ref-verify.c 25.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2014 Facebook.  All rights reserved.
 */

#include <linux/sched.h>
#include <linux/stacktrace.h>
#include "ctree.h"
#include "disk-io.h"
#include "locking.h"
#include "delayed-ref.h"
#include "ref-verify.h"

/*
 * Used to keep track the roots and number of refs each root has for a given
 * bytenr.  This just tracks the number of direct references, no shared
 * references.
 */
struct root_entry {
	u64 root_objectid;
	u64 num_refs;
	struct rb_node node;
};

/*
 * These are meant to represent what should exist in the extent tree, these can
 * be used to verify the extent tree is consistent as these should all match
 * what the extent tree says.
 */
struct ref_entry {
	u64 root_objectid;
	u64 parent;
	u64 owner;
	u64 offset;
	u64 num_refs;
	struct rb_node node;
};

#define MAX_TRACE	16

/*
 * Whenever we add/remove a reference we record the action.  The action maps
 * back to the delayed ref action.  We hold the ref we are changing in the
 * action so we can account for the history properly, and we record the root we
 * were called with since it could be different from ref_root.  We also store
 * stack traces because that's how I roll.
 */
struct ref_action {
	int action;
	u64 root;
	struct ref_entry ref;
	struct list_head list;
	unsigned long trace[MAX_TRACE];
	unsigned int trace_len;
};

/*
 * One of these for every block we reference, it holds the roots and references
 * to it as well as all of the ref actions that have occurred to it.  We never
 * free it until we unmount the file system in order to make sure re-allocations
 * are happening properly.
 */
struct block_entry {
	u64 bytenr;
	u64 len;
	u64 num_refs;
	int metadata;
	int from_disk;
	struct rb_root roots;
	struct rb_root refs;
	struct rb_node node;
	struct list_head actions;
};

static struct block_entry *insert_block_entry(struct rb_root *root,
					      struct block_entry *be)
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent_node = NULL;
	struct block_entry *entry;

	while (*p) {
		parent_node = *p;
		entry = rb_entry(parent_node, struct block_entry, node);
		if (entry->bytenr > be->bytenr)
			p = &(*p)->rb_left;
		else if (entry->bytenr < be->bytenr)
			p = &(*p)->rb_right;
		else
			return entry;
	}

	rb_link_node(&be->node, parent_node, p);
	rb_insert_color(&be->node, root);
	return NULL;
}

static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
{
	struct rb_node *n;
	struct block_entry *entry = NULL;

	n = root->rb_node;
	while (n) {
		entry = rb_entry(n, struct block_entry, node);
		if (entry->bytenr < bytenr)
			n = n->rb_right;
		else if (entry->bytenr > bytenr)
			n = n->rb_left;
		else
			return entry;
	}
	return NULL;
}

static struct root_entry *insert_root_entry(struct rb_root *root,
					    struct root_entry *re)
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent_node = NULL;
	struct root_entry *entry;

	while (*p) {
		parent_node = *p;
		entry = rb_entry(parent_node, struct root_entry, node);
		if (entry->root_objectid > re->root_objectid)
			p = &(*p)->rb_left;
		else if (entry->root_objectid < re->root_objectid)
			p = &(*p)->rb_right;
		else
			return entry;
	}

	rb_link_node(&re->node, parent_node, p);
	rb_insert_color(&re->node, root);
	return NULL;

}

static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
{
	if (ref1->root_objectid < ref2->root_objectid)
		return -1;
	if (ref1->root_objectid > ref2->root_objectid)
		return 1;
	if (ref1->parent < ref2->parent)
		return -1;
	if (ref1->parent > ref2->parent)
		return 1;
	if (ref1->owner < ref2->owner)
		return -1;
	if (ref1->owner > ref2->owner)
		return 1;
	if (ref1->offset < ref2->offset)
		return -1;
	if (ref1->offset > ref2->offset)
		return 1;
	return 0;
}

static struct ref_entry *insert_ref_entry(struct rb_root *root,
					  struct ref_entry *ref)
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent_node = NULL;
	struct ref_entry *entry;
	int cmp;

	while (*p) {
		parent_node = *p;
		entry = rb_entry(parent_node, struct ref_entry, node);
		cmp = comp_refs(entry, ref);
		if (cmp > 0)
			p = &(*p)->rb_left;
		else if (cmp < 0)
			p = &(*p)->rb_right;
		else
			return entry;
	}

	rb_link_node(&ref->node, parent_node, p);
	rb_insert_color(&ref->node, root);
	return NULL;

}

static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
{
	struct rb_node *n;
	struct root_entry *entry = NULL;

	n = root->rb_node;
	while (n) {
		entry = rb_entry(n, struct root_entry, node);
		if (entry->root_objectid < objectid)
			n = n->rb_right;
		else if (entry->root_objectid > objectid)
			n = n->rb_left;
		else
			return entry;
	}
	return NULL;
}

#ifdef CONFIG_STACKTRACE
static void __save_stack_trace(struct ref_action *ra)
{
	ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2);
}

static void __print_stack_trace(struct btrfs_fs_info *fs_info,
				struct ref_action *ra)
{
	if (ra->trace_len == 0) {
		btrfs_err(fs_info, "  ref-verify: no stacktrace");
		return;
	}
	stack_trace_print(ra->trace, ra->trace_len, 2);
}
#else
static void inline __save_stack_trace(struct ref_action *ra)
{
}

static void inline __print_stack_trace(struct btrfs_fs_info *fs_info,
				       struct ref_action *ra)
{
	btrfs_err(fs_info, "  ref-verify: no stacktrace support");
}
#endif

static void free_block_entry(struct block_entry *be)
{
	struct root_entry *re;
	struct ref_entry *ref;
	struct ref_action *ra;
	struct rb_node *n;

	while ((n = rb_first(&be->roots))) {
		re = rb_entry(n, struct root_entry, node);
		rb_erase(&re->node, &be->roots);
		kfree(re);
	}

	while((n = rb_first(&be->refs))) {
		ref = rb_entry(n, struct ref_entry, node);
		rb_erase(&ref->node, &be->refs);
		kfree(ref);
	}

	while (!list_empty(&be->actions)) {
		ra = list_first_entry(&be->actions, struct ref_action,
				      list);
		list_del(&ra->list);
		kfree(ra);
	}
	kfree(be);
}

static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
					   u64 bytenr, u64 len,
					   u64 root_objectid)
{
	struct block_entry *be = NULL, *exist;
	struct root_entry *re = NULL;

	re = kzalloc(sizeof(struct root_entry), GFP_KERNEL);
	be = kzalloc(sizeof(struct block_entry), GFP_KERNEL);
	if (!be || !re) {
		kfree(re);
		kfree(be);
		return ERR_PTR(-ENOMEM);
	}
	be->bytenr = bytenr;
	be->len = len;

	re->root_objectid = root_objectid;
	re->num_refs = 0;

	spin_lock(&fs_info->ref_verify_lock);
	exist = insert_block_entry(&fs_info->block_tree, be);
	if (exist) {
		if (root_objectid) {
			struct root_entry *exist_re;

			exist_re = insert_root_entry(&exist->roots, re);
			if (exist_re)
				kfree(re);
		} else {
			kfree(re);
		}
		kfree(be);
		return exist;
	}

	be->num_refs = 0;
	be->metadata = 0;
	be->from_disk = 0;
	be->roots = RB_ROOT;
	be->refs = RB_ROOT;
	INIT_LIST_HEAD(&be->actions);
	if (root_objectid)
		insert_root_entry(&be->roots, re);
	else
		kfree(re);
	return be;
}

static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
			  u64 parent, u64 bytenr, int level)
{
	struct block_entry *be;
	struct root_entry *re;
	struct ref_entry *ref = NULL, *exist;

	ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL);
	if (!ref)
		return -ENOMEM;

	if (parent)
		ref->root_objectid = 0;
	else
		ref->root_objectid = ref_root;
	ref->parent = parent;
	ref->owner = level;
	ref->offset = 0;
	ref->num_refs = 1;

	be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
	if (IS_ERR(be)) {
		kfree(ref);
		return PTR_ERR(be);
	}
	be->num_refs++;
	be->from_disk = 1;
	be->metadata = 1;

	if (!parent) {
		ASSERT(ref_root);
		re = lookup_root_entry(&be->roots, ref_root);
		ASSERT(re);
		re->num_refs++;
	}
	exist = insert_ref_entry(&be->refs, ref);
	if (exist) {
		exist->num_refs++;
		kfree(ref);
	}
	spin_unlock(&fs_info->ref_verify_lock);

	return 0;
}

static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
			       u64 parent, u32 num_refs, u64 bytenr,
			       u64 num_bytes)
{
	struct block_entry *be;
	struct ref_entry *ref;

	ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
	if (!ref)
		return -ENOMEM;
	be = add_block_entry(fs_info, bytenr, num_bytes, 0);
	if (IS_ERR(be)) {
		kfree(ref);
		return PTR_ERR(be);
	}
	be->num_refs += num_refs;

	ref->parent = parent;
	ref->num_refs = num_refs;
	if (insert_ref_entry(&be->refs, ref)) {
		spin_unlock(&fs_info->ref_verify_lock);
		btrfs_err(fs_info, "existing shared ref when reading from disk?");
		kfree(ref);
		return -EINVAL;
	}
	spin_unlock(&fs_info->ref_verify_lock);
	return 0;
}

static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
			       struct extent_buffer *leaf,
			       struct btrfs_extent_data_ref *dref,
			       u64 bytenr, u64 num_bytes)
{
	struct block_entry *be;
	struct ref_entry *ref;
	struct root_entry *re;
	u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
	u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
	u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
	u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);

	ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
	if (!ref)
		return -ENOMEM;
	be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
	if (IS_ERR(be)) {
		kfree(ref);
		return PTR_ERR(be);
	}
	be->num_refs += num_refs;

	ref->parent = 0;
	ref->owner = owner;
	ref->root_objectid = ref_root;
	ref->offset = offset;
	ref->num_refs = num_refs;
	if (insert_ref_entry(&be->refs, ref)) {
		spin_unlock(&fs_info->ref_verify_lock);
		btrfs_err(fs_info, "existing ref when reading from disk?");
		kfree(ref);
		return -EINVAL;
	}

	re = lookup_root_entry(&be->roots, ref_root);
	if (!re) {
		spin_unlock(&fs_info->ref_verify_lock);
		btrfs_err(fs_info, "missing root in new block entry?");
		return -EINVAL;
	}
	re->num_refs += num_refs;
	spin_unlock(&fs_info->ref_verify_lock);
	return 0;
}

static int process_extent_item(struct btrfs_fs_info *fs_info,
			       struct btrfs_path *path, struct btrfs_key *key,
			       int slot, int *tree_block_level)
{
	struct btrfs_extent_item *ei;
	struct btrfs_extent_inline_ref *iref;
	struct btrfs_extent_data_ref *dref;
	struct btrfs_shared_data_ref *sref;
	struct extent_buffer *leaf = path->nodes[0];
	u32 item_size = btrfs_item_size_nr(leaf, slot);
	unsigned long end, ptr;
	u64 offset, flags, count;
	int type, ret;

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);

	if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*tree_block_level = btrfs_tree_block_level(leaf, info);
		iref = (struct btrfs_extent_inline_ref *)(info + 1);
	} else {
		if (key->type == BTRFS_METADATA_ITEM_KEY)
			*tree_block_level = key->offset;
		iref = (struct btrfs_extent_inline_ref *)(ei + 1);
	}

	ptr = (unsigned long)iref;
	end = (unsigned long)ei + item_size;
	while (ptr < end) {
		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);
		switch (type) {
		case BTRFS_TREE_BLOCK_REF_KEY:
			ret = add_tree_block(fs_info, offset, 0, key->objectid,
					     *tree_block_level);
			break;
		case BTRFS_SHARED_BLOCK_REF_KEY:
			ret = add_tree_block(fs_info, 0, offset, key->objectid,
					     *tree_block_level);
			break;
		case BTRFS_EXTENT_DATA_REF_KEY:
			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			ret = add_extent_data_ref(fs_info, leaf, dref,
						  key->objectid, key->offset);
			break;
		case BTRFS_SHARED_DATA_REF_KEY:
			sref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sref);
			ret = add_shared_data_ref(fs_info, offset, count,
						  key->objectid, key->offset);
			break;
		default:
			btrfs_err(fs_info, "invalid key type in iref");
			ret = -EINVAL;
			break;
		}
		if (ret)
			break;
		ptr += btrfs_extent_inline_ref_size(type);
	}
	return ret;
}

static int process_leaf(struct btrfs_root *root,
			struct btrfs_path *path, u64 *bytenr, u64 *num_bytes)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *leaf = path->nodes[0];
	struct btrfs_extent_data_ref *dref;
	struct btrfs_shared_data_ref *sref;
	u32 count;
	int i = 0, tree_block_level = 0, ret = 0;
	struct btrfs_key key;
	int nritems = btrfs_header_nritems(leaf);

	for (i = 0; i < nritems; i++) {
		btrfs_item_key_to_cpu(leaf, &key, i);
		switch (key.type) {
		case BTRFS_EXTENT_ITEM_KEY:
			*num_bytes = key.offset;
			fallthrough;
		case BTRFS_METADATA_ITEM_KEY:
			*bytenr = key.objectid;
			ret = process_extent_item(fs_info, path, &key, i,
						  &tree_block_level);
			break;
		case BTRFS_TREE_BLOCK_REF_KEY:
			ret = add_tree_block(fs_info, key.offset, 0,
					     key.objectid, tree_block_level);
			break;
		case BTRFS_SHARED_BLOCK_REF_KEY:
			ret = add_tree_block(fs_info, 0, key.offset,
					     key.objectid, tree_block_level);
			break;
		case BTRFS_EXTENT_DATA_REF_KEY:
			dref = btrfs_item_ptr(leaf, i,
					      struct btrfs_extent_data_ref);
			ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
						  *num_bytes);
			break;
		case BTRFS_SHARED_DATA_REF_KEY:
			sref = btrfs_item_ptr(leaf, i,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sref);
			ret = add_shared_data_ref(fs_info, key.offset, count,
						  *bytenr, *num_bytes);
			break;
		default:
			break;
		}
		if (ret)
			break;
	}
	return ret;
}

/* Walk down to the leaf from the given level */
static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
			  int level, u64 *bytenr, u64 *num_bytes)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *eb;
	u64 block_bytenr, gen;
	int ret = 0;

	while (level >= 0) {
		if (level) {
			struct btrfs_key first_key;

			block_bytenr = btrfs_node_blockptr(path->nodes[level],
							   path->slots[level]);
			gen = btrfs_node_ptr_generation(path->nodes[level],
							path->slots[level]);
			btrfs_node_key_to_cpu(path->nodes[level], &first_key,
					      path->slots[level]);
			eb = read_tree_block(fs_info, block_bytenr, gen,
					     level - 1, &first_key);
			if (IS_ERR(eb))
				return PTR_ERR(eb);
			if (!extent_buffer_uptodate(eb)) {
				free_extent_buffer(eb);
				return -EIO;
			}
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_read(eb);
			path->nodes[level-1] = eb;
			path->slots[level-1] = 0;
			path->locks[level-1] = BTRFS_READ_LOCK_BLOCKING;
		} else {
			ret = process_leaf(root, path, bytenr, num_bytes);
			if (ret)
				break;
		}
		level--;
	}
	return ret;
}

/* Walk up to the next node that needs to be processed */
static int walk_up_tree(struct btrfs_path *path, int *level)
{
	int l;

	for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
		if (!path->nodes[l])
			continue;
		if (l) {
			path->slots[l]++;
			if (path->slots[l] <
			    btrfs_header_nritems(path->nodes[l])) {
				*level = l;
				return 0;
			}
		}
		btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
		free_extent_buffer(path->nodes[l]);
		path->nodes[l] = NULL;
		path->slots[l] = 0;
		path->locks[l] = 0;
	}

	return 1;
}

static void dump_ref_action(struct btrfs_fs_info *fs_info,
			    struct ref_action *ra)
{
	btrfs_err(fs_info,
"  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
		  ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
		  ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
	__print_stack_trace(fs_info, ra);
}

/*
 * Dumps all the information from the block entry to printk, it's going to be
 * awesome.
 */
static void dump_block_entry(struct btrfs_fs_info *fs_info,
			     struct block_entry *be)
{
	struct ref_entry *ref;
	struct root_entry *re;
	struct ref_action *ra;
	struct rb_node *n;

	btrfs_err(fs_info,
"dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
		  be->bytenr, be->len, be->num_refs, be->metadata,
		  be->from_disk);

	for (n = rb_first(&be->refs); n; n = rb_next(n)) {
		ref = rb_entry(n, struct ref_entry, node);
		btrfs_err(fs_info,
"  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
			  ref->root_objectid, ref->parent, ref->owner,
			  ref->offset, ref->num_refs);
	}

	for (n = rb_first(&be->roots); n; n = rb_next(n)) {
		re = rb_entry(n, struct root_entry, node);
		btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
			  re->root_objectid, re->num_refs);
	}

	list_for_each_entry(ra, &be->actions, list)
		dump_ref_action(fs_info, ra);
}

/*
 * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
 *
 * This will add an action item to the given bytenr and do sanity checks to make
 * sure we haven't messed something up.  If we are making a new allocation and
 * this block entry has history we will delete all previous actions as long as
 * our sanity checks pass as they are no longer needed.
 */
int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info,
		       struct btrfs_ref *generic_ref)
{
	struct ref_entry *ref = NULL, *exist;
	struct ref_action *ra = NULL;
	struct block_entry *be = NULL;
	struct root_entry *re = NULL;
	int action = generic_ref->action;
	int ret = 0;
	bool metadata;
	u64 bytenr = generic_ref->bytenr;
	u64 num_bytes = generic_ref->len;
	u64 parent = generic_ref->parent;
	u64 ref_root;
	u64 owner;
	u64 offset;

	if (!btrfs_test_opt(fs_info, REF_VERIFY))
		return 0;

	if (generic_ref->type == BTRFS_REF_METADATA) {
		ref_root = generic_ref->tree_ref.root;
		owner = generic_ref->tree_ref.level;
		offset = 0;
	} else {
		ref_root = generic_ref->data_ref.ref_root;
		owner = generic_ref->data_ref.ino;
		offset = generic_ref->data_ref.offset;
	}
	metadata = owner < BTRFS_FIRST_FREE_OBJECTID;

	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
	ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
	if (!ra || !ref) {
		kfree(ref);
		kfree(ra);
		ret = -ENOMEM;
		goto out;
	}

	if (parent) {
		ref->parent = parent;
	} else {
		ref->root_objectid = ref_root;
		ref->owner = owner;
		ref->offset = offset;
	}
	ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;

	memcpy(&ra->ref, ref, sizeof(struct ref_entry));
	/*
	 * Save the extra info from the delayed ref in the ref action to make it
	 * easier to figure out what is happening.  The real ref's we add to the
	 * ref tree need to reflect what we save on disk so it matches any
	 * on-disk refs we pre-loaded.
	 */
	ra->ref.owner = owner;
	ra->ref.offset = offset;
	ra->ref.root_objectid = ref_root;
	__save_stack_trace(ra);

	INIT_LIST_HEAD(&ra->list);
	ra->action = action;
	ra->root = generic_ref->real_root;

	/*
	 * This is an allocation, preallocate the block_entry in case we haven't
	 * used it before.
	 */
	ret = -EINVAL;
	if (action == BTRFS_ADD_DELAYED_EXTENT) {
		/*
		 * For subvol_create we'll just pass in whatever the parent root
		 * is and the new root objectid, so let's not treat the passed
		 * in root as if it really has a ref for this bytenr.
		 */
		be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
		if (IS_ERR(be)) {
			kfree(ref);
			kfree(ra);
			ret = PTR_ERR(be);
			goto out;
		}
		be->num_refs++;
		if (metadata)
			be->metadata = 1;

		if (be->num_refs != 1) {
			btrfs_err(fs_info,
			"re-allocated a block that still has references to it!");
			dump_block_entry(fs_info, be);
			dump_ref_action(fs_info, ra);
			kfree(ref);
			kfree(ra);
			goto out_unlock;
		}

		while (!list_empty(&be->actions)) {
			struct ref_action *tmp;

			tmp = list_first_entry(&be->actions, struct ref_action,
					       list);
			list_del(&tmp->list);
			kfree(tmp);
		}
	} else {
		struct root_entry *tmp;

		if (!parent) {
			re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
			if (!re) {
				kfree(ref);
				kfree(ra);
				ret = -ENOMEM;
				goto out;
			}
			/*
			 * This is the root that is modifying us, so it's the
			 * one we want to lookup below when we modify the
			 * re->num_refs.
			 */
			ref_root = generic_ref->real_root;
			re->root_objectid = generic_ref->real_root;
			re->num_refs = 0;
		}

		spin_lock(&fs_info->ref_verify_lock);
		be = lookup_block_entry(&fs_info->block_tree, bytenr);
		if (!be) {
			btrfs_err(fs_info,
"trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
				  action, (unsigned long long)bytenr,
				  (unsigned long long)num_bytes);
			dump_ref_action(fs_info, ra);
			kfree(ref);
			kfree(ra);
			goto out_unlock;
		} else if (be->num_refs == 0) {
			btrfs_err(fs_info,
		"trying to do action %d for a bytenr that has 0 total references",
				action);
			dump_block_entry(fs_info, be);
			dump_ref_action(fs_info, ra);
			kfree(ref);
			kfree(ra);
			goto out_unlock;
		}

		if (!parent) {
			tmp = insert_root_entry(&be->roots, re);
			if (tmp) {
				kfree(re);
				re = tmp;
			}
		}
	}

	exist = insert_ref_entry(&be->refs, ref);
	if (exist) {
		if (action == BTRFS_DROP_DELAYED_REF) {
			if (exist->num_refs == 0) {
				btrfs_err(fs_info,
"dropping a ref for a existing root that doesn't have a ref on the block");
				dump_block_entry(fs_info, be);
				dump_ref_action(fs_info, ra);
				kfree(ref);
				kfree(ra);
				goto out_unlock;
			}
			exist->num_refs--;
			if (exist->num_refs == 0) {
				rb_erase(&exist->node, &be->refs);
				kfree(exist);
			}
		} else if (!be->metadata) {
			exist->num_refs++;
		} else {
			btrfs_err(fs_info,
"attempting to add another ref for an existing ref on a tree block");
			dump_block_entry(fs_info, be);
			dump_ref_action(fs_info, ra);
			kfree(ref);
			kfree(ra);
			goto out_unlock;
		}
		kfree(ref);
	} else {
		if (action == BTRFS_DROP_DELAYED_REF) {
			btrfs_err(fs_info,
"dropping a ref for a root that doesn't have a ref on the block");
			dump_block_entry(fs_info, be);
			dump_ref_action(fs_info, ra);
			kfree(ref);
			kfree(ra);
			goto out_unlock;
		}
	}

	if (!parent && !re) {
		re = lookup_root_entry(&be->roots, ref_root);
		if (!re) {
			/*
			 * This shouldn't happen because we will add our re
			 * above when we lookup the be with !parent, but just in
			 * case catch this case so we don't panic because I
			 * didn't think of some other corner case.
			 */
			btrfs_err(fs_info, "failed to find root %llu for %llu",
				  generic_ref->real_root, be->bytenr);
			dump_block_entry(fs_info, be);
			dump_ref_action(fs_info, ra);
			kfree(ra);
			goto out_unlock;
		}
	}
	if (action == BTRFS_DROP_DELAYED_REF) {
		if (re)
			re->num_refs--;
		be->num_refs--;
	} else if (action == BTRFS_ADD_DELAYED_REF) {
		be->num_refs++;
		if (re)
			re->num_refs++;
	}
	list_add_tail(&ra->list, &be->actions);
	ret = 0;
out_unlock:
	spin_unlock(&fs_info->ref_verify_lock);
out:
	if (ret)
		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
	return ret;
}

/* Free up the ref cache */
void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
{
	struct block_entry *be;
	struct rb_node *n;

	if (!btrfs_test_opt(fs_info, REF_VERIFY))
		return;

	spin_lock(&fs_info->ref_verify_lock);
	while ((n = rb_first(&fs_info->block_tree))) {
		be = rb_entry(n, struct block_entry, node);
		rb_erase(&be->node, &fs_info->block_tree);
		free_block_entry(be);
		cond_resched_lock(&fs_info->ref_verify_lock);
	}
	spin_unlock(&fs_info->ref_verify_lock);
}

void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
			       u64 len)
{
	struct block_entry *be = NULL, *entry;
	struct rb_node *n;

	if (!btrfs_test_opt(fs_info, REF_VERIFY))
		return;

	spin_lock(&fs_info->ref_verify_lock);
	n = fs_info->block_tree.rb_node;
	while (n) {
		entry = rb_entry(n, struct block_entry, node);
		if (entry->bytenr < start) {
			n = n->rb_right;
		} else if (entry->bytenr > start) {
			n = n->rb_left;
		} else {
			be = entry;
			break;
		}
		/* We want to get as close to start as possible */
		if (be == NULL ||
		    (entry->bytenr < start && be->bytenr > start) ||
		    (entry->bytenr < start && entry->bytenr > be->bytenr))
			be = entry;
	}

	/*
	 * Could have an empty block group, maybe have something to check for
	 * this case to verify we were actually empty?
	 */
	if (!be) {
		spin_unlock(&fs_info->ref_verify_lock);
		return;
	}

	n = &be->node;
	while (n) {
		be = rb_entry(n, struct block_entry, node);
		n = rb_next(n);
		if (be->bytenr < start && be->bytenr + be->len > start) {
			btrfs_err(fs_info,
				"block entry overlaps a block group [%llu,%llu]!",
				start, len);
			dump_block_entry(fs_info, be);
			continue;
		}
		if (be->bytenr < start)
			continue;
		if (be->bytenr >= start + len)
			break;
		if (be->bytenr + be->len > start + len) {
			btrfs_err(fs_info,
				"block entry overlaps a block group [%llu,%llu]!",
				start, len);
			dump_block_entry(fs_info, be);
		}
		rb_erase(&be->node, &fs_info->block_tree);
		free_block_entry(be);
	}
	spin_unlock(&fs_info->ref_verify_lock);
}

/* Walk down all roots and build the ref tree, meant to be called at mount */
int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
{
	struct btrfs_path *path;
	struct extent_buffer *eb;
	u64 bytenr = 0, num_bytes = 0;
	int ret, level;

	if (!btrfs_test_opt(fs_info, REF_VERIFY))
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	eb = btrfs_read_lock_root_node(fs_info->extent_root);
	btrfs_set_lock_blocking_read(eb);
	level = btrfs_header_level(eb);
	path->nodes[level] = eb;
	path->slots[level] = 0;
	path->locks[level] = BTRFS_READ_LOCK_BLOCKING;

	while (1) {
		/*
		 * We have to keep track of the bytenr/num_bytes we last hit
		 * because we could have run out of space for an inline ref, and
		 * would have had to added a ref key item which may appear on a
		 * different leaf from the original extent item.
		 */
		ret = walk_down_tree(fs_info->extent_root, path, level,
				     &bytenr, &num_bytes);
		if (ret)
			break;
		ret = walk_up_tree(path, &level);
		if (ret < 0)
			break;
		if (ret > 0) {
			ret = 0;
			break;
		}
	}
	if (ret) {
		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
		btrfs_free_ref_cache(fs_info);
	}
	btrfs_free_path(path);
	return ret;
}