pl353-smc.c 12.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
// SPDX-License-Identifier: GPL-2.0
/*
 * ARM PL353 SMC driver
 *
 * Copyright (C) 2012 - 2018 Xilinx, Inc
 * Author: Punnaiah Choudary Kalluri <punnaiah@xilinx.com>
 * Author: Naga Sureshkumar Relli <nagasure@xilinx.com>
 */

#include <linux/clk.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/pl353-smc.h>
#include <linux/amba/bus.h>

/* Register definitions */
#define PL353_SMC_MEMC_STATUS_OFFS	0	/* Controller status reg, RO */
#define PL353_SMC_CFG_CLR_OFFS		0xC	/* Clear config reg, WO */
#define PL353_SMC_DIRECT_CMD_OFFS	0x10	/* Direct command reg, WO */
#define PL353_SMC_SET_CYCLES_OFFS	0x14	/* Set cycles register, WO */
#define PL353_SMC_SET_OPMODE_OFFS	0x18	/* Set opmode register, WO */
#define PL353_SMC_ECC_STATUS_OFFS	0x400	/* ECC status register */
#define PL353_SMC_ECC_MEMCFG_OFFS	0x404	/* ECC mem config reg */
#define PL353_SMC_ECC_MEMCMD1_OFFS	0x408	/* ECC mem cmd1 reg */
#define PL353_SMC_ECC_MEMCMD2_OFFS	0x40C	/* ECC mem cmd2 reg */
#define PL353_SMC_ECC_VALUE0_OFFS	0x418	/* ECC value 0 reg */

/* Controller status register specific constants */
#define PL353_SMC_MEMC_STATUS_RAW_INT_1_SHIFT	6

/* Clear configuration register specific constants */
#define PL353_SMC_CFG_CLR_INT_CLR_1	0x10
#define PL353_SMC_CFG_CLR_ECC_INT_DIS_1	0x40
#define PL353_SMC_CFG_CLR_INT_DIS_1	0x2
#define PL353_SMC_CFG_CLR_DEFAULT_MASK	(PL353_SMC_CFG_CLR_INT_CLR_1 | \
					 PL353_SMC_CFG_CLR_ECC_INT_DIS_1 | \
					 PL353_SMC_CFG_CLR_INT_DIS_1)

/* Set cycles register specific constants */
#define PL353_SMC_SET_CYCLES_T0_MASK	0xF
#define PL353_SMC_SET_CYCLES_T0_SHIFT	0
#define PL353_SMC_SET_CYCLES_T1_MASK	0xF
#define PL353_SMC_SET_CYCLES_T1_SHIFT	4
#define PL353_SMC_SET_CYCLES_T2_MASK	0x7
#define PL353_SMC_SET_CYCLES_T2_SHIFT	8
#define PL353_SMC_SET_CYCLES_T3_MASK	0x7
#define PL353_SMC_SET_CYCLES_T3_SHIFT	11
#define PL353_SMC_SET_CYCLES_T4_MASK	0x7
#define PL353_SMC_SET_CYCLES_T4_SHIFT	14
#define PL353_SMC_SET_CYCLES_T5_MASK	0x7
#define PL353_SMC_SET_CYCLES_T5_SHIFT	17
#define PL353_SMC_SET_CYCLES_T6_MASK	0xF
#define PL353_SMC_SET_CYCLES_T6_SHIFT	20

/* ECC status register specific constants */
#define PL353_SMC_ECC_STATUS_BUSY	BIT(6)
#define PL353_SMC_ECC_REG_SIZE_OFFS	4

/* ECC memory config register specific constants */
#define PL353_SMC_ECC_MEMCFG_MODE_MASK	0xC
#define PL353_SMC_ECC_MEMCFG_MODE_SHIFT	2
#define PL353_SMC_ECC_MEMCFG_PGSIZE_MASK	0xC

#define PL353_SMC_DC_UPT_NAND_REGS	((4 << 23) |	/* CS: NAND chip */ \
				 (2 << 21))	/* UpdateRegs operation */

#define PL353_NAND_ECC_CMD1	((0x80)       |	/* Write command */ \
				 (0 << 8)     |	/* Read command */ \
				 (0x30 << 16) |	/* Read End command */ \
				 (1 << 24))	/* Read End command calid */

#define PL353_NAND_ECC_CMD2	((0x85)	      |	/* Write col change cmd */ \
				 (5 << 8)     |	/* Read col change cmd */ \
				 (0xE0 << 16) |	/* Read col change end cmd */ \
				 (1 << 24)) /* Read col change end cmd valid */
#define PL353_NAND_ECC_BUSY_TIMEOUT	(1 * HZ)
/**
 * struct pl353_smc_data - Private smc driver structure
 * @memclk:		Pointer to the peripheral clock
 * @aclk:		Pointer to the APER clock
 */
struct pl353_smc_data {
	struct clk		*memclk;
	struct clk		*aclk;
};

/* SMC virtual register base */
static void __iomem *pl353_smc_base;

/**
 * pl353_smc_set_buswidth - Set memory buswidth
 * @bw: Memory buswidth (8 | 16)
 * Return: 0 on success or negative errno.
 */
int pl353_smc_set_buswidth(unsigned int bw)
{
	if (bw != PL353_SMC_MEM_WIDTH_8  && bw != PL353_SMC_MEM_WIDTH_16)
		return -EINVAL;

	writel(bw, pl353_smc_base + PL353_SMC_SET_OPMODE_OFFS);
	writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base +
	       PL353_SMC_DIRECT_CMD_OFFS);

	return 0;
}
EXPORT_SYMBOL_GPL(pl353_smc_set_buswidth);

/**
 * pl353_smc_set_cycles - Set memory timing parameters
 * @timings: NAND controller timing parameters
 *
 * Sets NAND chip specific timing parameters.
 */
void pl353_smc_set_cycles(u32 timings[])
{
	/*
	 * Set write pulse timing. This one is easy to extract:
	 *
	 * NWE_PULSE = tWP
	 */
	timings[0] &= PL353_SMC_SET_CYCLES_T0_MASK;
	timings[1] = (timings[1] & PL353_SMC_SET_CYCLES_T1_MASK) <<
			PL353_SMC_SET_CYCLES_T1_SHIFT;
	timings[2] = (timings[2]  & PL353_SMC_SET_CYCLES_T2_MASK) <<
			PL353_SMC_SET_CYCLES_T2_SHIFT;
	timings[3] = (timings[3]  & PL353_SMC_SET_CYCLES_T3_MASK) <<
			PL353_SMC_SET_CYCLES_T3_SHIFT;
	timings[4] = (timings[4] & PL353_SMC_SET_CYCLES_T4_MASK) <<
			PL353_SMC_SET_CYCLES_T4_SHIFT;
	timings[5]  = (timings[5]  & PL353_SMC_SET_CYCLES_T5_MASK) <<
			PL353_SMC_SET_CYCLES_T5_SHIFT;
	timings[6]  = (timings[6]  & PL353_SMC_SET_CYCLES_T6_MASK) <<
			PL353_SMC_SET_CYCLES_T6_SHIFT;
	timings[0] |= timings[1] | timings[2] | timings[3] |
			timings[4] | timings[5] | timings[6];

	writel(timings[0], pl353_smc_base + PL353_SMC_SET_CYCLES_OFFS);
	writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base +
	       PL353_SMC_DIRECT_CMD_OFFS);
}
EXPORT_SYMBOL_GPL(pl353_smc_set_cycles);

/**
 * pl353_smc_ecc_is_busy - Read ecc busy flag
 * Return: the ecc_status bit from the ecc_status register. 1 = busy, 0 = idle
 */
bool pl353_smc_ecc_is_busy(void)
{
	return ((readl(pl353_smc_base + PL353_SMC_ECC_STATUS_OFFS) &
		  PL353_SMC_ECC_STATUS_BUSY) == PL353_SMC_ECC_STATUS_BUSY);
}
EXPORT_SYMBOL_GPL(pl353_smc_ecc_is_busy);

/**
 * pl353_smc_get_ecc_val - Read ecc_valueN registers
 * @ecc_reg: Index of the ecc_value reg (0..3)
 * Return: the content of the requested ecc_value register.
 *
 * There are four valid ecc_value registers. The argument is truncated to stay
 * within this valid boundary.
 */
u32 pl353_smc_get_ecc_val(int ecc_reg)
{
	u32 addr, reg;

	addr = PL353_SMC_ECC_VALUE0_OFFS +
		(ecc_reg * PL353_SMC_ECC_REG_SIZE_OFFS);
	reg = readl(pl353_smc_base + addr);

	return reg;
}
EXPORT_SYMBOL_GPL(pl353_smc_get_ecc_val);

/**
 * pl353_smc_get_nand_int_status_raw - Get NAND interrupt status bit
 * Return: the raw_int_status1 bit from the memc_status register
 */
int pl353_smc_get_nand_int_status_raw(void)
{
	u32 reg;

	reg = readl(pl353_smc_base + PL353_SMC_MEMC_STATUS_OFFS);
	reg >>= PL353_SMC_MEMC_STATUS_RAW_INT_1_SHIFT;
	reg &= 1;

	return reg;
}
EXPORT_SYMBOL_GPL(pl353_smc_get_nand_int_status_raw);

/**
 * pl353_smc_clr_nand_int - Clear NAND interrupt
 */
void pl353_smc_clr_nand_int(void)
{
	writel(PL353_SMC_CFG_CLR_INT_CLR_1,
	       pl353_smc_base + PL353_SMC_CFG_CLR_OFFS);
}
EXPORT_SYMBOL_GPL(pl353_smc_clr_nand_int);

/**
 * pl353_smc_set_ecc_mode - Set SMC ECC mode
 * @mode: ECC mode (BYPASS, APB, MEM)
 * Return: 0 on success or negative errno.
 */
int pl353_smc_set_ecc_mode(enum pl353_smc_ecc_mode mode)
{
	u32 reg;
	int ret = 0;

	switch (mode) {
	case PL353_SMC_ECCMODE_BYPASS:
	case PL353_SMC_ECCMODE_APB:
	case PL353_SMC_ECCMODE_MEM:

		reg = readl(pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);
		reg &= ~PL353_SMC_ECC_MEMCFG_MODE_MASK;
		reg |= mode << PL353_SMC_ECC_MEMCFG_MODE_SHIFT;
		writel(reg, pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(pl353_smc_set_ecc_mode);

/**
 * pl353_smc_set_ecc_pg_size - Set SMC ECC page size
 * @pg_sz: ECC page size
 * Return: 0 on success or negative errno.
 */
int pl353_smc_set_ecc_pg_size(unsigned int pg_sz)
{
	u32 reg, sz;

	switch (pg_sz) {
	case 0:
		sz = 0;
		break;
	case SZ_512:
		sz = 1;
		break;
	case SZ_1K:
		sz = 2;
		break;
	case SZ_2K:
		sz = 3;
		break;
	default:
		return -EINVAL;
	}

	reg = readl(pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);
	reg &= ~PL353_SMC_ECC_MEMCFG_PGSIZE_MASK;
	reg |= sz;
	writel(reg, pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);

	return 0;
}
EXPORT_SYMBOL_GPL(pl353_smc_set_ecc_pg_size);

static int __maybe_unused pl353_smc_suspend(struct device *dev)
{
	struct pl353_smc_data *pl353_smc = dev_get_drvdata(dev);

	clk_disable(pl353_smc->memclk);
	clk_disable(pl353_smc->aclk);

	return 0;
}

static int __maybe_unused pl353_smc_resume(struct device *dev)
{
	int ret;
	struct pl353_smc_data *pl353_smc = dev_get_drvdata(dev);

	ret = clk_enable(pl353_smc->aclk);
	if (ret) {
		dev_err(dev, "Cannot enable axi domain clock.\n");
		return ret;
	}

	ret = clk_enable(pl353_smc->memclk);
	if (ret) {
		dev_err(dev, "Cannot enable memory clock.\n");
		clk_disable(pl353_smc->aclk);
		return ret;
	}

	return ret;
}

static struct amba_driver pl353_smc_driver;

static SIMPLE_DEV_PM_OPS(pl353_smc_dev_pm_ops, pl353_smc_suspend,
			 pl353_smc_resume);

/**
 * pl353_smc_init_nand_interface - Initialize the NAND interface
 * @adev: Pointer to the amba_device struct
 * @nand_node: Pointer to the pl353_nand device_node struct
 */
static void pl353_smc_init_nand_interface(struct amba_device *adev,
					  struct device_node *nand_node)
{
	unsigned long timeout;

	pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8);
	writel(PL353_SMC_CFG_CLR_INT_CLR_1,
	       pl353_smc_base + PL353_SMC_CFG_CLR_OFFS);
	writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base +
	       PL353_SMC_DIRECT_CMD_OFFS);

	timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
	/* Wait till the ECC operation is complete */
	do {
		if (pl353_smc_ecc_is_busy())
			cpu_relax();
		else
			break;
	} while (!time_after_eq(jiffies, timeout));

	if (time_after_eq(jiffies, timeout))
		return;

	writel(PL353_NAND_ECC_CMD1,
	       pl353_smc_base + PL353_SMC_ECC_MEMCMD1_OFFS);
	writel(PL353_NAND_ECC_CMD2,
	       pl353_smc_base + PL353_SMC_ECC_MEMCMD2_OFFS);
}

static const struct of_device_id pl353_smc_supported_children[] = {
	{
		.compatible = "cfi-flash"
	},
	{
		.compatible = "arm,pl353-nand-r2p1",
		.data = pl353_smc_init_nand_interface
	},
	{}
};

static int pl353_smc_probe(struct amba_device *adev, const struct amba_id *id)
{
	struct pl353_smc_data *pl353_smc;
	struct device_node *child;
	struct resource *res;
	int err;
	struct device_node *of_node = adev->dev.of_node;
	static void (*init)(struct amba_device *adev,
			    struct device_node *nand_node);
	const struct of_device_id *match = NULL;

	pl353_smc = devm_kzalloc(&adev->dev, sizeof(*pl353_smc), GFP_KERNEL);
	if (!pl353_smc)
		return -ENOMEM;

	/* Get the NAND controller virtual address */
	res = &adev->res;
	pl353_smc_base = devm_ioremap_resource(&adev->dev, res);
	if (IS_ERR(pl353_smc_base))
		return PTR_ERR(pl353_smc_base);

	pl353_smc->aclk = devm_clk_get(&adev->dev, "apb_pclk");
	if (IS_ERR(pl353_smc->aclk)) {
		dev_err(&adev->dev, "aclk clock not found.\n");
		return PTR_ERR(pl353_smc->aclk);
	}

	pl353_smc->memclk = devm_clk_get(&adev->dev, "memclk");
	if (IS_ERR(pl353_smc->memclk)) {
		dev_err(&adev->dev, "memclk clock not found.\n");
		return PTR_ERR(pl353_smc->memclk);
	}

	err = clk_prepare_enable(pl353_smc->aclk);
	if (err) {
		dev_err(&adev->dev, "Unable to enable AXI clock.\n");
		return err;
	}

	err = clk_prepare_enable(pl353_smc->memclk);
	if (err) {
		dev_err(&adev->dev, "Unable to enable memory clock.\n");
		goto out_clk_dis_aper;
	}

	amba_set_drvdata(adev, pl353_smc);

	/* clear interrupts */
	writel(PL353_SMC_CFG_CLR_DEFAULT_MASK,
	       pl353_smc_base + PL353_SMC_CFG_CLR_OFFS);

	/* Find compatible children. Only a single child is supported */
	for_each_available_child_of_node(of_node, child) {
		match = of_match_node(pl353_smc_supported_children, child);
		if (!match) {
			dev_warn(&adev->dev, "unsupported child node\n");
			continue;
		}
		break;
	}
	if (!match) {
		dev_err(&adev->dev, "no matching children\n");
		goto out_clk_disable;
	}

	init = match->data;
	if (init)
		init(adev, child);
	of_platform_device_create(child, NULL, &adev->dev);

	return 0;

out_clk_disable:
	clk_disable_unprepare(pl353_smc->memclk);
out_clk_dis_aper:
	clk_disable_unprepare(pl353_smc->aclk);

	return err;
}

static int pl353_smc_remove(struct amba_device *adev)
{
	struct pl353_smc_data *pl353_smc = amba_get_drvdata(adev);

	clk_disable_unprepare(pl353_smc->memclk);
	clk_disable_unprepare(pl353_smc->aclk);

	return 0;
}

static const struct amba_id pl353_ids[] = {
	{
	.id = 0x00041353,
	.mask = 0x000fffff,
	},
	{ 0, 0 },
};
MODULE_DEVICE_TABLE(amba, pl353_ids);

static struct amba_driver pl353_smc_driver = {
	.drv = {
		.owner = THIS_MODULE,
		.name = "pl353-smc",
		.pm = &pl353_smc_dev_pm_ops,
	},
	.id_table = pl353_ids,
	.probe = pl353_smc_probe,
	.remove = pl353_smc_remove,
};

module_amba_driver(pl353_smc_driver);

MODULE_AUTHOR("Xilinx, Inc.");
MODULE_DESCRIPTION("ARM PL353 SMC Driver");
MODULE_LICENSE("GPL");