lguest_net.c 19.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
/*D:500
 * The Guest network driver.
 *
 * This is very simple a virtual network driver, and our last Guest driver.
 * The only trick is that it can talk directly to multiple other recipients
 * (ie. other Guests on the same network).  It can also be used with only the
 * Host on the network.
 :*/

/* Copyright 2006 Rusty Russell <rusty@rustcorp.com.au> IBM Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
//#define DEBUG
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/module.h>
#include <linux/mm_types.h>
#include <linux/io.h>
#include <linux/lguest_bus.h>

#define SHARED_SIZE		PAGE_SIZE
#define MAX_LANS		4
#define NUM_SKBS		8

/*M:011 Network code master Jeff Garzik points out numerous shortcomings in
 * this driver if it aspires to greatness.
 *
 * Firstly, it doesn't use "NAPI": the networking's New API, and is poorer for
 * it.  As he says "NAPI means system-wide load leveling, across multiple
 * network interfaces.  Lack of NAPI can mean competition at higher loads."
 *
 * He also points out that we don't implement set_mac_address, so users cannot
 * change the devices hardware address.  When I asked why one would want to:
 * "Bonding, and situations where you /do/ want the MAC address to "leak" out
 * of the host onto the wider net."
 *
 * Finally, he would like module unloading: "It is not unrealistic to think of
 * [un|re|]loading the net support module in an lguest guest.  And, adding
 * module support makes the programmer more responsible, because they now have
 * to learn to clean up after themselves.  Any driver that cannot clean up
 * after itself is an incomplete driver in my book."
 :*/

/*D:530 The "struct lguestnet_info" contains all the information we need to
 * know about the network device. */
struct lguestnet_info
{
	/* The mapped device page(s) (an array of "struct lguest_net"). */
	struct lguest_net *peer;
	/* The physical address of the device page(s) */
	unsigned long peer_phys;
	/* The size of the device page(s). */
	unsigned long mapsize;

	/* The lguest_device I come from */
	struct lguest_device *lgdev;

	/* My peerid (ie. my slot in the array). */
	unsigned int me;

	/* Receive queue: the network packets waiting to be filled. */
	struct sk_buff *skb[NUM_SKBS];
	struct lguest_dma dma[NUM_SKBS];
};
/*:*/

/* How many bytes left in this page. */
static unsigned int rest_of_page(void *data)
{
	return PAGE_SIZE - ((unsigned long)data % PAGE_SIZE);
}

/*D:570 Each peer (ie. Guest or Host) on the network binds their receive
 * buffers to a different key: we simply use the physical address of the
 * device's memory page plus the peer number.  The Host insists that all keys
 * be a multiple of 4, so we multiply the peer number by 4. */
static unsigned long peer_key(struct lguestnet_info *info, unsigned peernum)
{
	return info->peer_phys + 4 * peernum;
}

/* This is the routine which sets up a "struct lguest_dma" to point to a
 * network packet, similar to req_to_dma() in lguest_blk.c.  The structure of a
 * "struct sk_buff" has grown complex over the years: it consists of a "head"
 * linear section pointed to by "skb->data", and possibly an array of
 * "fragments" in the case of a non-linear packet.
 *
 * Our receive buffers don't use fragments at all but outgoing skbs might, so
 * we handle it. */
static void skb_to_dma(const struct sk_buff *skb, unsigned int headlen,
		       struct lguest_dma *dma)
{
	unsigned int i, seg;

	/* First, we put the linear region into the "struct lguest_dma".  Each
	 * entry can't go over a page boundary, so even though all our packets
	 * are 1514 bytes or less, we might need to use two entries here: */
	for (i = seg = 0; i < headlen; seg++, i += rest_of_page(skb->data+i)) {
		dma->addr[seg] = virt_to_phys(skb->data + i);
		dma->len[seg] = min((unsigned)(headlen - i),
				    rest_of_page(skb->data + i));
	}

	/* Now we handle the fragments: at least they're guaranteed not to go
	 * over a page.  skb_shinfo(skb) returns a pointer to the structure
	 * which tells us about the number of fragments and the fragment
	 * array. */
	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, seg++) {
		const skb_frag_t *f = &skb_shinfo(skb)->frags[i];
		/* Should not happen with MTU less than 64k - 2 * PAGE_SIZE. */
		if (seg == LGUEST_MAX_DMA_SECTIONS) {
			/* We will end up sending a truncated packet should
			 * this ever happen.  Plus, a cool log message! */
			printk("Woah dude!  Megapacket!\n");
			break;
		}
		dma->addr[seg] = page_to_phys(f->page) + f->page_offset;
		dma->len[seg] = f->size;
	}

	/* If after all that we didn't use the entire "struct lguest_dma"
	 * array, we terminate it with a 0 length. */
	if (seg < LGUEST_MAX_DMA_SECTIONS)
		dma->len[seg] = 0;
}

/*
 * Packet transmission.
 *
 * Our packet transmission is a little unusual.  A real network card would just
 * send out the packet and leave the receivers to decide if they're interested.
 * Instead, we look through the network device memory page and see if any of
 * the ethernet addresses match the packet destination, and if so we send it to
 * that Guest.
 *
 * This is made a little more complicated in two cases.  The first case is
 * broadcast packets: for that we send the packet to all Guests on the network,
 * one at a time.  The second case is "promiscuous" mode, where a Guest wants
 * to see all the packets on the network.  We need a way for the Guest to tell
 * us it wants to see all packets, so it sets the "multicast" bit on its
 * published MAC address, which is never valid in a real ethernet address.
 */
#define PROMISC_BIT		0x01

/* This is the callback which is summoned whenever the network device's
 * multicast or promiscuous state changes.  If the card is in promiscuous mode,
 * we advertise that in our ethernet address in the device's memory.  We do the
 * same if Linux wants any or all multicast traffic.  */
static void lguestnet_set_multicast(struct net_device *dev)
{
	struct lguestnet_info *info = netdev_priv(dev);

	if ((dev->flags & (IFF_PROMISC|IFF_ALLMULTI)) || dev->mc_count)
		info->peer[info->me].mac[0] |= PROMISC_BIT;
	else
		info->peer[info->me].mac[0] &= ~PROMISC_BIT;
}

/* A simple test function to see if a peer wants to see all packets.*/
static int promisc(struct lguestnet_info *info, unsigned int peer)
{
	return info->peer[peer].mac[0] & PROMISC_BIT;
}

/* Another simple function to see if a peer's advertised ethernet address
 * matches a packet's destination ethernet address. */
static int mac_eq(const unsigned char mac[ETH_ALEN],
		  struct lguestnet_info *info, unsigned int peer)
{
	/* Ignore multicast bit, which peer turns on to mean promisc. */
	if ((info->peer[peer].mac[0] & (~PROMISC_BIT)) != mac[0])
		return 0;
	return memcmp(mac+1, info->peer[peer].mac+1, ETH_ALEN-1) == 0;
}

/* This is the function which actually sends a packet once we've decided a
 * peer wants it: */
static void transfer_packet(struct net_device *dev,
			    struct sk_buff *skb,
			    unsigned int peernum)
{
	struct lguestnet_info *info = netdev_priv(dev);
	struct lguest_dma dma;

	/* We use our handy "struct lguest_dma" packing function to prepare
	 * the skb for sending. */
	skb_to_dma(skb, skb_headlen(skb), &dma);
	pr_debug("xfer length %04x (%u)\n", htons(skb->len), skb->len);

	/* This is the actual send call which copies the packet. */
	lguest_send_dma(peer_key(info, peernum), &dma);

	/* Check that the entire packet was transmitted.  If not, it could mean
	 * that the other Guest registered a short receive buffer, but this
	 * driver should never do that.  More likely, the peer is dead. */
	if (dma.used_len != skb->len) {
		dev->stats.tx_carrier_errors++;
		pr_debug("Bad xfer to peer %i: %i of %i (dma %p/%i)\n",
			 peernum, dma.used_len, skb->len,
			 (void *)dma.addr[0], dma.len[0]);
	} else {
		/* On success we update the stats. */
		dev->stats.tx_bytes += skb->len;
		dev->stats.tx_packets++;
	}
}

/* Another helper function to tell is if a slot in the device memory is unused.
 * Since we always set the Local Assignment bit in the ethernet address, the
 * first byte can never be 0. */
static int unused_peer(const struct lguest_net peer[], unsigned int num)
{
	return peer[num].mac[0] == 0;
}

/* Finally, here is the routine which handles an outgoing packet.  It's called
 * "start_xmit" for traditional reasons. */
static int lguestnet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	unsigned int i;
	int broadcast;
	struct lguestnet_info *info = netdev_priv(dev);
	/* Extract the destination ethernet address from the packet. */
	const unsigned char *dest = ((struct ethhdr *)skb->data)->h_dest;
	DECLARE_MAC_BUF(mac);

	pr_debug("%s: xmit %s\n", dev->name, print_mac(mac, dest));

	/* If it's a multicast packet, we broadcast to everyone.  That's not
	 * very efficient, but there are very few applications which actually
	 * use multicast, which is a shame really.
	 *
	 * As etherdevice.h points out: "By definition the broadcast address is
	 * also a multicast address."  So we don't have to test for broadcast
	 * packets separately. */
	broadcast = is_multicast_ether_addr(dest);

	/* Look through all the published ethernet addresses to see if we
	 * should send this packet. */
	for (i = 0; i < info->mapsize/sizeof(struct lguest_net); i++) {
		/* We don't send to ourselves (we actually can't SEND_DMA to
		 * ourselves anyway), and don't send to unused slots.*/
		if (i == info->me || unused_peer(info->peer, i))
			continue;

		/* If it's broadcast we send it.  If they want every packet we
		 * send it.  If the destination matches their address we send
		 * it.  Otherwise we go to the next peer. */
		if (!broadcast && !promisc(info, i) && !mac_eq(dest, info, i))
			continue;

		pr_debug("lguestnet %s: sending from %i to %i\n",
			 dev->name, info->me, i);
		/* Our routine which actually does the transfer. */
		transfer_packet(dev, skb, i);
	}

	/* An xmit routine is expected to dispose of the packet, so we do. */
	dev_kfree_skb(skb);

	/* As per kernel convention, 0 means success.  This is why I love
	 * networking: even if we never sent to anyone, that's still
	 * success! */
	return 0;
}

/*D:560
 * Packet receiving.
 *
 * First, here's a helper routine which fills one of our array of receive
 * buffers: */
static int fill_slot(struct net_device *dev, unsigned int slot)
{
	struct lguestnet_info *info = netdev_priv(dev);

	/* We can receive ETH_DATA_LEN (1500) byte packets, plus a standard
	 * ethernet header of ETH_HLEN (14) bytes. */
	info->skb[slot] = netdev_alloc_skb(dev, ETH_HLEN + ETH_DATA_LEN);
	if (!info->skb[slot]) {
		printk("%s: could not fill slot %i\n", dev->name, slot);
		return -ENOMEM;
	}

	/* skb_to_dma() is a helper which sets up the "struct lguest_dma" to
	 * point to the data in the skb: we also use it for sending out a
	 * packet. */
	skb_to_dma(info->skb[slot], ETH_HLEN + ETH_DATA_LEN, &info->dma[slot]);

	/* This is a Write Memory Barrier: it ensures that the entry in the
	 * receive buffer array is written *before* we set the "used_len" entry
	 * to 0.  If the Host were looking at the receive buffer array from a
	 * different CPU, it could potentially see "used_len = 0" and not see
	 * the updated receive buffer information.  This would be a horribly
	 * nasty bug, so make sure the compiler and CPU know this has to happen
	 * first. */
	wmb();
	/* Writing 0 to "used_len" tells the Host it can use this receive
	 * buffer now. */
	info->dma[slot].used_len = 0;
	return 0;
}

/* This is the actual receive routine.  When we receive an interrupt from the
 * Host to tell us a packet has been delivered, we arrive here: */
static irqreturn_t lguestnet_rcv(int irq, void *dev_id)
{
	struct net_device *dev = dev_id;
	struct lguestnet_info *info = netdev_priv(dev);
	unsigned int i, done = 0;

	/* Look through our entire receive array for an entry which has data
	 * in it. */
	for (i = 0; i < ARRAY_SIZE(info->dma); i++) {
		unsigned int length;
		struct sk_buff *skb;

		length = info->dma[i].used_len;
		if (length == 0)
			continue;

		/* We've found one!  Remember the skb (we grabbed the length
		 * above), and immediately refill the slot we've taken it
		 * from. */
		done++;
		skb = info->skb[i];
		fill_slot(dev, i);

		/* This shouldn't happen: micropackets could be sent by a
		 * badly-behaved Guest on the network, but the Host will never
		 * stuff more data in the buffer than the buffer length. */
		if (length < ETH_HLEN || length > ETH_HLEN + ETH_DATA_LEN) {
			pr_debug(KERN_WARNING "%s: unbelievable skb len: %i\n",
				 dev->name, length);
			dev_kfree_skb(skb);
			continue;
		}

		/* skb_put(), what a great function!  I've ranted about this
		 * function before (http://lkml.org/lkml/1999/9/26/24).  You
		 * call it after you've added data to the end of an skb (in
		 * this case, it was the Host which wrote the data). */
		skb_put(skb, length);

		/* The ethernet header contains a protocol field: we use the
		 * standard helper to extract it, and place the result in
		 * skb->protocol.  The helper also sets up skb->pkt_type and
		 * eats up the ethernet header from the front of the packet. */
		skb->protocol = eth_type_trans(skb, dev);

		/* If this device doesn't need checksums for sending, we also
		 * don't need to check the packets when they come in. */
		if (dev->features & NETIF_F_NO_CSUM)
			skb->ip_summed = CHECKSUM_UNNECESSARY;

		/* As a last resort for debugging the driver or the lguest I/O
		 * subsystem, you can uncomment the "#define DEBUG" at the top
		 * of this file, which turns all the pr_debug() into printk()
		 * and floods the logs. */
		pr_debug("Receiving skb proto 0x%04x len %i type %i\n",
			 ntohs(skb->protocol), skb->len, skb->pkt_type);

		/* Update the packet and byte counts (visible from ifconfig,
		 * and good for debugging). */
		dev->stats.rx_bytes += skb->len;
		dev->stats.rx_packets++;

		/* Hand our fresh network packet into the stack's "network
		 * interface receive" routine.  That will free the packet
		 * itself when it's finished. */
		netif_rx(skb);
	}

	/* If we found any packets, we assume the interrupt was for us. */
	return done ? IRQ_HANDLED : IRQ_NONE;
}

/*D:550 This is where we start: when the device is brought up by dhcpd or
 * ifconfig.  At this point we advertise our MAC address to the rest of the
 * network, and register receive buffers ready for incoming packets. */
static int lguestnet_open(struct net_device *dev)
{
	int i;
	struct lguestnet_info *info = netdev_priv(dev);

	/* Copy our MAC address into the device page, so others on the network
	 * can find us. */
	memcpy(info->peer[info->me].mac, dev->dev_addr, ETH_ALEN);

	/* We might already be in promisc mode (dev->flags & IFF_PROMISC).  Our
	 * set_multicast callback handles this already, so we call it now. */
	lguestnet_set_multicast(dev);

	/* Allocate packets and put them into our "struct lguest_dma" array.
	 * If we fail to allocate all the packets we could still limp along,
	 * but it's a sign of real stress so we should probably give up now. */
	for (i = 0; i < ARRAY_SIZE(info->dma); i++) {
		if (fill_slot(dev, i) != 0)
			goto cleanup;
	}

	/* Finally we tell the Host where our array of "struct lguest_dma"
	 * receive buffers is, binding it to the key corresponding to the
	 * device's physical memory plus our peerid. */
	if (lguest_bind_dma(peer_key(info,info->me), info->dma,
			    NUM_SKBS, lgdev_irq(info->lgdev)) != 0)
		goto cleanup;
	return 0;

cleanup:
	while (--i >= 0)
		dev_kfree_skb(info->skb[i]);
	return -ENOMEM;
}
/*:*/

/* The close routine is called when the device is no longer in use: we clean up
 * elegantly. */
static int lguestnet_close(struct net_device *dev)
{
	unsigned int i;
	struct lguestnet_info *info = netdev_priv(dev);

	/* Clear all trace of our existence out of the device memory by setting
	 * the slot which held our MAC address to 0 (unused). */
	memset(&info->peer[info->me], 0, sizeof(info->peer[info->me]));

	/* Unregister our array of receive buffers */
	lguest_unbind_dma(peer_key(info, info->me), info->dma);
	for (i = 0; i < ARRAY_SIZE(info->dma); i++)
		dev_kfree_skb(info->skb[i]);
	return 0;
}

/*D:510 The network device probe function is basically a standard ethernet
 * device setup.  It reads the "struct lguest_device_desc" and sets the "struct
 * net_device".  Oh, the line-by-line excitement!  Let's skip over it. :*/
static int lguestnet_probe(struct lguest_device *lgdev)
{
	int err, irqf = IRQF_SHARED;
	struct net_device *dev;
	struct lguestnet_info *info;
	struct lguest_device_desc *desc = &lguest_devices[lgdev->index];

	pr_debug("lguest_net: probing for device %i\n", lgdev->index);

	dev = alloc_etherdev(sizeof(struct lguestnet_info));
	if (!dev)
		return -ENOMEM;

	/* Ethernet defaults with some changes */
	ether_setup(dev);
	dev->set_mac_address = NULL;

	dev->dev_addr[0] = 0x02; /* set local assignment bit (IEEE802) */
	dev->dev_addr[1] = 0x00;
	memcpy(&dev->dev_addr[2], &lguest_data.guestid, 2);
	dev->dev_addr[4] = 0x00;
	dev->dev_addr[5] = 0x00;

	dev->open = lguestnet_open;
	dev->stop = lguestnet_close;
	dev->hard_start_xmit = lguestnet_start_xmit;

	/* We don't actually support multicast yet, but turning on/off
	 * promisc also calls dev->set_multicast_list. */
	dev->set_multicast_list = lguestnet_set_multicast;
	SET_NETDEV_DEV(dev, &lgdev->dev);

	/* The network code complains if you have "scatter-gather" capability
	 * if you don't also handle checksums (it seem that would be
	 * "illogical").  So we use a lie of omission and don't tell it that we
	 * can handle scattered packets unless we also don't want checksums,
	 * even though to us they're completely independent. */
	if (desc->features & LGUEST_NET_F_NOCSUM)
		dev->features = NETIF_F_SG|NETIF_F_NO_CSUM;

	info = netdev_priv(dev);
	info->mapsize = PAGE_SIZE * desc->num_pages;
	info->peer_phys = ((unsigned long)desc->pfn << PAGE_SHIFT);
	info->lgdev = lgdev;
	info->peer = lguest_map(info->peer_phys, desc->num_pages);
	if (!info->peer) {
		err = -ENOMEM;
		goto free;
	}

	/* This stores our peerid (upper bits reserved for future). */
	info->me = (desc->features & (info->mapsize-1));

	err = register_netdev(dev);
	if (err) {
		pr_debug("lguestnet: registering device failed\n");
		goto unmap;
	}

	if (lguest_devices[lgdev->index].features & LGUEST_DEVICE_F_RANDOMNESS)
		irqf |= IRQF_SAMPLE_RANDOM;
	if (request_irq(lgdev_irq(lgdev), lguestnet_rcv, irqf, "lguestnet",
			dev) != 0) {
		pr_debug("lguestnet: cannot get irq %i\n", lgdev_irq(lgdev));
		goto unregister;
	}

	pr_debug("lguestnet: registered device %s\n", dev->name);
	/* Finally, we put the "struct net_device" in the generic "struct
	 * lguest_device"s private pointer.  Again, it's not necessary, but
	 * makes sure the cool kernel kids don't tease us. */
	lgdev->private = dev;
	return 0;

unregister:
	unregister_netdev(dev);
unmap:
	lguest_unmap(info->peer);
free:
	free_netdev(dev);
	return err;
}

static struct lguest_driver lguestnet_drv = {
	.name = "lguestnet",
	.owner = THIS_MODULE,
	.device_type = LGUEST_DEVICE_T_NET,
	.probe = lguestnet_probe,
};

static __init int lguestnet_init(void)
{
	return register_lguest_driver(&lguestnet_drv);
}
module_init(lguestnet_init);

MODULE_DESCRIPTION("Lguest network driver");
MODULE_LICENSE("GPL");

/*D:580
 * This is the last of the Drivers, and with this we have covered the many and
 * wonderous and fine (and boring) details of the Guest.
 *
 * "make Launcher" beckons, where we answer questions like "Where do Guests
 * come from?", and "What do you do when someone asks for optimization?"
 */