kgdb.c 12.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
/* kgdb support for MN10300
 *
 * Copyright (C) 2010 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public Licence
 * as published by the Free Software Foundation; either version
 * 2 of the Licence, or (at your option) any later version.
 */

#include <linux/slab.h>
#include <linux/ptrace.h>
#include <linux/kgdb.h>
#include <linux/uaccess.h>
#include <unit/leds.h>
#include <unit/serial.h>
#include <asm/debugger.h>
#include <asm/serial-regs.h>
#include "internal.h"

/*
 * Software single-stepping breakpoint save (used by __switch_to())
 */
static struct thread_info *kgdb_sstep_thread;
u8 *kgdb_sstep_bp_addr[2];
u8 kgdb_sstep_bp[2];

/*
 * Copy kernel exception frame registers to the GDB register file
 */
void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{
	unsigned long ssp = (unsigned long) (regs + 1);

	gdb_regs[GDB_FR_D0]	= regs->d0;
	gdb_regs[GDB_FR_D1]	= regs->d1;
	gdb_regs[GDB_FR_D2]	= regs->d2;
	gdb_regs[GDB_FR_D3]	= regs->d3;
	gdb_regs[GDB_FR_A0]	= regs->a0;
	gdb_regs[GDB_FR_A1]	= regs->a1;
	gdb_regs[GDB_FR_A2]	= regs->a2;
	gdb_regs[GDB_FR_A3]	= regs->a3;
	gdb_regs[GDB_FR_SP]	= (regs->epsw & EPSW_nSL) ? regs->sp : ssp;
	gdb_regs[GDB_FR_PC]	= regs->pc;
	gdb_regs[GDB_FR_MDR]	= regs->mdr;
	gdb_regs[GDB_FR_EPSW]	= regs->epsw;
	gdb_regs[GDB_FR_LIR]	= regs->lir;
	gdb_regs[GDB_FR_LAR]	= regs->lar;
	gdb_regs[GDB_FR_MDRQ]	= regs->mdrq;
	gdb_regs[GDB_FR_E0]	= regs->e0;
	gdb_regs[GDB_FR_E1]	= regs->e1;
	gdb_regs[GDB_FR_E2]	= regs->e2;
	gdb_regs[GDB_FR_E3]	= regs->e3;
	gdb_regs[GDB_FR_E4]	= regs->e4;
	gdb_regs[GDB_FR_E5]	= regs->e5;
	gdb_regs[GDB_FR_E6]	= regs->e6;
	gdb_regs[GDB_FR_E7]	= regs->e7;
	gdb_regs[GDB_FR_SSP]	= ssp;
	gdb_regs[GDB_FR_MSP]	= 0;
	gdb_regs[GDB_FR_USP]	= regs->sp;
	gdb_regs[GDB_FR_MCRH]	= regs->mcrh;
	gdb_regs[GDB_FR_MCRL]	= regs->mcrl;
	gdb_regs[GDB_FR_MCVF]	= regs->mcvf;
	gdb_regs[GDB_FR_DUMMY0]	= 0;
	gdb_regs[GDB_FR_DUMMY1]	= 0;
	gdb_regs[GDB_FR_FS0]	= 0;
}

/*
 * Extracts kernel SP/PC values understandable by gdb from the values
 * saved by switch_to().
 */
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
{
	gdb_regs[GDB_FR_SSP]	= p->thread.sp;
	gdb_regs[GDB_FR_PC]	= p->thread.pc;
	gdb_regs[GDB_FR_A3]	= p->thread.a3;
	gdb_regs[GDB_FR_USP]	= p->thread.usp;
	gdb_regs[GDB_FR_FPCR]	= p->thread.fpu_state.fpcr;
}

/*
 * Fill kernel exception frame registers from the GDB register file
 */
void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{
	regs->d0	= gdb_regs[GDB_FR_D0];
	regs->d1	= gdb_regs[GDB_FR_D1];
	regs->d2	= gdb_regs[GDB_FR_D2];
	regs->d3	= gdb_regs[GDB_FR_D3];
	regs->a0	= gdb_regs[GDB_FR_A0];
	regs->a1	= gdb_regs[GDB_FR_A1];
	regs->a2	= gdb_regs[GDB_FR_A2];
	regs->a3	= gdb_regs[GDB_FR_A3];
	regs->sp	= gdb_regs[GDB_FR_SP];
	regs->pc	= gdb_regs[GDB_FR_PC];
	regs->mdr	= gdb_regs[GDB_FR_MDR];
	regs->epsw	= gdb_regs[GDB_FR_EPSW];
	regs->lir	= gdb_regs[GDB_FR_LIR];
	regs->lar	= gdb_regs[GDB_FR_LAR];
	regs->mdrq	= gdb_regs[GDB_FR_MDRQ];
	regs->e0	= gdb_regs[GDB_FR_E0];
	regs->e1	= gdb_regs[GDB_FR_E1];
	regs->e2	= gdb_regs[GDB_FR_E2];
	regs->e3	= gdb_regs[GDB_FR_E3];
	regs->e4	= gdb_regs[GDB_FR_E4];
	regs->e5	= gdb_regs[GDB_FR_E5];
	regs->e6	= gdb_regs[GDB_FR_E6];
	regs->e7	= gdb_regs[GDB_FR_E7];
	regs->sp	= gdb_regs[GDB_FR_SSP];
	/* gdb_regs[GDB_FR_MSP]; */
	// regs->usp	= gdb_regs[GDB_FR_USP];
	regs->mcrh	= gdb_regs[GDB_FR_MCRH];
	regs->mcrl	= gdb_regs[GDB_FR_MCRL];
	regs->mcvf	= gdb_regs[GDB_FR_MCVF];
	/* gdb_regs[GDB_FR_DUMMY0]; */
	/* gdb_regs[GDB_FR_DUMMY1]; */

	// regs->fpcr	= gdb_regs[GDB_FR_FPCR];
	// regs->fs0	= gdb_regs[GDB_FR_FS0];
}

struct kgdb_arch arch_kgdb_ops = {
	.gdb_bpt_instr	= { 0xff },
	.flags		= KGDB_HW_BREAKPOINT,
};

static const unsigned char mn10300_kgdb_insn_sizes[256] =
{
	/* 1  2  3  4  5  6  7  8  9  a  b  c  d  e  f */
	1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3,	/* 0 */
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 1 */
	2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, /* 2 */
	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, /* 3 */
	1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, /* 4 */
	1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, /* 5 */
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6 */
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7 */
	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 8 */
	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 9 */
	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* a */
	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* b */
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, /* c */
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* d */
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* e */
	0, 2, 2, 2, 2, 2, 2, 4, 0, 3, 0, 4, 0, 6, 7, 1  /* f */
};

/*
 * Attempt to emulate single stepping by means of breakpoint instructions.
 * Although there is a single-step trace flag in EPSW, its use is not
 * sufficiently documented and is only intended for use with the JTAG debugger.
 */
static int kgdb_arch_do_singlestep(struct pt_regs *regs)
{
	unsigned long arg;
	unsigned size;
	u8 *pc = (u8 *)regs->pc, *sp = (u8 *)(regs + 1), cur;
	u8 *x = NULL, *y = NULL;
	int ret;

	ret = probe_kernel_read(&cur, pc, 1);
	if (ret < 0)
		return ret;

	size = mn10300_kgdb_insn_sizes[cur];
	if (size > 0) {
		x = pc + size;
		goto set_x;
	}

	switch (cur) {
		/* Bxx (d8,PC) */
	case 0xc0 ... 0xca:
		ret = probe_kernel_read(&arg, pc + 1, 1);
		if (ret < 0)
			return ret;
		x = pc + 2;
		if (arg >= 0 && arg <= 2)
			goto set_x;
		y = pc + (s8)arg;
		goto set_x_and_y;

		/* LXX (d8,PC) */
	case 0xd0 ... 0xda:
		x = pc + 1;
		if (regs->pc == regs->lar)
			goto set_x;
		y = (u8 *)regs->lar;
		goto set_x_and_y;

		/* SETLB - loads the next four bytes into the LIR register
		 * (which mustn't include a breakpoint instruction) */
	case 0xdb:
		x = pc + 5;
		goto set_x;

		/* JMP (d16,PC) or CALL (d16,PC) */
	case 0xcc:
	case 0xcd:
		ret = probe_kernel_read(&arg, pc + 1, 2);
		if (ret < 0)
			return ret;
		x = pc + (s16)arg;
		goto set_x;

		/* JMP (d32,PC) or CALL (d32,PC) */
	case 0xdc:
	case 0xdd:
		ret = probe_kernel_read(&arg, pc + 1, 4);
		if (ret < 0)
			return ret;
		x = pc + (s32)arg;
		goto set_x;

		/* RETF */
	case 0xde:
		x = (u8 *)regs->mdr;
		goto set_x;

		/* RET */
	case 0xdf:
		ret = probe_kernel_read(&arg, pc + 2, 1);
		if (ret < 0)
			return ret;
		ret = probe_kernel_read(&x, sp + (s8)arg, 4);
		if (ret < 0)
			return ret;
		goto set_x;

	case 0xf0:
		ret = probe_kernel_read(&cur, pc + 1, 1);
		if (ret < 0)
			return ret;

		if (cur >= 0xf0 && cur <= 0xf7) {
			/* JMP (An) / CALLS (An) */
			switch (cur & 3) {
			case 0: x = (u8 *)regs->a0; break;
			case 1: x = (u8 *)regs->a1; break;
			case 2: x = (u8 *)regs->a2; break;
			case 3: x = (u8 *)regs->a3; break;
			}
			goto set_x;
		} else if (cur == 0xfc) {
			/* RETS */
			ret = probe_kernel_read(&x, sp, 4);
			if (ret < 0)
				return ret;
			goto set_x;
		} else if (cur == 0xfd) {
			/* RTI */
			ret = probe_kernel_read(&x, sp + 4, 4);
			if (ret < 0)
				return ret;
			goto set_x;
		} else {
			x = pc + 2;
			goto set_x;
		}
		break;

		/* potential 3-byte conditional branches */
	case 0xf8:
		ret = probe_kernel_read(&cur, pc + 1, 1);
		if (ret < 0)
			return ret;
		x = pc + 3;

		if (cur >= 0xe8 && cur <= 0xeb) {
			ret = probe_kernel_read(&arg, pc + 2, 1);
			if (ret < 0)
				return ret;
			if (arg >= 0 && arg <= 3)
				goto set_x;
			y = pc + (s8)arg;
			goto set_x_and_y;
		}
		goto set_x;

	case 0xfa:
		ret = probe_kernel_read(&cur, pc + 1, 1);
		if (ret < 0)
			return ret;

		if (cur == 0xff) {
			/* CALLS (d16,PC) */
			ret = probe_kernel_read(&arg, pc + 2, 2);
			if (ret < 0)
				return ret;
			x = pc + (s16)arg;
			goto set_x;
		}

		x = pc + 4;
		goto set_x;

	case 0xfc:
		ret = probe_kernel_read(&cur, pc + 1, 1);
		if (ret < 0)
			return ret;

		if (cur == 0xff) {
			/* CALLS (d32,PC) */
			ret = probe_kernel_read(&arg, pc + 2, 4);
			if (ret < 0)
				return ret;
			x = pc + (s32)arg;
			goto set_x;
		}

		x = pc + 6;
		goto set_x;
	}

	return 0;

set_x:
	kgdb_sstep_bp_addr[0] = x;
	kgdb_sstep_bp_addr[1] = NULL;
	ret = probe_kernel_read(&kgdb_sstep_bp[0], x, 1);
	if (ret < 0)
		return ret;
	ret = probe_kernel_write(x, &arch_kgdb_ops.gdb_bpt_instr, 1);
	if (ret < 0)
		return ret;
	kgdb_sstep_thread = current_thread_info();
	debugger_local_cache_flushinv_one(x);
	return ret;

set_x_and_y:
	kgdb_sstep_bp_addr[0] = x;
	kgdb_sstep_bp_addr[1] = y;
	ret = probe_kernel_read(&kgdb_sstep_bp[0], x, 1);
	if (ret < 0)
		return ret;
	ret = probe_kernel_read(&kgdb_sstep_bp[1], y, 1);
	if (ret < 0)
		return ret;
	ret = probe_kernel_write(x, &arch_kgdb_ops.gdb_bpt_instr, 1);
	if (ret < 0)
		return ret;
	ret = probe_kernel_write(y, &arch_kgdb_ops.gdb_bpt_instr, 1);
	if (ret < 0) {
		probe_kernel_write(kgdb_sstep_bp_addr[0],
				   &kgdb_sstep_bp[0], 1);
	} else {
		kgdb_sstep_thread = current_thread_info();
	}
	debugger_local_cache_flushinv_one(x);
	debugger_local_cache_flushinv_one(y);
	return ret;
}

/*
 * Remove emplaced single-step breakpoints, returning true if we hit one of
 * them.
 */
static bool kgdb_arch_undo_singlestep(struct pt_regs *regs)
{
	bool hit = false;
	u8 *x = kgdb_sstep_bp_addr[0], *y = kgdb_sstep_bp_addr[1];
	u8 opcode;

	if (kgdb_sstep_thread == current_thread_info()) {
		if (x) {
			if (x == (u8 *)regs->pc)
				hit = true;
			if (probe_kernel_read(&opcode, x,
					      1) < 0 ||
			    opcode != 0xff)
				BUG();
			probe_kernel_write(x, &kgdb_sstep_bp[0], 1);
			debugger_local_cache_flushinv_one(x);
		}
		if (y) {
			if (y == (u8 *)regs->pc)
				hit = true;
			if (probe_kernel_read(&opcode, y,
					      1) < 0 ||
			    opcode != 0xff)
				BUG();
			probe_kernel_write(y, &kgdb_sstep_bp[1], 1);
			debugger_local_cache_flushinv_one(y);
		}
	}

	kgdb_sstep_bp_addr[0] = NULL;
	kgdb_sstep_bp_addr[1] = NULL;
	kgdb_sstep_thread = NULL;
	return hit;
}

/*
 * Catch a single-step-pending thread being deleted and make sure the global
 * single-step state is cleared.  At this point the breakpoints should have
 * been removed by __switch_to().
 */
void free_thread_info(struct thread_info *ti)
{
	if (kgdb_sstep_thread == ti) {
		kgdb_sstep_thread = NULL;

		/* However, we may now be running in degraded mode, with most
		 * of the CPUs disabled until such a time as KGDB is reentered,
		 * so force immediate reentry */
		kgdb_breakpoint();
	}
	kfree(ti);
}

/*
 * Handle unknown packets and [CcsDk] packets
 * - at this point breakpoints have been installed
 */
int kgdb_arch_handle_exception(int vector, int signo, int err_code,
			       char *remcom_in_buffer, char *remcom_out_buffer,
			       struct pt_regs *regs)
{
	long addr;
	char *ptr;

	switch (remcom_in_buffer[0]) {
	case 'c':
	case 's':
		/* try to read optional parameter, pc unchanged if no parm */
		ptr = &remcom_in_buffer[1];
		if (kgdb_hex2long(&ptr, &addr))
			regs->pc = addr;
	case 'D':
	case 'k':
		atomic_set(&kgdb_cpu_doing_single_step, -1);

		if (remcom_in_buffer[0] == 's') {
			kgdb_arch_do_singlestep(regs);
			kgdb_single_step = 1;
			atomic_set(&kgdb_cpu_doing_single_step,
				   raw_smp_processor_id());
		}
		return 0;
	}
	return -1; /* this means that we do not want to exit from the handler */
}

/*
 * Handle event interception
 * - returns 0 if the exception should be skipped, -ERROR otherwise.
 */
int debugger_intercept(enum exception_code excep, int signo, int si_code,
		       struct pt_regs *regs)
{
	int ret;

	if (kgdb_arch_undo_singlestep(regs)) {
		excep = EXCEP_TRAP;
		signo = SIGTRAP;
		si_code = TRAP_TRACE;
	}

	ret = kgdb_handle_exception(excep, signo, si_code, regs);

	debugger_local_cache_flushinv();

	return ret;
}

/*
 * Determine if we've hit a debugger special breakpoint
 */
int at_debugger_breakpoint(struct pt_regs *regs)
{
	return regs->pc == (unsigned long)&__arch_kgdb_breakpoint;
}

/*
 * Initialise kgdb
 */
int kgdb_arch_init(void)
{
	return 0;
}

/*
 * Do something, perhaps, but don't know what.
 */
void kgdb_arch_exit(void)
{
}

#ifdef CONFIG_SMP
void debugger_nmi_interrupt(struct pt_regs *regs, enum exception_code code)
{
	kgdb_nmicallback(arch_smp_processor_id(), regs);
	debugger_local_cache_flushinv();
}

void kgdb_roundup_cpus(unsigned long flags)
{
	smp_jump_to_debugger();
}
#endif