things here.
	 */
	if (work->ordered_func)
		need_order = 1;
	wq = work->wq;

	trace_btrfs_work_sched(work);
	thresh_exec_hook(wq);
	work->func(work);
	if (need_order) {
		set_bit(WORK_DONE_BIT, &work->flags);
		run_ordered_work(wq, work);
	} else {
		/* NB: work must not be dereferenced past this point. */
		trace_btrfs_all_work_done(wq->fs_info, work);
	}
}

void btrfs_init_work(struct btrfs_work *work, btrfs_func_t func,
		     btrfs_func_t ordered_func, btrfs_func_t ordered_free)
{
	work->func = func;
	work->ordered_func = ordered_func;
	work->ordered_free = ordered_free;
	INIT_WORK(&work->normal_work, btrfs_work_helper);
	INIT_LIST_HEAD(&work->ordered_list);
	work->flags = 0;
}

static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq,
				      struct btrfs_work *work)
{
	unsigned long flags;

	work->wq = wq;
	thresh_queue_hook(wq);
	if (work->ordered_func) {
		spin_lock_irqsave(&wq->list_lock, flags);
		list_add_tail(&work->ordered_list, &wq->ordered_list);
		spin_unlock_irqrestore(&wq->list_lock, flags);
	}
	trace_btrfs_work_queued(work);
	queue_work(wq->normal_wq, &work->normal_work);
}

void btrfs_queue_work(struct btrfs_workqueue *wq,
		      struct btrfs_work *work)
{
	struct __btrfs_workqueue *dest_wq;

	if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags) && wq->high)
		dest_wq = wq->high;
	else
		dest_wq = wq->normal;
	__btrfs_queue_work(dest_wq, work);
}

static inline void
__btrfs_destroy_workqueue(struct __btrfs_workqueue *wq)
{
	destroy_workqueue(wq->normal_wq);
	trace_btrfs_workqueue_destroy(wq);
	kfree(wq);
}

void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
{
	if (!wq)
		return;
	if (wq->high)
		__btrfs_destroy_workqueue(wq->high);
	__btrfs_destroy_workqueue(wq->normal);
	kfree(wq);
}

void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
{
	if (!wq)
		return;
	wq->normal->limit_active = limit_active;
	if (wq->high)
		wq->high->limit_active = limit_active;
}

void btrfs_set_work_high_priority(struct btrfs_work *work)
{
	set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
}

void btrfs_flush_workqueue(struct btrfs_workqueue *wq)
{
	if (wq->high)
		flush_workqueue(wq->high->normal_wq);

	flush_workqueue(wq->normal->normal_wq);
}