futex.c 21.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
#include <linux/signal.h>
#include <asm/futex.h>

#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

/*
 * Futexes are matched on equal values of this key.
 * The key type depends on whether it's a shared or private mapping.
 * Don't rearrange members without looking at hash_futex().
 *
 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
 * We set bit 0 to indicate if it's an inode-based key.
 */
union futex_key {
	struct {
		unsigned long pgoff;
		struct inode *inode;
		int offset;
	} shared;
	struct {
		unsigned long uaddr;
		struct mm_struct *mm;
		int offset;
	} private;
	struct {
		unsigned long word;
		void *ptr;
		int offset;
	} both;
};

/*
 * We use this hashed waitqueue instead of a normal wait_queue_t, so
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
 * The order of wakup is always to make the first condition true, then
 * wake up q->waiters, then make the second condition true.
 */
struct futex_q {
	struct list_head list;
	wait_queue_head_t waiters;

	/* Which hash list lock to use. */
	spinlock_t *lock_ptr;

	/* Key which the futex is hashed on. */
	union futex_key key;

	/* For fd, sigio sent using these. */
	int fd;
	struct file *filp;
};

/*
 * Split the global futex_lock into every hash list lock.
 */
struct futex_hash_bucket {
       spinlock_t              lock;
       struct list_head       chain;
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/* Futex-fs vfsmount entry: */
static struct vfsmount *futex_mnt;

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
	return (key1->both.word == key2->both.word
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

/*
 * Get parameters which are the keys for a futex.
 *
 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
 * Returns: 0, or negative error code.
 * The key words are stored in *key on success.
 *
 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
 */
static int get_futex_key(unsigned long uaddr, union futex_key *key)
{
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;
	struct page *page;
	int err;

	/*
	 * The futex address must be "naturally" aligned.
	 */
	key->both.offset = uaddr % PAGE_SIZE;
	if (unlikely((key->both.offset % sizeof(u32)) != 0))
		return -EINVAL;
	uaddr -= key->both.offset;

	/*
	 * The futex is hashed differently depending on whether
	 * it's in a shared or private mapping.  So check vma first.
	 */
	vma = find_extend_vma(mm, uaddr);
	if (unlikely(!vma))
		return -EFAULT;

	/*
	 * Permissions.
	 */
	if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
		return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
	 * the object not the particular process.  Therefore we use
	 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
	 * mappings of _writable_ handles.
	 */
	if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
		key->private.mm = mm;
		key->private.uaddr = uaddr;
		return 0;
	}

	/*
	 * Linear file mappings are also simple.
	 */
	key->shared.inode = vma->vm_file->f_dentry->d_inode;
	key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
	if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
		key->shared.pgoff = (((uaddr - vma->vm_start) >> PAGE_SHIFT)
				     + vma->vm_pgoff);
		return 0;
	}

	/*
	 * We could walk the page table to read the non-linear
	 * pte, and get the page index without fetching the page
	 * from swap.  But that's a lot of code to duplicate here
	 * for a rare case, so we simply fetch the page.
	 */
	err = get_user_pages(current, mm, uaddr, 1, 0, 0, &page, NULL);
	if (err >= 0) {
		key->shared.pgoff =
			page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
		put_page(page);
		return 0;
	}
	return err;
}

/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
 * function, if it is called at all.  mmap_sem keeps key->shared.inode valid.
 */
static inline void get_key_refs(union futex_key *key)
{
	if (key->both.ptr != 0) {
		if (key->both.offset & 1)
			atomic_inc(&key->shared.inode->i_count);
		else
			atomic_inc(&key->private.mm->mm_count);
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_key_refs(union futex_key *key)
{
	if (key->both.ptr != 0) {
		if (key->both.offset & 1)
			iput(key->shared.inode);
		else
			mmdrop(key->private.mm);
	}
}

static inline int get_futex_value_locked(int *dest, int __user *from)
{
	int ret;

	inc_preempt_count();
	ret = __copy_from_user_inatomic(dest, from, sizeof(int));
	dec_preempt_count();

	return ret ? -EFAULT : 0;
}

/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
	list_del_init(&q->list);
	if (q->filp)
		send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
	/*
	 * The lock in wake_up_all() is a crucial memory barrier after the
	 * list_del_init() and also before assigning to q->lock_ptr.
	 */
	wake_up_all(&q->waiters);
	/*
	 * The waiting task can free the futex_q as soon as this is written,
	 * without taking any locks.  This must come last.
	 *
	 * A memory barrier is required here to prevent the following store
	 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
	 * at the end of wake_up_all() does not prevent this store from
	 * moving.
	 */
	wmb();
	q->lock_ptr = NULL;
}

/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
static int futex_wake(unsigned long uaddr, int nr_wake)
{
	union futex_key key;
	struct futex_hash_bucket *bh;
	struct list_head *head;
	struct futex_q *this, *next;
	int ret;

	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr, &key);
	if (unlikely(ret != 0))
		goto out;

	bh = hash_futex(&key);
	spin_lock(&bh->lock);
	head = &bh->chain;

	list_for_each_entry_safe(this, next, head, list) {
		if (match_futex (&this->key, &key)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	spin_unlock(&bh->lock);
out:
	up_read(&current->mm->mmap_sem);
	return ret;
}

/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
static int futex_wake_op(unsigned long uaddr1, unsigned long uaddr2, int nr_wake, int nr_wake2, int op)
{
	union futex_key key1, key2;
	struct futex_hash_bucket *bh1, *bh2;
	struct list_head *head;
	struct futex_q *this, *next;
	int ret, op_ret, attempt = 0;

retryfull:
	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr1, &key1);
	if (unlikely(ret != 0))
		goto out;
	ret = get_futex_key(uaddr2, &key2);
	if (unlikely(ret != 0))
		goto out;

	bh1 = hash_futex(&key1);
	bh2 = hash_futex(&key2);

retry:
	if (bh1 < bh2)
		spin_lock(&bh1->lock);
	spin_lock(&bh2->lock);
	if (bh1 > bh2)
		spin_lock(&bh1->lock);

	op_ret = futex_atomic_op_inuser(op, (int __user *)uaddr2);
	if (unlikely(op_ret < 0)) {
		int dummy;

		spin_unlock(&bh1->lock);
		if (bh1 != bh2)
			spin_unlock(&bh2->lock);

#ifndef CONFIG_MMU
		/* we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking */
		ret = op_ret;
		goto out;
#endif

		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
			goto out;
		}

		/* futex_atomic_op_inuser needs to both read and write
		 * *(int __user *)uaddr2, but we can't modify it
		 * non-atomically.  Therefore, if get_user below is not
		 * enough, we need to handle the fault ourselves, while
		 * still holding the mmap_sem.  */
		if (attempt++) {
			struct vm_area_struct * vma;
			struct mm_struct *mm = current->mm;

			ret = -EFAULT;
			if (attempt >= 2 ||
			    !(vma = find_vma(mm, uaddr2)) ||
			    vma->vm_start > uaddr2 ||
			    !(vma->vm_flags & VM_WRITE))
				goto out;

			switch (handle_mm_fault(mm, vma, uaddr2, 1)) {
			case VM_FAULT_MINOR:
				current->min_flt++;
				break;
			case VM_FAULT_MAJOR:
				current->maj_flt++;
				break;
			default:
				goto out;
			}
			goto retry;
		}

		/* If we would have faulted, release mmap_sem,
		 * fault it in and start all over again.  */
		up_read(&current->mm->mmap_sem);

		ret = get_user(dummy, (int __user *)uaddr2);
		if (ret)
			return ret;

		goto retryfull;
	}

	head = &bh1->chain;

	list_for_each_entry_safe(this, next, head, list) {
		if (match_futex (&this->key, &key1)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		head = &bh2->chain;

		op_ret = 0;
		list_for_each_entry_safe(this, next, head, list) {
			if (match_futex (&this->key, &key2)) {
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

	spin_unlock(&bh1->lock);
	if (bh1 != bh2)
		spin_unlock(&bh2->lock);
out:
	up_read(&current->mm->mmap_sem);
	return ret;
}

/*
 * Requeue all waiters hashed on one physical page to another
 * physical page.
 */
static int futex_requeue(unsigned long uaddr1, unsigned long uaddr2,
			 int nr_wake, int nr_requeue, int *valp)
{
	union futex_key key1, key2;
	struct futex_hash_bucket *bh1, *bh2;
	struct list_head *head1;
	struct futex_q *this, *next;
	int ret, drop_count = 0;

 retry:
	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr1, &key1);
	if (unlikely(ret != 0))
		goto out;
	ret = get_futex_key(uaddr2, &key2);
	if (unlikely(ret != 0))
		goto out;

	bh1 = hash_futex(&key1);
	bh2 = hash_futex(&key2);

	if (bh1 < bh2)
		spin_lock(&bh1->lock);
	spin_lock(&bh2->lock);
	if (bh1 > bh2)
		spin_lock(&bh1->lock);

	if (likely(valp != NULL)) {
		int curval;

		ret = get_futex_value_locked(&curval, (int __user *)uaddr1);

		if (unlikely(ret)) {
			spin_unlock(&bh1->lock);
			if (bh1 != bh2)
				spin_unlock(&bh2->lock);

			/* If we would have faulted, release mmap_sem, fault
			 * it in and start all over again.
			 */
			up_read(&current->mm->mmap_sem);

			ret = get_user(curval, (int __user *)uaddr1);

			if (!ret)
				goto retry;

			return ret;
		}
		if (curval != *valp) {
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

	head1 = &bh1->chain;
	list_for_each_entry_safe(this, next, head1, list) {
		if (!match_futex (&this->key, &key1))
			continue;
		if (++ret <= nr_wake) {
			wake_futex(this);
		} else {
			list_move_tail(&this->list, &bh2->chain);
			this->lock_ptr = &bh2->lock;
			this->key = key2;
			get_key_refs(&key2);
			drop_count++;

			if (ret - nr_wake >= nr_requeue)
				break;
			/* Make sure to stop if key1 == key2 */
			if (head1 == &bh2->chain && head1 != &next->list)
				head1 = &this->list;
		}
	}

out_unlock:
	spin_unlock(&bh1->lock);
	if (bh1 != bh2)
		spin_unlock(&bh2->lock);

	/* drop_key_refs() must be called outside the spinlocks. */
	while (--drop_count >= 0)
		drop_key_refs(&key1);

out:
	up_read(&current->mm->mmap_sem);
	return ret;
}

/* The key must be already stored in q->key. */
static inline struct futex_hash_bucket *
queue_lock(struct futex_q *q, int fd, struct file *filp)
{
	struct futex_hash_bucket *bh;

	q->fd = fd;
	q->filp = filp;

	init_waitqueue_head(&q->waiters);

	get_key_refs(&q->key);
	bh = hash_futex(&q->key);
	q->lock_ptr = &bh->lock;

	spin_lock(&bh->lock);
	return bh;
}

static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *bh)
{
	list_add_tail(&q->list, &bh->chain);
	spin_unlock(&bh->lock);
}

static inline void
queue_unlock(struct futex_q *q, struct futex_hash_bucket *bh)
{
	spin_unlock(&bh->lock);
	drop_key_refs(&q->key);
}

/*
 * queue_me and unqueue_me must be called as a pair, each
 * exactly once.  They are called with the hashed spinlock held.
 */

/* The key must be already stored in q->key. */
static void queue_me(struct futex_q *q, int fd, struct file *filp)
{
	struct futex_hash_bucket *bh;
	bh = queue_lock(q, fd, filp);
	__queue_me(q, bh);
}

/* Return 1 if we were still queued (ie. 0 means we were woken) */
static int unqueue_me(struct futex_q *q)
{
	int ret = 0;
	spinlock_t *lock_ptr;

	/* In the common case we don't take the spinlock, which is nice. */
 retry:
	lock_ptr = q->lock_ptr;
	if (lock_ptr != 0) {
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
		WARN_ON(list_empty(&q->list));
		list_del(&q->list);
		spin_unlock(lock_ptr);
		ret = 1;
	}

	drop_key_refs(&q->key);
	return ret;
}

static int futex_wait(unsigned long uaddr, int val, unsigned long time)
{
	DECLARE_WAITQUEUE(wait, current);
	int ret, curval;
	struct futex_q q;
	struct futex_hash_bucket *bh;

 retry:
	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr, &q.key);
	if (unlikely(ret != 0))
		goto out_release_sem;

	bh = queue_lock(&q, -1, NULL);

	/*
	 * Access the page AFTER the futex is queued.
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
	 * any cond.  If we queued after testing *uaddr, that would open
	 * a race condition where we could block indefinitely with
	 * cond(var) false, which would violate the guarantee.
	 *
	 * A consequence is that futex_wait() can return zero and absorb
	 * a wakeup when *uaddr != val on entry to the syscall.  This is
	 * rare, but normal.
	 *
	 * We hold the mmap semaphore, so the mapping cannot have changed
	 * since we looked it up in get_futex_key.
	 */

	ret = get_futex_value_locked(&curval, (int __user *)uaddr);

	if (unlikely(ret)) {
		queue_unlock(&q, bh);

		/* If we would have faulted, release mmap_sem, fault it in and
		 * start all over again.
		 */
		up_read(&current->mm->mmap_sem);

		ret = get_user(curval, (int __user *)uaddr);

		if (!ret)
			goto retry;
		return ret;
	}
	if (curval != val) {
		ret = -EWOULDBLOCK;
		queue_unlock(&q, bh);
		goto out_release_sem;
	}

	/* Only actually queue if *uaddr contained val.  */
	__queue_me(&q, bh);

	/*
	 * Now the futex is queued and we have checked the data, we
	 * don't want to hold mmap_sem while we sleep.
	 */	
	up_read(&current->mm->mmap_sem);

	/*
	 * There might have been scheduling since the queue_me(), as we
	 * cannot hold a spinlock across the get_user() in case it
	 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
	 * queueing ourselves into the futex hash.  This code thus has to
	 * rely on the futex_wake() code removing us from hash when it
	 * wakes us up.
	 */

	/* add_wait_queue is the barrier after __set_current_state. */
	__set_current_state(TASK_INTERRUPTIBLE);
	add_wait_queue(&q.waiters, &wait);
	/*
	 * !list_empty() is safe here without any lock.
	 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
	 */
	if (likely(!list_empty(&q.list)))
		time = schedule_timeout(time);
	__set_current_state(TASK_RUNNING);

	/*
	 * NOTE: we don't remove ourselves from the waitqueue because
	 * we are the only user of it.
	 */

	/* If we were woken (and unqueued), we succeeded, whatever. */
	if (!unqueue_me(&q))
		return 0;
	if (time == 0)
		return -ETIMEDOUT;
	/* We expect signal_pending(current), but another thread may
	 * have handled it for us already. */
	return -EINTR;

 out_release_sem:
	up_read(&current->mm->mmap_sem);
	return ret;
}

static int futex_close(struct inode *inode, struct file *filp)
{
	struct futex_q *q = filp->private_data;

	unqueue_me(q);
	kfree(q);
	return 0;
}

/* This is one-shot: once it's gone off you need a new fd */
static unsigned int futex_poll(struct file *filp,
			       struct poll_table_struct *wait)
{
	struct futex_q *q = filp->private_data;
	int ret = 0;

	poll_wait(filp, &q->waiters, wait);

	/*
	 * list_empty() is safe here without any lock.
	 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
	 */
	if (list_empty(&q->list))
		ret = POLLIN | POLLRDNORM;

	return ret;
}

static struct file_operations futex_fops = {
	.release	= futex_close,
	.poll		= futex_poll,
};

/*
 * Signal allows caller to avoid the race which would occur if they
 * set the sigio stuff up afterwards.
 */
static int futex_fd(unsigned long uaddr, int signal)
{
	struct futex_q *q;
	struct file *filp;
	int ret, err;

	ret = -EINVAL;
	if (!valid_signal(signal))
		goto out;

	ret = get_unused_fd();
	if (ret < 0)
		goto out;
	filp = get_empty_filp();
	if (!filp) {
		put_unused_fd(ret);
		ret = -ENFILE;
		goto out;
	}
	filp->f_op = &futex_fops;
	filp->f_vfsmnt = mntget(futex_mnt);
	filp->f_dentry = dget(futex_mnt->mnt_root);
	filp->f_mapping = filp->f_dentry->d_inode->i_mapping;

	if (signal) {
		err = f_setown(filp, current->pid, 1);
		if (err < 0) {
			goto error;
		}
		filp->f_owner.signum = signal;
	}

	q = kmalloc(sizeof(*q), GFP_KERNEL);
	if (!q) {
		err = -ENOMEM;
		goto error;
	}

	down_read(&current->mm->mmap_sem);
	err = get_futex_key(uaddr, &q->key);

	if (unlikely(err != 0)) {
		up_read(&current->mm->mmap_sem);
		kfree(q);
		goto error;
	}

	/*
	 * queue_me() must be called before releasing mmap_sem, because
	 * key->shared.inode needs to be referenced while holding it.
	 */
	filp->private_data = q;

	queue_me(q, ret, filp);
	up_read(&current->mm->mmap_sem);

	/* Now we map fd to filp, so userspace can access it */
	fd_install(ret, filp);
out:
	return ret;
error:
	put_unused_fd(ret);
	put_filp(filp);
	ret = err;
	goto out;
}

long do_futex(unsigned long uaddr, int op, int val, unsigned long timeout,
		unsigned long uaddr2, int val2, int val3)
{
	int ret;

	switch (op) {
	case FUTEX_WAIT:
		ret = futex_wait(uaddr, val, timeout);
		break;
	case FUTEX_WAKE:
		ret = futex_wake(uaddr, val);
		break;
	case FUTEX_FD:
		/* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
		ret = futex_fd(uaddr, val);
		break;
	case FUTEX_REQUEUE:
		ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
		break;
	case FUTEX_CMP_REQUEUE:
		ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
		break;
	case FUTEX_WAKE_OP:
		ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
		break;
	default:
		ret = -ENOSYS;
	}
	return ret;
}


asmlinkage long sys_futex(u32 __user *uaddr, int op, int val,
			  struct timespec __user *utime, u32 __user *uaddr2,
			  int val3)
{
	struct timespec t;
	unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
	int val2 = 0;

	if ((op == FUTEX_WAIT) && utime) {
		if (copy_from_user(&t, utime, sizeof(t)) != 0)
			return -EFAULT;
		timeout = timespec_to_jiffies(&t) + 1;
	}
	/*
	 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
	 */
	if (op >= FUTEX_REQUEUE)
		val2 = (int) (unsigned long) utime;

	return do_futex((unsigned long)uaddr, op, val, timeout,
			(unsigned long)uaddr2, val2, val3);
}

static struct super_block *
futexfs_get_sb(struct file_system_type *fs_type,
	       int flags, const char *dev_name, void *data)
{
	return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA);
}

static struct file_system_type futex_fs_type = {
	.name		= "futexfs",
	.get_sb		= futexfs_get_sb,
	.kill_sb	= kill_anon_super,
};

static int __init init(void)
{
	unsigned int i;

	register_filesystem(&futex_fs_type);
	futex_mnt = kern_mount(&futex_fs_type);

	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
		INIT_LIST_HEAD(&futex_queues[i].chain);
		spin_lock_init(&futex_queues[i].lock);
	}
	return 0;
}
__initcall(init);