decompress_unlzma.c 15.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
/* Lzma decompressor for Linux kernel. Shamelessly snarfed
 *from busybox 1.1.1
 *
 *Linux kernel adaptation
 *Copyright (C) 2006  Alain < alain@knaff.lu >
 *
 *Based on small lzma deflate implementation/Small range coder
 *implementation for lzma.
 *Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
 *
 *Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
 *Copyright (C) 1999-2005  Igor Pavlov
 *
 *Copyrights of the parts, see headers below.
 *
 *
 *This program is free software; you can redistribute it and/or
 *modify it under the terms of the GNU Lesser General Public
 *License as published by the Free Software Foundation; either
 *version 2.1 of the License, or (at your option) any later version.
 *
 *This program is distributed in the hope that it will be useful,
 *but WITHOUT ANY WARRANTY; without even the implied warranty of
 *MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *Lesser General Public License for more details.
 *
 *You should have received a copy of the GNU Lesser General Public
 *License along with this library; if not, write to the Free Software
 *Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

#ifdef STATIC
#define PREBOOT
#else
#include <linux/decompress/unlzma.h>
#include <linux/slab.h>
#endif /* STATIC */

#include <linux/decompress/mm.h>

#define	MIN(a, b) (((a) < (b)) ? (a) : (b))

static long long INIT read_int(unsigned char *ptr, int size)
{
	int i;
	long long ret = 0;

	for (i = 0; i < size; i++)
		ret = (ret << 8) | ptr[size-i-1];
	return ret;
}

#define ENDIAN_CONVERT(x) \
  x = (typeof(x))read_int((unsigned char *)&x, sizeof(x))


/* Small range coder implementation for lzma.
 *Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
 *
 *Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
 *Copyright (c) 1999-2005  Igor Pavlov
 */

#include <linux/compiler.h>

#define LZMA_IOBUF_SIZE	0x10000

struct rc {
	int (*fill)(void*, unsigned int);
	uint8_t *ptr;
	uint8_t *buffer;
	uint8_t *buffer_end;
	int buffer_size;
	uint32_t code;
	uint32_t range;
	uint32_t bound;
};


#define RC_TOP_BITS 24
#define RC_MOVE_BITS 5
#define RC_MODEL_TOTAL_BITS 11


/* Called twice: once at startup and once in rc_normalize() */
static void INIT rc_read(struct rc *rc)
{
	rc->buffer_size = rc->fill((char *)rc->buffer, LZMA_IOBUF_SIZE);
	if (rc->buffer_size <= 0)
		error("unexpected EOF");
	rc->ptr = rc->buffer;
	rc->buffer_end = rc->buffer + rc->buffer_size;
}

/* Called once */
static inline void INIT rc_init(struct rc *rc,
				       int (*fill)(void*, unsigned int),
				       char *buffer, int buffer_size)
{
	rc->fill = fill;
	rc->buffer = (uint8_t *)buffer;
	rc->buffer_size = buffer_size;
	rc->buffer_end = rc->buffer + rc->buffer_size;
	rc->ptr = rc->buffer;

	rc->code = 0;
	rc->range = 0xFFFFFFFF;
}

static inline void INIT rc_init_code(struct rc *rc)
{
	int i;

	for (i = 0; i < 5; i++) {
		if (rc->ptr >= rc->buffer_end)
			rc_read(rc);
		rc->code = (rc->code << 8) | *rc->ptr++;
	}
}


/* Called once. TODO: bb_maybe_free() */
static inline void INIT rc_free(struct rc *rc)
{
	free(rc->buffer);
}

/* Called twice, but one callsite is in inline'd rc_is_bit_0_helper() */
static void INIT rc_do_normalize(struct rc *rc)
{
	if (rc->ptr >= rc->buffer_end)
		rc_read(rc);
	rc->range <<= 8;
	rc->code = (rc->code << 8) | *rc->ptr++;
}
static inline void INIT rc_normalize(struct rc *rc)
{
	if (rc->range < (1 << RC_TOP_BITS))
		rc_do_normalize(rc);
}

/* Called 9 times */
/* Why rc_is_bit_0_helper exists?
 *Because we want to always expose (rc->code < rc->bound) to optimizer
 */
static inline uint32_t INIT rc_is_bit_0_helper(struct rc *rc, uint16_t *p)
{
	rc_normalize(rc);
	rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS);
	return rc->bound;
}
static inline int INIT rc_is_bit_0(struct rc *rc, uint16_t *p)
{
	uint32_t t = rc_is_bit_0_helper(rc, p);
	return rc->code < t;
}

/* Called ~10 times, but very small, thus inlined */
static inline void INIT rc_update_bit_0(struct rc *rc, uint16_t *p)
{
	rc->range = rc->bound;
	*p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
}
static inline void rc_update_bit_1(struct rc *rc, uint16_t *p)
{
	rc->range -= rc->bound;
	rc->code -= rc->bound;
	*p -= *p >> RC_MOVE_BITS;
}

/* Called 4 times in unlzma loop */
static int INIT rc_get_bit(struct rc *rc, uint16_t *p, int *symbol)
{
	if (rc_is_bit_0(rc, p)) {
		rc_update_bit_0(rc, p);
		*symbol *= 2;
		return 0;
	} else {
		rc_update_bit_1(rc, p);
		*symbol = *symbol * 2 + 1;
		return 1;
	}
}

/* Called once */
static inline int INIT rc_direct_bit(struct rc *rc)
{
	rc_normalize(rc);
	rc->range >>= 1;
	if (rc->code >= rc->range) {
		rc->code -= rc->range;
		return 1;
	}
	return 0;
}

/* Called twice */
static inline void INIT
rc_bit_tree_decode(struct rc *rc, uint16_t *p, int num_levels, int *symbol)
{
	int i = num_levels;

	*symbol = 1;
	while (i--)
		rc_get_bit(rc, p + *symbol, symbol);
	*symbol -= 1 << num_levels;
}


/*
 * Small lzma deflate implementation.
 * Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
 *
 * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
 * Copyright (C) 1999-2005  Igor Pavlov
 */


struct lzma_header {
	uint8_t pos;
	uint32_t dict_size;
	uint64_t dst_size;
} __attribute__ ((packed)) ;


#define LZMA_BASE_SIZE 1846
#define LZMA_LIT_SIZE 768

#define LZMA_NUM_POS_BITS_MAX 4

#define LZMA_LEN_NUM_LOW_BITS 3
#define LZMA_LEN_NUM_MID_BITS 3
#define LZMA_LEN_NUM_HIGH_BITS 8

#define LZMA_LEN_CHOICE 0
#define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
#define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
#define LZMA_LEN_MID (LZMA_LEN_LOW \
		      + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS)))
#define LZMA_LEN_HIGH (LZMA_LEN_MID \
		       +(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS)))
#define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))

#define LZMA_NUM_STATES 12
#define LZMA_NUM_LIT_STATES 7

#define LZMA_START_POS_MODEL_INDEX 4
#define LZMA_END_POS_MODEL_INDEX 14
#define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))

#define LZMA_NUM_POS_SLOT_BITS 6
#define LZMA_NUM_LEN_TO_POS_STATES 4

#define LZMA_NUM_ALIGN_BITS 4

#define LZMA_MATCH_MIN_LEN 2

#define LZMA_IS_MATCH 0
#define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
#define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
#define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
#define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
#define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
#define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
		       + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
#define LZMA_SPEC_POS (LZMA_POS_SLOT \
		       +(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS))
#define LZMA_ALIGN (LZMA_SPEC_POS \
		    + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX)
#define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
#define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
#define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)


struct writer {
	uint8_t *buffer;
	uint8_t previous_byte;
	size_t buffer_pos;
	int bufsize;
	size_t global_pos;
	int(*flush)(void*, unsigned int);
	struct lzma_header *header;
};

struct cstate {
	int state;
	uint32_t rep0, rep1, rep2, rep3;
};

static inline size_t INIT get_pos(struct writer *wr)
{
	return
		wr->global_pos + wr->buffer_pos;
}

static inline uint8_t INIT peek_old_byte(struct writer *wr,
						uint32_t offs)
{
	if (!wr->flush) {
		int32_t pos;
		while (offs > wr->header->dict_size)
			offs -= wr->header->dict_size;
		pos = wr->buffer_pos - offs;
		return wr->buffer[pos];
	} else {
		uint32_t pos = wr->buffer_pos - offs;
		while (pos >= wr->header->dict_size)
			pos += wr->header->dict_size;
		return wr->buffer[pos];
	}

}

static inline void INIT write_byte(struct writer *wr, uint8_t byte)
{
	wr->buffer[wr->buffer_pos++] = wr->previous_byte = byte;
	if (wr->flush && wr->buffer_pos == wr->header->dict_size) {
		wr->buffer_pos = 0;
		wr->global_pos += wr->header->dict_size;
		wr->flush((char *)wr->buffer, wr->header->dict_size);
	}
}


static inline void INIT copy_byte(struct writer *wr, uint32_t offs)
{
	write_byte(wr, peek_old_byte(wr, offs));
}

static inline void INIT copy_bytes(struct writer *wr,
					 uint32_t rep0, int len)
{
	do {
		copy_byte(wr, rep0);
		len--;
	} while (len != 0 && wr->buffer_pos < wr->header->dst_size);
}

static inline void INIT process_bit0(struct writer *wr, struct rc *rc,
				     struct cstate *cst, uint16_t *p,
				     int pos_state, uint16_t *prob,
				     int lc, uint32_t literal_pos_mask) {
	int mi = 1;
	rc_update_bit_0(rc, prob);
	prob = (p + LZMA_LITERAL +
		(LZMA_LIT_SIZE
		 * (((get_pos(wr) & literal_pos_mask) << lc)
		    + (wr->previous_byte >> (8 - lc))))
		);

	if (cst->state >= LZMA_NUM_LIT_STATES) {
		int match_byte = peek_old_byte(wr, cst->rep0);
		do {
			int bit;
			uint16_t *prob_lit;

			match_byte <<= 1;
			bit = match_byte & 0x100;
			prob_lit = prob + 0x100 + bit + mi;
			if (rc_get_bit(rc, prob_lit, &mi)) {
				if (!bit)
					break;
			} else {
				if (bit)
					break;
			}
		} while (mi < 0x100);
	}
	while (mi < 0x100) {
		uint16_t *prob_lit = prob + mi;
		rc_get_bit(rc, prob_lit, &mi);
	}
	write_byte(wr, mi);
	if (cst->state < 4)
		cst->state = 0;
	else if (cst->state < 10)
		cst->state -= 3;
	else
		cst->state -= 6;
}

static inline void INIT process_bit1(struct writer *wr, struct rc *rc,
					    struct cstate *cst, uint16_t *p,
					    int pos_state, uint16_t *prob) {
  int offset;
	uint16_t *prob_len;
	int num_bits;
	int len;

	rc_update_bit_1(rc, prob);
	prob = p + LZMA_IS_REP + cst->state;
	if (rc_is_bit_0(rc, prob)) {
		rc_update_bit_0(rc, prob);
		cst->rep3 = cst->rep2;
		cst->rep2 = cst->rep1;
		cst->rep1 = cst->rep0;
		cst->state = cst->state < LZMA_NUM_LIT_STATES ? 0 : 3;
		prob = p + LZMA_LEN_CODER;
	} else {
		rc_update_bit_1(rc, prob);
		prob = p + LZMA_IS_REP_G0 + cst->state;
		if (rc_is_bit_0(rc, prob)) {
			rc_update_bit_0(rc, prob);
			prob = (p + LZMA_IS_REP_0_LONG
				+ (cst->state <<
				   LZMA_NUM_POS_BITS_MAX) +
				pos_state);
			if (rc_is_bit_0(rc, prob)) {
				rc_update_bit_0(rc, prob);

				cst->state = cst->state < LZMA_NUM_LIT_STATES ?
					9 : 11;
				copy_byte(wr, cst->rep0);
				return;
			} else {
				rc_update_bit_1(rc, prob);
			}
		} else {
			uint32_t distance;

			rc_update_bit_1(rc, prob);
			prob = p + LZMA_IS_REP_G1 + cst->state;
			if (rc_is_bit_0(rc, prob)) {
				rc_update_bit_0(rc, prob);
				distance = cst->rep1;
			} else {
				rc_update_bit_1(rc, prob);
				prob = p + LZMA_IS_REP_G2 + cst->state;
				if (rc_is_bit_0(rc, prob)) {
					rc_update_bit_0(rc, prob);
					distance = cst->rep2;
				} else {
					rc_update_bit_1(rc, prob);
					distance = cst->rep3;
					cst->rep3 = cst->rep2;
				}
				cst->rep2 = cst->rep1;
			}
			cst->rep1 = cst->rep0;
			cst->rep0 = distance;
		}
		cst->state = cst->state < LZMA_NUM_LIT_STATES ? 8 : 11;
		prob = p + LZMA_REP_LEN_CODER;
	}

	prob_len = prob + LZMA_LEN_CHOICE;
	if (rc_is_bit_0(rc, prob_len)) {
		rc_update_bit_0(rc, prob_len);
		prob_len = (prob + LZMA_LEN_LOW
			    + (pos_state <<
			       LZMA_LEN_NUM_LOW_BITS));
		offset = 0;
		num_bits = LZMA_LEN_NUM_LOW_BITS;
	} else {
		rc_update_bit_1(rc, prob_len);
		prob_len = prob + LZMA_LEN_CHOICE_2;
		if (rc_is_bit_0(rc, prob_len)) {
			rc_update_bit_0(rc, prob_len);
			prob_len = (prob + LZMA_LEN_MID
				    + (pos_state <<
				       LZMA_LEN_NUM_MID_BITS));
			offset = 1 << LZMA_LEN_NUM_LOW_BITS;
			num_bits = LZMA_LEN_NUM_MID_BITS;
		} else {
			rc_update_bit_1(rc, prob_len);
			prob_len = prob + LZMA_LEN_HIGH;
			offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
				  + (1 << LZMA_LEN_NUM_MID_BITS));
			num_bits = LZMA_LEN_NUM_HIGH_BITS;
		}
	}

	rc_bit_tree_decode(rc, prob_len, num_bits, &len);
	len += offset;

	if (cst->state < 4) {
		int pos_slot;

		cst->state += LZMA_NUM_LIT_STATES;
		prob =
			p + LZMA_POS_SLOT +
			((len <
			  LZMA_NUM_LEN_TO_POS_STATES ? len :
			  LZMA_NUM_LEN_TO_POS_STATES - 1)
			 << LZMA_NUM_POS_SLOT_BITS);
		rc_bit_tree_decode(rc, prob,
				   LZMA_NUM_POS_SLOT_BITS,
				   &pos_slot);
		if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
			int i, mi;
			num_bits = (pos_slot >> 1) - 1;
			cst->rep0 = 2 | (pos_slot & 1);
			if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
				cst->rep0 <<= num_bits;
				prob = p + LZMA_SPEC_POS +
					cst->rep0 - pos_slot - 1;
			} else {
				num_bits -= LZMA_NUM_ALIGN_BITS;
				while (num_bits--)
					cst->rep0 = (cst->rep0 << 1) |
						rc_direct_bit(rc);
				prob = p + LZMA_ALIGN;
				cst->rep0 <<= LZMA_NUM_ALIGN_BITS;
				num_bits = LZMA_NUM_ALIGN_BITS;
			}
			i = 1;
			mi = 1;
			while (num_bits--) {
				if (rc_get_bit(rc, prob + mi, &mi))
					cst->rep0 |= i;
				i <<= 1;
			}
		} else
			cst->rep0 = pos_slot;
		if (++(cst->rep0) == 0)
			return;
	}

	len += LZMA_MATCH_MIN_LEN;

	copy_bytes(wr, cst->rep0, len);
}



STATIC inline int INIT unlzma(unsigned char *buf, int in_len,
			      int(*fill)(void*, unsigned int),
			      int(*flush)(void*, unsigned int),
			      unsigned char *output,
			      int *posp,
			      void(*error_fn)(char *x)
	)
{
	struct lzma_header header;
	int lc, pb, lp;
	uint32_t pos_state_mask;
	uint32_t literal_pos_mask;
	uint16_t *p;
	int num_probs;
	struct rc rc;
	int i, mi;
	struct writer wr;
	struct cstate cst;
	unsigned char *inbuf;
	int ret = -1;

	set_error_fn(error_fn);

	if (buf)
		inbuf = buf;
	else
		inbuf = malloc(LZMA_IOBUF_SIZE);
	if (!inbuf) {
		error("Could not allocate input bufer");
		goto exit_0;
	}

	cst.state = 0;
	cst.rep0 = cst.rep1 = cst.rep2 = cst.rep3 = 1;

	wr.header = &header;
	wr.flush = flush;
	wr.global_pos = 0;
	wr.previous_byte = 0;
	wr.buffer_pos = 0;

	rc_init(&rc, fill, inbuf, in_len);

	for (i = 0; i < sizeof(header); i++) {
		if (rc.ptr >= rc.buffer_end)
			rc_read(&rc);
		((unsigned char *)&header)[i] = *rc.ptr++;
	}

	if (header.pos >= (9 * 5 * 5))
		error("bad header");

	mi = 0;
	lc = header.pos;
	while (lc >= 9) {
		mi++;
		lc -= 9;
	}
	pb = 0;
	lp = mi;
	while (lp >= 5) {
		pb++;
		lp -= 5;
	}
	pos_state_mask = (1 << pb) - 1;
	literal_pos_mask = (1 << lp) - 1;

	ENDIAN_CONVERT(header.dict_size);
	ENDIAN_CONVERT(header.dst_size);

	if (header.dict_size == 0)
		header.dict_size = 1;

	if (output)
		wr.buffer = output;
	else {
		wr.bufsize = MIN(header.dst_size, header.dict_size);
		wr.buffer = large_malloc(wr.bufsize);
	}
	if (wr.buffer == NULL)
		goto exit_1;

	num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
	p = (uint16_t *) large_malloc(num_probs * sizeof(*p));
	if (p == 0)
		goto exit_2;
	num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
	for (i = 0; i < num_probs; i++)
		p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;

	rc_init_code(&rc);

	while (get_pos(&wr) < header.dst_size) {
		int pos_state =	get_pos(&wr) & pos_state_mask;
		uint16_t *prob = p + LZMA_IS_MATCH +
			(cst.state << LZMA_NUM_POS_BITS_MAX) + pos_state;
		if (rc_is_bit_0(&rc, prob))
			process_bit0(&wr, &rc, &cst, p, pos_state, prob,
				     lc, literal_pos_mask);
		else {
			process_bit1(&wr, &rc, &cst, p, pos_state, prob);
			if (cst.rep0 == 0)
				break;
		}
	}

	if (posp)
		*posp = rc.ptr-rc.buffer;
	if (wr.flush)
		wr.flush(wr.buffer, wr.buffer_pos);
	ret = 0;
	large_free(p);
exit_2:
	if (!output)
		large_free(wr.buffer);
exit_1:
	if (!buf)
		free(inbuf);
exit_0:
	return ret;
}

#ifdef PREBOOT
STATIC int INIT decompress(unsigned char *buf, int in_len,
			      int(*fill)(void*, unsigned int),
			      int(*flush)(void*, unsigned int),
			      unsigned char *output,
			      int *posp,
			      void(*error_fn)(char *x)
	)
{
	return unlzma(buf, in_len - 4, fill, flush, output, posp, error_fn);
}
#endif