fsl_ifc.c 17.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright 2011 Freescale Semiconductor, Inc
 *
 * Freescale Integrated Flash Controller
 *
 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
 */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/compiler.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/fsl_ifc.h>
#include <linux/irqdomain.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>

struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev;
EXPORT_SYMBOL(fsl_ifc_ctrl_dev);
#define FSL_IFC_V1_3_0	0x01030000
#define IFC_TIMEOUT_MSECS	1000 /* 1000ms */

/*
 * convert_ifc_address - convert the base address
 * @addr_base:	base address of the memory bank
 */
unsigned int convert_ifc_address(phys_addr_t addr_base)
{
	return addr_base & CSPR_BA;
}
EXPORT_SYMBOL(convert_ifc_address);

/*
 * fsl_ifc_find - find IFC bank
 * @addr_base:	base address of the memory bank
 *
 * This function walks IFC banks comparing "Base address" field of the CSPR
 * registers with the supplied addr_base argument. When bases match this
 * function returns bank number (starting with 0), otherwise it returns
 * appropriate errno value.
 */
int fsl_ifc_find(phys_addr_t addr_base)
{
	int i = 0;

	if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->gregs)
		return -ENODEV;

	for (i = 0; i < fsl_ifc_ctrl_dev->banks; i++) {
		u32 cspr = ifc_in32(&fsl_ifc_ctrl_dev->gregs->cspr_cs[i].cspr);

		if (cspr & CSPR_V && (cspr & CSPR_BA) ==
				convert_ifc_address(addr_base))
			return i;
	}

	return -ENOENT;
}
EXPORT_SYMBOL(fsl_ifc_find);

static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl)
{
	struct fsl_ifc_global __iomem *ifc = ctrl->gregs;

	/*
	 * Clear all the common status and event registers
	 */
	if (ifc_in32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER)
		ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);

	/* enable all error and events */
	ifc_out32(IFC_CM_EVTER_EN_CSEREN, &ifc->cm_evter_en);

	/* enable all error and event interrupts */
	ifc_out32(IFC_CM_EVTER_INTR_EN_CSERIREN, &ifc->cm_evter_intr_en);
	ifc_out32(0x0, &ifc->cm_erattr0);
	ifc_out32(0x0, &ifc->cm_erattr1);

	return 0;
}

static int fsl_ifc_ctrl_remove(struct platform_device *dev)
{
	struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev);

	free_irq(ctrl->nand_irq, ctrl);
	free_irq(ctrl->irq, ctrl);

	irq_dispose_mapping(ctrl->nand_irq);
	irq_dispose_mapping(ctrl->irq);

	iounmap(ctrl->gregs);

	dev_set_drvdata(&dev->dev, NULL);
	kfree(ctrl);

	return 0;
}

/*
 * NAND events are split between an operational interrupt which only
 * receives OPC, and an error interrupt that receives everything else,
 * including non-NAND errors.  Whichever interrupt gets to it first
 * records the status and wakes the wait queue.
 */
static DEFINE_SPINLOCK(nand_irq_lock);

static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl)
{
	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
	unsigned long flags;
	u32 stat;

	spin_lock_irqsave(&nand_irq_lock, flags);

	stat = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
	if (stat) {
		ifc_out32(stat, &ifc->ifc_nand.nand_evter_stat);
		ctrl->nand_stat = stat;
		wake_up(&ctrl->nand_wait);
	}

	spin_unlock_irqrestore(&nand_irq_lock, flags);

	return stat;
}

static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data)
{
	struct fsl_ifc_ctrl *ctrl = data;

	if (check_nand_stat(ctrl))
		return IRQ_HANDLED;

	return IRQ_NONE;
}

/*
 * NOTE: This interrupt is used to report ifc events of various kinds,
 * such as transaction errors on the chipselects.
 */
static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data)
{
	struct fsl_ifc_ctrl *ctrl = data;
	struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
	u32 err_axiid, err_srcid, status, cs_err, err_addr;
	irqreturn_t ret = IRQ_NONE;

	/* read for chip select error */
	cs_err = ifc_in32(&ifc->cm_evter_stat);
	if (cs_err) {
		dev_err(ctrl->dev, "transaction sent to IFC is not mapped to any memory bank 0x%08X\n",
			cs_err);
		/* clear the chip select error */
		ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);

		/* read error attribute registers print the error information */
		status = ifc_in32(&ifc->cm_erattr0);
		err_addr = ifc_in32(&ifc->cm_erattr1);

		if (status & IFC_CM_ERATTR0_ERTYP_READ)
			dev_err(ctrl->dev, "Read transaction error CM_ERATTR0 0x%08X\n",
				status);
		else
			dev_err(ctrl->dev, "Write transaction error CM_ERATTR0 0x%08X\n",
				status);

		err_axiid = (status & IFC_CM_ERATTR0_ERAID) >>
					IFC_CM_ERATTR0_ERAID_SHIFT;
		dev_err(ctrl->dev, "AXI ID of the error transaction 0x%08X\n",
			err_axiid);

		err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >>
					IFC_CM_ERATTR0_ESRCID_SHIFT;
		dev_err(ctrl->dev, "SRC ID of the error transaction 0x%08X\n",
			err_srcid);

		dev_err(ctrl->dev, "Transaction Address corresponding to error ERADDR 0x%08X\n",
			err_addr);

		ret = IRQ_HANDLED;
	}

	if (check_nand_stat(ctrl))
		ret = IRQ_HANDLED;

	return ret;
}

/*
 * fsl_ifc_ctrl_probe
 *
 * called by device layer when it finds a device matching
 * one our driver can handled. This code allocates all of
 * the resources needed for the controller only.  The
 * resources for the NAND banks themselves are allocated
 * in the chip probe function.
 */
static int fsl_ifc_ctrl_probe(struct platform_device *dev)
{
	int ret = 0;
	int version, banks;
	void __iomem *addr;

	dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");

	fsl_ifc_ctrl_dev = kzalloc(sizeof(*fsl_ifc_ctrl_dev), GFP_KERNEL);
	if (!fsl_ifc_ctrl_dev)
		return -ENOMEM;

	dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev);

	/* IOMAP the entire IFC region */
	fsl_ifc_ctrl_dev->gregs = of_iomap(dev->dev.of_node, 0);
	if (!fsl_ifc_ctrl_dev->gregs) {
		dev_err(&dev->dev, "failed to get memory region\n");
		ret = -ENODEV;
		goto err;
	}

	if (of_property_read_bool(dev->dev.of_node, "little-endian")) {
		fsl_ifc_ctrl_dev->little_endian = true;
		dev_dbg(&dev->dev, "IFC REGISTERS are LITTLE endian\n");
	} else {
		fsl_ifc_ctrl_dev->little_endian = false;
		dev_dbg(&dev->dev, "IFC REGISTERS are BIG endian\n");
	}

	version = ifc_in32(&fsl_ifc_ctrl_dev->gregs->ifc_rev) &
			FSL_IFC_VERSION_MASK;

	banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8;
	dev_info(&dev->dev, "IFC version %d.%d, %d banks\n",
		version >> 24, (version >> 16) & 0xf, banks);

	fsl_ifc_ctrl_dev->version = version;
	fsl_ifc_ctrl_dev->banks = banks;

	addr = fsl_ifc_ctrl_dev->gregs;
	if (version >= FSL_IFC_VERSION_2_0_0)
		addr += PGOFFSET_64K;
	else
		addr += PGOFFSET_4K;
	fsl_ifc_ctrl_dev->rregs = addr;

	/* get the Controller level irq */
	fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
	if (fsl_ifc_ctrl_dev->irq == 0) {
		dev_err(&dev->dev, "failed to get irq resource for IFC\n");
		ret = -ENODEV;
		goto err;
	}

	/* get the nand machine irq */
	fsl_ifc_ctrl_dev->nand_irq =
			irq_of_parse_and_map(dev->dev.of_node, 1);

	fsl_ifc_ctrl_dev->dev = &dev->dev;

	ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev);
	if (ret < 0)
		goto err;

	init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait);

	ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED,
			  "fsl-ifc", fsl_ifc_ctrl_dev);
	if (ret != 0) {
		dev_err(&dev->dev, "failed to install irq (%d)\n",
			fsl_ifc_ctrl_dev->irq);
		goto err_irq;
	}

	if (fsl_ifc_ctrl_dev->nand_irq) {
		ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq,
				0, "fsl-ifc-nand", fsl_ifc_ctrl_dev);
		if (ret != 0) {
			dev_err(&dev->dev, "failed to install irq (%d)\n",
				fsl_ifc_ctrl_dev->nand_irq);
			goto err_nandirq;
		}
	}

	return 0;

err_nandirq:
	free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev);
	irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq);
err_irq:
	free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
	irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
err:
	return ret;
}

#ifdef CONFIG_PM_SLEEP
/* save ifc registers */
static int fsl_ifc_suspend(struct device *dev)
{
	struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(dev);
	struct fsl_ifc_global __iomem *fcm = ctrl->gregs;
	struct fsl_ifc_runtime __iomem *runtime = ctrl->rregs;
	__be32 nand_evter_intr_en, cm_evter_intr_en, nor_evter_intr_en,
							 gpcm_evter_intr_en;
	uint32_t ifc_bank, i;

	ctrl->saved_gregs = kzalloc(sizeof(struct fsl_ifc_global), GFP_KERNEL);
	if (!ctrl->saved_gregs)
		return -ENOMEM;
	ctrl->saved_rregs = kzalloc(sizeof(struct fsl_ifc_runtime), GFP_KERNEL);
	if (!ctrl->saved_rregs)
		return -ENOMEM;

	cm_evter_intr_en = ifc_in32(&fcm->cm_evter_intr_en);
	nand_evter_intr_en = ifc_in32(&runtime->ifc_nand.nand_evter_intr_en);
	nor_evter_intr_en = ifc_in32(&runtime->ifc_nor.nor_evter_intr_en);
	gpcm_evter_intr_en = ifc_in32(&runtime->ifc_gpcm.gpcm_evter_intr_en);

/* IFC interrupts disabled */

	ifc_out32(0x0, &fcm->cm_evter_intr_en);
	ifc_out32(0x0, &runtime->ifc_nand.nand_evter_intr_en);
	ifc_out32(0x0, &runtime->ifc_nor.nor_evter_intr_en);
	ifc_out32(0x0, &runtime->ifc_gpcm.gpcm_evter_intr_en);

	if (ctrl->saved_gregs) {
		for (ifc_bank = 0; ifc_bank < FSL_IFC_BANK_COUNT; ifc_bank++) {
			ctrl->saved_gregs->cspr_cs[ifc_bank].cspr_ext =
				ifc_in32(&fcm->cspr_cs[ifc_bank].cspr_ext);
			ctrl->saved_gregs->cspr_cs[ifc_bank].cspr =
				ifc_in32(&fcm->cspr_cs[ifc_bank].cspr);
			ctrl->saved_gregs->amask_cs[ifc_bank].amask =
				ifc_in32(&fcm->amask_cs[ifc_bank].amask);
			ctrl->saved_gregs->csor_cs[ifc_bank].csor_ext =
				ifc_in32(&fcm->csor_cs[ifc_bank].csor_ext);
			ctrl->saved_gregs->csor_cs[ifc_bank].csor =
				ifc_in32(&fcm->csor_cs[ifc_bank].csor);
			for (i = 0; i < 4; i++) {
				ctrl->saved_gregs->ftim_cs[ifc_bank].ftim[i] =
					ifc_in32(
					&fcm->ftim_cs[ifc_bank].ftim[i]);
			}
		}

		ctrl->saved_gregs->rb_map = ifc_in32(&fcm->rb_map);
		ctrl->saved_gregs->wb_map = ifc_in32(&fcm->wb_map);
		ctrl->saved_gregs->ifc_gcr = ifc_in32(&fcm->ifc_gcr);
		ctrl->saved_gregs->ddr_ccr_low = ifc_in32(&fcm->ddr_ccr_low);
		ctrl->saved_gregs->cm_evter_en = ifc_in32(&fcm->cm_evter_en);
	}

	if (ctrl->saved_rregs) {
		/* IFC controller NAND machine registers */
		ctrl->saved_rregs->ifc_nand.ncfgr =
					ifc_in32(&runtime->ifc_nand.ncfgr);
		ctrl->saved_rregs->ifc_nand.nand_fcr0 =
					ifc_in32(&runtime->ifc_nand.nand_fcr0);
		ctrl->saved_rregs->ifc_nand.nand_fcr1 =
					ifc_in32(&runtime->ifc_nand.nand_fcr1);
		ctrl->saved_rregs->ifc_nand.row0 =
					ifc_in32(&runtime->ifc_nand.row0);
		ctrl->saved_rregs->ifc_nand.row1 =
					ifc_in32(&runtime->ifc_nand.row1);
		ctrl->saved_rregs->ifc_nand.col0 =
					ifc_in32(&runtime->ifc_nand.col0);
		ctrl->saved_rregs->ifc_nand.col1 =
					ifc_in32(&runtime->ifc_nand.col1);
		ctrl->saved_rregs->ifc_nand.row2 =
					ifc_in32(&runtime->ifc_nand.row2);
		ctrl->saved_rregs->ifc_nand.col2 =
					ifc_in32(&runtime->ifc_nand.col2);
		ctrl->saved_rregs->ifc_nand.row3 =
					ifc_in32(&runtime->ifc_nand.row3);
		ctrl->saved_rregs->ifc_nand.col3 =
					ifc_in32(&runtime->ifc_nand.col3);

		ctrl->saved_rregs->ifc_nand.nand_fbcr =
					ifc_in32(&runtime->ifc_nand.nand_fbcr);
		ctrl->saved_rregs->ifc_nand.nand_fir0 =
					ifc_in32(&runtime->ifc_nand.nand_fir0);
		ctrl->saved_rregs->ifc_nand.nand_fir1 =
					ifc_in32(&runtime->ifc_nand.nand_fir1);
		ctrl->saved_rregs->ifc_nand.nand_fir2 =
					ifc_in32(&runtime->ifc_nand.nand_fir2);
		ctrl->saved_rregs->ifc_nand.nand_csel =
					ifc_in32(&runtime->ifc_nand.nand_csel);
		ctrl->saved_rregs->ifc_nand.nandseq_strt =
					ifc_in32(
					&runtime->ifc_nand.nandseq_strt);
		ctrl->saved_rregs->ifc_nand.nand_evter_en =
					ifc_in32(
					&runtime->ifc_nand.nand_evter_en);
		ctrl->saved_rregs->ifc_nand.nanndcr =
					ifc_in32(&runtime->ifc_nand.nanndcr);
		ctrl->saved_rregs->ifc_nand.nand_dll_lowcfg0 =
					ifc_in32(
					&runtime->ifc_nand.nand_dll_lowcfg0);
		ctrl->saved_rregs->ifc_nand.nand_dll_lowcfg1 =
					ifc_in32(
					&runtime->ifc_nand.nand_dll_lowcfg1);

		/* IFC controller NOR machine registers */
		ctrl->saved_rregs->ifc_nor.nor_evter_en =
					ifc_in32(
					&runtime->ifc_nor.nor_evter_en);
		ctrl->saved_rregs->ifc_nor.norcr =
					ifc_in32(&runtime->ifc_nor.norcr);

		/* IFC controller GPCM Machine registers */
		ctrl->saved_rregs->ifc_gpcm.gpcm_evter_en =
					ifc_in32(
					&runtime->ifc_gpcm.gpcm_evter_en);
	}

/* save the interrupt values */
	ctrl->saved_gregs->cm_evter_intr_en = cm_evter_intr_en;
	ctrl->saved_rregs->ifc_nand.nand_evter_intr_en = nand_evter_intr_en;
	ctrl->saved_rregs->ifc_nor.nor_evter_intr_en = nor_evter_intr_en;
	ctrl->saved_rregs->ifc_gpcm.gpcm_evter_intr_en = gpcm_evter_intr_en;

	return 0;
}

/* restore ifc registers */
static int fsl_ifc_resume(struct device *dev)
{
	struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(dev);
	struct fsl_ifc_global __iomem *fcm = ctrl->gregs;
	struct fsl_ifc_runtime __iomem *runtime = ctrl->rregs;
	struct fsl_ifc_global *savd_gregs = ctrl->saved_gregs;
	struct fsl_ifc_runtime *savd_rregs = ctrl->saved_rregs;
	uint32_t ver = 0, ncfgr, timeout, ifc_bank, i;

/*
 * IFC interrupts disabled
 */
	ifc_out32(0x0, &fcm->cm_evter_intr_en);
	ifc_out32(0x0, &runtime->ifc_nand.nand_evter_intr_en);
	ifc_out32(0x0, &runtime->ifc_nor.nor_evter_intr_en);
	ifc_out32(0x0, &runtime->ifc_gpcm.gpcm_evter_intr_en);


	if (ctrl->saved_gregs) {
		for (ifc_bank = 0; ifc_bank < FSL_IFC_BANK_COUNT; ifc_bank++) {
			ifc_out32(savd_gregs->cspr_cs[ifc_bank].cspr_ext,
					&fcm->cspr_cs[ifc_bank].cspr_ext);
			ifc_out32(savd_gregs->cspr_cs[ifc_bank].cspr,
					&fcm->cspr_cs[ifc_bank].cspr);
			ifc_out32(savd_gregs->amask_cs[ifc_bank].amask,
					&fcm->amask_cs[ifc_bank].amask);
			ifc_out32(savd_gregs->csor_cs[ifc_bank].csor_ext,
					&fcm->csor_cs[ifc_bank].csor_ext);
			ifc_out32(savd_gregs->csor_cs[ifc_bank].csor,
					&fcm->csor_cs[ifc_bank].csor);
			for (i = 0; i < 4; i++) {
				ifc_out32(savd_gregs->ftim_cs[ifc_bank].ftim[i],
					&fcm->ftim_cs[ifc_bank].ftim[i]);
			}
		}
		ifc_out32(savd_gregs->rb_map, &fcm->rb_map);
		ifc_out32(savd_gregs->wb_map, &fcm->wb_map);
		ifc_out32(savd_gregs->ifc_gcr, &fcm->ifc_gcr);
		ifc_out32(savd_gregs->ddr_ccr_low, &fcm->ddr_ccr_low);
		ifc_out32(savd_gregs->cm_evter_en, &fcm->cm_evter_en);
	}

	if (ctrl->saved_rregs) {
		/* IFC controller NAND machine registers */
		ifc_out32(savd_rregs->ifc_nand.ncfgr,
						&runtime->ifc_nand.ncfgr);
		ifc_out32(savd_rregs->ifc_nand.nand_fcr0,
						&runtime->ifc_nand.nand_fcr0);
		ifc_out32(savd_rregs->ifc_nand.nand_fcr1,
						&runtime->ifc_nand.nand_fcr1);
		ifc_out32(savd_rregs->ifc_nand.row0, &runtime->ifc_nand.row0);
		ifc_out32(savd_rregs->ifc_nand.row1, &runtime->ifc_nand.row1);
		ifc_out32(savd_rregs->ifc_nand.col0, &runtime->ifc_nand.col0);
		ifc_out32(savd_rregs->ifc_nand.col1, &runtime->ifc_nand.col1);
		ifc_out32(savd_rregs->ifc_nand.row2, &runtime->ifc_nand.row2);
		ifc_out32(savd_rregs->ifc_nand.col2, &runtime->ifc_nand.col2);
		ifc_out32(savd_rregs->ifc_nand.row3, &runtime->ifc_nand.row3);
		ifc_out32(savd_rregs->ifc_nand.col3, &runtime->ifc_nand.col3);
		ifc_out32(savd_rregs->ifc_nand.nand_fbcr,
						&runtime->ifc_nand.nand_fbcr);
		ifc_out32(savd_rregs->ifc_nand.nand_fir0,
						&runtime->ifc_nand.nand_fir0);
		ifc_out32(savd_rregs->ifc_nand.nand_fir1,
						&runtime->ifc_nand.nand_fir1);
		ifc_out32(savd_rregs->ifc_nand.nand_fir2,
						&runtime->ifc_nand.nand_fir2);
		ifc_out32(savd_rregs->ifc_nand.nand_csel,
						&runtime->ifc_nand.nand_csel);
		ifc_out32(savd_rregs->ifc_nand.nandseq_strt,
					&runtime->ifc_nand.nandseq_strt);
		ifc_out32(savd_rregs->ifc_nand.nand_evter_en,
					&runtime->ifc_nand.nand_evter_en);
		ifc_out32(savd_rregs->ifc_nand.nanndcr,
					&runtime->ifc_nand.nanndcr);
		ifc_out32(savd_rregs->ifc_nand.nand_dll_lowcfg0,
					&runtime->ifc_nand.nand_dll_lowcfg0);
		ifc_out32(savd_rregs->ifc_nand.nand_dll_lowcfg1,
					&runtime->ifc_nand.nand_dll_lowcfg1);

		/* IFC controller NOR machine registers */
		ifc_out32(savd_rregs->ifc_nor.nor_evter_en,
					&runtime->ifc_nor.nor_evter_en);
		ifc_out32(savd_rregs->ifc_nor.norcr, &runtime->ifc_nor.norcr);

		/* IFC controller GPCM Machine registers */
		ifc_out32(savd_rregs->ifc_gpcm.gpcm_evter_en,
					&runtime->ifc_gpcm.gpcm_evter_en);

		/* IFC interrupts enabled */
		ifc_out32(ctrl->saved_gregs->cm_evter_intr_en,
					&fcm->cm_evter_intr_en);
		ifc_out32(ctrl->saved_rregs->ifc_nand.nand_evter_intr_en,
					&runtime->ifc_nand.nand_evter_intr_en);
		ifc_out32(ctrl->saved_rregs->ifc_nor.nor_evter_intr_en,
					&runtime->ifc_nor.nor_evter_intr_en);
		ifc_out32(ctrl->saved_rregs->ifc_gpcm.gpcm_evter_intr_en,
					&runtime->ifc_gpcm.gpcm_evter_intr_en);

		kfree(ctrl->saved_gregs);
		kfree(ctrl->saved_rregs);
		ctrl->saved_gregs = NULL;
		ctrl->saved_rregs = NULL;
	}

	ver = ifc_in32(&fcm->ifc_rev);
	ncfgr = ifc_in32(&runtime->ifc_nand.ncfgr);
	if (ver >= FSL_IFC_V1_3_0) {

		ifc_out32(ncfgr | IFC_NAND_NCFGR_SRAM_INIT_EN,
					&runtime->ifc_nand.ncfgr);
		/* wait for  SRAM_INIT bit to be clear or timeout */
		timeout = 10;
		while ((ifc_in32(&runtime->ifc_nand.ncfgr) &
			IFC_NAND_NCFGR_SRAM_INIT_EN) && timeout) {
			mdelay(IFC_TIMEOUT_MSECS);
			timeout--;
		}

		if (!timeout)
			dev_err(ctrl->dev, "Timeout waiting for IFC SRAM INIT");
	}

	return 0;
}
#endif /* CONFIG_PM_SLEEP */

static const struct of_device_id fsl_ifc_match[] = {
	{
		.compatible = "fsl,ifc",
	},
	{},
};

static const struct dev_pm_ops ifc_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(fsl_ifc_suspend, fsl_ifc_resume)
};

static struct platform_driver fsl_ifc_ctrl_driver = {
	.driver = {
		.name	= "fsl-ifc",
		.of_match_table = fsl_ifc_match,
		.pm = &ifc_pm_ops,
	},
	.probe       = fsl_ifc_ctrl_probe,
	.remove      = fsl_ifc_ctrl_remove,
};

static int __init fsl_ifc_init(void)
{
	return platform_driver_register(&fsl_ifc_ctrl_driver);
}
subsys_initcall(fsl_ifc_init);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Freescale Semiconductor");
MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver");