keyslot-manager.c 19.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright 2019 Google LLC
 */

/**
 * DOC: The Keyslot Manager
 *
 * Many devices with inline encryption support have a limited number of "slots"
 * into which encryption contexts may be programmed, and requests can be tagged
 * with a slot number to specify the key to use for en/decryption.
 *
 * As the number of slots are limited, and programming keys is expensive on
 * many inline encryption hardware, we don't want to program the same key into
 * multiple slots - if multiple requests are using the same key, we want to
 * program just one slot with that key and use that slot for all requests.
 *
 * The keyslot manager manages these keyslots appropriately, and also acts as
 * an abstraction between the inline encryption hardware and the upper layers.
 *
 * Lower layer devices will set up a keyslot manager in their request queue
 * and tell it how to perform device specific operations like programming/
 * evicting keys from keyslots.
 *
 * Upper layers will call keyslot_manager_get_slot_for_key() to program a
 * key into some slot in the inline encryption hardware.
 */
#include <crypto/algapi.h>
#include <linux/keyslot-manager.h>
#include <linux/atomic.h>
#include <linux/mutex.h>
#include <linux/pm_runtime.h>
#include <linux/wait.h>
#include <linux/blkdev.h>

struct keyslot {
	atomic_t slot_refs;
	struct list_head idle_slot_node;
	struct hlist_node hash_node;
	struct blk_crypto_key key;
};

struct keyslot_manager {
	unsigned int num_slots;
	struct keyslot_mgmt_ll_ops ksm_ll_ops;
	unsigned int features;
	unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX];
	unsigned int max_dun_bytes_supported;
	void *ll_priv_data;

#ifdef CONFIG_PM
	/* Device for runtime power management (NULL if none) */
	struct device *dev;
#endif

	/* Protects programming and evicting keys from the device */
	struct rw_semaphore lock;

	/* List of idle slots, with least recently used slot at front */
	wait_queue_head_t idle_slots_wait_queue;
	struct list_head idle_slots;
	spinlock_t idle_slots_lock;

	/*
	 * Hash table which maps key hashes to keyslots, so that we can find a
	 * key's keyslot in O(1) time rather than O(num_slots).  Protected by
	 * 'lock'.  A cryptographic hash function is used so that timing attacks
	 * can't leak information about the raw keys.
	 */
	struct hlist_head *slot_hashtable;
	unsigned int slot_hashtable_size;

	/* Per-keyslot data */
	struct keyslot slots[];
};

static inline bool keyslot_manager_is_passthrough(struct keyslot_manager *ksm)
{
	return ksm->num_slots == 0;
}

#ifdef CONFIG_PM
static inline void keyslot_manager_set_dev(struct keyslot_manager *ksm,
					   struct device *dev)
{
	ksm->dev = dev;
}

/* If there's an underlying device and it's suspended, resume it. */
static inline void keyslot_manager_pm_get(struct keyslot_manager *ksm)
{
	if (ksm->dev)
		pm_runtime_get_sync(ksm->dev);
}

static inline void keyslot_manager_pm_put(struct keyslot_manager *ksm)
{
	if (ksm->dev)
		pm_runtime_put_sync(ksm->dev);
}
#else /* CONFIG_PM */
static inline void keyslot_manager_set_dev(struct keyslot_manager *ksm,
					   struct device *dev)
{
}

static inline void keyslot_manager_pm_get(struct keyslot_manager *ksm)
{
}

static inline void keyslot_manager_pm_put(struct keyslot_manager *ksm)
{
}
#endif /* !CONFIG_PM */

static inline void keyslot_manager_hw_enter(struct keyslot_manager *ksm)
{
	/*
	 * Calling into the driver requires ksm->lock held and the device
	 * resumed.  But we must resume the device first, since that can acquire
	 * and release ksm->lock via keyslot_manager_reprogram_all_keys().
	 */
	keyslot_manager_pm_get(ksm);
	down_write(&ksm->lock);
}

static inline void keyslot_manager_hw_exit(struct keyslot_manager *ksm)
{
	up_write(&ksm->lock);
	keyslot_manager_pm_put(ksm);
}

/**
 * keyslot_manager_create() - Create a keyslot manager
 * @dev: Device for runtime power management (NULL if none)
 * @num_slots: The number of key slots to manage.
 * @ksm_ll_ops: The struct keyslot_mgmt_ll_ops for the device that this keyslot
 *		manager will use to perform operations like programming and
 *		evicting keys.
 * @features: The supported features as a bitmask of BLK_CRYPTO_FEATURE_* flags.
 *	      Most drivers should set BLK_CRYPTO_FEATURE_STANDARD_KEYS here.
 * @crypto_mode_supported:	Array of size BLK_ENCRYPTION_MODE_MAX of
 *				bitmasks that represents whether a crypto mode
 *				and data unit size are supported. The i'th bit
 *				of crypto_mode_supported[crypto_mode] is set iff
 *				a data unit size of (1 << i) is supported. We
 *				only support data unit sizes that are powers of
 *				2.
 * @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops.
 *
 * Allocate memory for and initialize a keyslot manager. Called by e.g.
 * storage drivers to set up a keyslot manager in their request_queue.
 *
 * Context: May sleep
 * Return: Pointer to constructed keyslot manager or NULL on error.
 */
struct keyslot_manager *keyslot_manager_create(
	struct device *dev,
	unsigned int num_slots,
	const struct keyslot_mgmt_ll_ops *ksm_ll_ops,
	unsigned int features,
	const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX],
	void *ll_priv_data)
{
	struct keyslot_manager *ksm;
	unsigned int slot;
	unsigned int i;

	if (num_slots == 0)
		return NULL;

	/* Check that all ops are specified */
	if (ksm_ll_ops->keyslot_program == NULL ||
	    ksm_ll_ops->keyslot_evict == NULL)
		return NULL;

	ksm = kvzalloc(struct_size(ksm, slots, num_slots), GFP_KERNEL);
	if (!ksm)
		return NULL;

	ksm->num_slots = num_slots;
	ksm->ksm_ll_ops = *ksm_ll_ops;
	ksm->features = features;
	memcpy(ksm->crypto_mode_supported, crypto_mode_supported,
	       sizeof(ksm->crypto_mode_supported));
	ksm->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
	ksm->ll_priv_data = ll_priv_data;
	keyslot_manager_set_dev(ksm, dev);

	init_rwsem(&ksm->lock);

	init_waitqueue_head(&ksm->idle_slots_wait_queue);
	INIT_LIST_HEAD(&ksm->idle_slots);

	for (slot = 0; slot < num_slots; slot++) {
		list_add_tail(&ksm->slots[slot].idle_slot_node,
			      &ksm->idle_slots);
	}

	spin_lock_init(&ksm->idle_slots_lock);

	ksm->slot_hashtable_size = roundup_pow_of_two(num_slots);
	ksm->slot_hashtable = kvmalloc_array(ksm->slot_hashtable_size,
					     sizeof(ksm->slot_hashtable[0]),
					     GFP_KERNEL);
	if (!ksm->slot_hashtable)
		goto err_free_ksm;
	for (i = 0; i < ksm->slot_hashtable_size; i++)
		INIT_HLIST_HEAD(&ksm->slot_hashtable[i]);

	return ksm;

err_free_ksm:
	keyslot_manager_destroy(ksm);
	return NULL;
}
EXPORT_SYMBOL_GPL(keyslot_manager_create);

void keyslot_manager_set_max_dun_bytes(struct keyslot_manager *ksm,
				       unsigned int max_dun_bytes)
{
	ksm->max_dun_bytes_supported = max_dun_bytes;
}
EXPORT_SYMBOL_GPL(keyslot_manager_set_max_dun_bytes);

static inline struct hlist_head *
hash_bucket_for_key(struct keyslot_manager *ksm,
		    const struct blk_crypto_key *key)
{
	return &ksm->slot_hashtable[blk_crypto_key_hash(key) &
				    (ksm->slot_hashtable_size - 1)];
}

static void remove_slot_from_lru_list(struct keyslot_manager *ksm, int slot)
{
	unsigned long flags;

	spin_lock_irqsave(&ksm->idle_slots_lock, flags);
	list_del(&ksm->slots[slot].idle_slot_node);
	spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
}

static int find_keyslot(struct keyslot_manager *ksm,
			const struct blk_crypto_key *key)
{
	const struct hlist_head *head = hash_bucket_for_key(ksm, key);
	const struct keyslot *slotp;

	hlist_for_each_entry(slotp, head, hash_node) {
		if (slotp->key.hash == key->hash &&
		    slotp->key.crypto_mode == key->crypto_mode &&
		    slotp->key.size == key->size &&
		    slotp->key.data_unit_size == key->data_unit_size &&
		    !crypto_memneq(slotp->key.raw, key->raw, key->size))
			return slotp - ksm->slots;
	}
	return -ENOKEY;
}

static int find_and_grab_keyslot(struct keyslot_manager *ksm,
				 const struct blk_crypto_key *key)
{
	int slot;

	slot = find_keyslot(ksm, key);
	if (slot < 0)
		return slot;
	if (atomic_inc_return(&ksm->slots[slot].slot_refs) == 1) {
		/* Took first reference to this slot; remove it from LRU list */
		remove_slot_from_lru_list(ksm, slot);
	}
	return slot;
}

/**
 * keyslot_manager_get_slot_for_key() - Program a key into a keyslot.
 * @ksm: The keyslot manager to program the key into.
 * @key: Pointer to the key object to program, including the raw key, crypto
 *	 mode, and data unit size.
 *
 * Get a keyslot that's been programmed with the specified key.  If one already
 * exists, return it with incremented refcount.  Otherwise, wait for a keyslot
 * to become idle and program it.
 *
 * Context: Process context. Takes and releases ksm->lock.
 * Return: The keyslot on success, else a -errno value.
 */
int keyslot_manager_get_slot_for_key(struct keyslot_manager *ksm,
				     const struct blk_crypto_key *key)
{
	int slot;
	int err;
	struct keyslot *idle_slot;

	if (keyslot_manager_is_passthrough(ksm))
		return 0;

	down_read(&ksm->lock);
	slot = find_and_grab_keyslot(ksm, key);
	up_read(&ksm->lock);
	if (slot != -ENOKEY)
		return slot;

	for (;;) {
		keyslot_manager_hw_enter(ksm);
		slot = find_and_grab_keyslot(ksm, key);
		if (slot != -ENOKEY) {
			keyslot_manager_hw_exit(ksm);
			return slot;
		}

		/*
		 * If we're here, that means there wasn't a slot that was
		 * already programmed with the key. So try to program it.
		 */
		if (!list_empty(&ksm->idle_slots))
			break;

		keyslot_manager_hw_exit(ksm);
		wait_event(ksm->idle_slots_wait_queue,
			   !list_empty(&ksm->idle_slots));
	}

	idle_slot = list_first_entry(&ksm->idle_slots, struct keyslot,
					     idle_slot_node);
	slot = idle_slot - ksm->slots;

	err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot);
	if (err) {
		wake_up(&ksm->idle_slots_wait_queue);
		keyslot_manager_hw_exit(ksm);
		return err;
	}

	/* Move this slot to the hash list for the new key. */
	if (idle_slot->key.crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
		hlist_del(&idle_slot->hash_node);
	hlist_add_head(&idle_slot->hash_node, hash_bucket_for_key(ksm, key));

	atomic_set(&idle_slot->slot_refs, 1);
	idle_slot->key = *key;

	remove_slot_from_lru_list(ksm, slot);

	keyslot_manager_hw_exit(ksm);
	return slot;
}

/**
 * keyslot_manager_get_slot() - Increment the refcount on the specified slot.
 * @ksm: The keyslot manager that we want to modify.
 * @slot: The slot to increment the refcount of.
 *
 * This function assumes that there is already an active reference to that slot
 * and simply increments the refcount. This is useful when cloning a bio that
 * already has a reference to a keyslot, and we want the cloned bio to also have
 * its own reference.
 *
 * Context: Any context.
 */
void keyslot_manager_get_slot(struct keyslot_manager *ksm, unsigned int slot)
{
	if (keyslot_manager_is_passthrough(ksm))
		return;

	if (WARN_ON(slot >= ksm->num_slots))
		return;

	WARN_ON(atomic_inc_return(&ksm->slots[slot].slot_refs) < 2);
}

/**
 * keyslot_manager_put_slot() - Release a reference to a slot
 * @ksm: The keyslot manager to release the reference from.
 * @slot: The slot to release the reference from.
 *
 * Context: Any context.
 */
void keyslot_manager_put_slot(struct keyslot_manager *ksm, unsigned int slot)
{
	unsigned long flags;

	if (keyslot_manager_is_passthrough(ksm))
		return;

	if (WARN_ON(slot >= ksm->num_slots))
		return;

	if (atomic_dec_and_lock_irqsave(&ksm->slots[slot].slot_refs,
					&ksm->idle_slots_lock, flags)) {
		list_add_tail(&ksm->slots[slot].idle_slot_node,
			      &ksm->idle_slots);
		spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
		wake_up(&ksm->idle_slots_wait_queue);
	}
}

/**
 * keyslot_manager_crypto_mode_supported() - Find out if a crypto_mode /
 *					     data unit size / is_hw_wrapped_key
 *					     combination is supported by a ksm.
 * @ksm: The keyslot manager to check
 * @crypto_mode: The crypto mode to check for.
 * @dun_bytes: The number of bytes that will be used to specify the DUN
 * @data_unit_size: The data_unit_size for the mode.
 * @is_hw_wrapped_key: Whether a hardware-wrapped key will be used.
 *
 * Calls and returns the result of the crypto_mode_supported function specified
 * by the ksm.
 *
 * Context: Process context.
 * Return: Whether or not this ksm supports the specified crypto settings.
 */
bool keyslot_manager_crypto_mode_supported(struct keyslot_manager *ksm,
					   enum blk_crypto_mode_num crypto_mode,
					   unsigned int dun_bytes,
					   unsigned int data_unit_size,
					   bool is_hw_wrapped_key)
{
	if (!ksm)
		return false;
	if (WARN_ON(crypto_mode >= BLK_ENCRYPTION_MODE_MAX))
		return false;
	if (WARN_ON(!is_power_of_2(data_unit_size)))
		return false;
	if (is_hw_wrapped_key) {
		if (!(ksm->features & BLK_CRYPTO_FEATURE_WRAPPED_KEYS))
			return false;
	} else {
		if (!(ksm->features & BLK_CRYPTO_FEATURE_STANDARD_KEYS))
			return false;
	}
	if (!(ksm->crypto_mode_supported[crypto_mode] & data_unit_size))
		return false;

	return ksm->max_dun_bytes_supported >= dun_bytes;
}

/**
 * keyslot_manager_evict_key() - Evict a key from the lower layer device.
 * @ksm: The keyslot manager to evict from
 * @key: The key to evict
 *
 * Find the keyslot that the specified key was programmed into, and evict that
 * slot from the lower layer device if that slot is not currently in use.
 *
 * Context: Process context. Takes and releases ksm->lock.
 * Return: 0 on success, -EBUSY if the key is still in use, or another
 *	   -errno value on other error.
 */
int keyslot_manager_evict_key(struct keyslot_manager *ksm,
			      const struct blk_crypto_key *key)
{
	int slot;
	int err;
	struct keyslot *slotp;

	if (keyslot_manager_is_passthrough(ksm)) {
		if (ksm->ksm_ll_ops.keyslot_evict) {
			keyslot_manager_hw_enter(ksm);
			err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1);
			keyslot_manager_hw_exit(ksm);
			return err;
		}
		return 0;
	}

	keyslot_manager_hw_enter(ksm);

	slot = find_keyslot(ksm, key);
	if (slot < 0) {
		err = slot;
		goto out_unlock;
	}
	slotp = &ksm->slots[slot];

	if (atomic_read(&slotp->slot_refs) != 0) {
		err = -EBUSY;
		goto out_unlock;
	}
	err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, slot);
	if (err)
		goto out_unlock;

	hlist_del(&slotp->hash_node);
	memzero_explicit(&slotp->key, sizeof(slotp->key));
	err = 0;
out_unlock:
	keyslot_manager_hw_exit(ksm);
	return err;
}

/**
 * keyslot_manager_reprogram_all_keys() - Re-program all keyslots.
 * @ksm: The keyslot manager
 *
 * Re-program all keyslots that are supposed to have a key programmed.  This is
 * intended only for use by drivers for hardware that loses its keys on reset.
 *
 * Context: Process context. Takes and releases ksm->lock.
 */
void keyslot_manager_reprogram_all_keys(struct keyslot_manager *ksm)
{
	unsigned int slot;

	if (WARN_ON(keyslot_manager_is_passthrough(ksm)))
		return;

	/* This is for device initialization, so don't resume the device */
	down_write(&ksm->lock);
	for (slot = 0; slot < ksm->num_slots; slot++) {
		const struct keyslot *slotp = &ksm->slots[slot];
		int err;

		if (slotp->key.crypto_mode == BLK_ENCRYPTION_MODE_INVALID)
			continue;

		err = ksm->ksm_ll_ops.keyslot_program(ksm, &slotp->key, slot);
		WARN_ON(err);
	}
	up_write(&ksm->lock);
}
EXPORT_SYMBOL_GPL(keyslot_manager_reprogram_all_keys);

/**
 * keyslot_manager_private() - return the private data stored with ksm
 * @ksm: The keyslot manager
 *
 * Returns the private data passed to the ksm when it was created.
 */
void *keyslot_manager_private(struct keyslot_manager *ksm)
{
	return ksm->ll_priv_data;
}
EXPORT_SYMBOL_GPL(keyslot_manager_private);

void keyslot_manager_destroy(struct keyslot_manager *ksm)
{
	if (ksm) {
		kvfree(ksm->slot_hashtable);
		memzero_explicit(ksm, struct_size(ksm, slots, ksm->num_slots));
		kvfree(ksm);
	}
}
EXPORT_SYMBOL_GPL(keyslot_manager_destroy);

/**
 * keyslot_manager_create_passthrough() - Create a passthrough keyslot manager
 * @dev: Device for runtime power management (NULL if none)
 * @ksm_ll_ops: The struct keyslot_mgmt_ll_ops
 * @features: Bitmask of BLK_CRYPTO_FEATURE_* flags
 * @crypto_mode_supported: Bitmasks for supported encryption modes
 * @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops.
 *
 * Allocate memory for and initialize a passthrough keyslot manager.
 * Called by e.g. storage drivers to set up a keyslot manager in their
 * request_queue, when the storage driver wants to manage its keys by itself.
 * This is useful for inline encryption hardware that don't have a small fixed
 * number of keyslots, and for layered devices.
 *
 * See keyslot_manager_create() for more details about the parameters.
 *
 * Context: This function may sleep
 * Return: Pointer to constructed keyslot manager or NULL on error.
 */
struct keyslot_manager *keyslot_manager_create_passthrough(
	struct device *dev,
	const struct keyslot_mgmt_ll_ops *ksm_ll_ops,
	unsigned int features,
	const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX],
	void *ll_priv_data)
{
	struct keyslot_manager *ksm;

	ksm = kzalloc(sizeof(*ksm), GFP_KERNEL);
	if (!ksm)
		return NULL;

	ksm->ksm_ll_ops = *ksm_ll_ops;
	ksm->features = features;
	memcpy(ksm->crypto_mode_supported, crypto_mode_supported,
	       sizeof(ksm->crypto_mode_supported));
	ksm->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
	ksm->ll_priv_data = ll_priv_data;
	keyslot_manager_set_dev(ksm, dev);

	init_rwsem(&ksm->lock);

	return ksm;
}
EXPORT_SYMBOL_GPL(keyslot_manager_create_passthrough);

/**
 * keyslot_manager_intersect_modes() - restrict supported modes by child device
 * @parent: The keyslot manager for parent device
 * @child: The keyslot manager for child device, or NULL
 *
 * Clear any crypto mode support bits in @parent that aren't set in @child.
 * If @child is NULL, then all parent bits are cleared.
 *
 * Only use this when setting up the keyslot manager for a layered device,
 * before it's been exposed yet.
 */
void keyslot_manager_intersect_modes(struct keyslot_manager *parent,
				     const struct keyslot_manager *child)
{
	if (child) {
		unsigned int i;

		parent->features &= child->features;
		parent->max_dun_bytes_supported =
			min(parent->max_dun_bytes_supported,
			    child->max_dun_bytes_supported);
		for (i = 0; i < ARRAY_SIZE(child->crypto_mode_supported); i++) {
			parent->crypto_mode_supported[i] &=
				child->crypto_mode_supported[i];
		}
	} else {
		parent->features = 0;
		parent->max_dun_bytes_supported = 0;
		memset(parent->crypto_mode_supported, 0,
		       sizeof(parent->crypto_mode_supported));
	}
}
EXPORT_SYMBOL_GPL(keyslot_manager_intersect_modes);

/**
 * keyslot_manager_derive_raw_secret() - Derive software secret from wrapped key
 * @ksm: The keyslot manager
 * @wrapped_key: The wrapped key
 * @wrapped_key_size: Size of the wrapped key in bytes
 * @secret: (output) the software secret
 * @secret_size: (output) the number of secret bytes to derive
 *
 * Given a hardware-wrapped key, ask the hardware to derive a secret which
 * software can use for cryptographic tasks other than inline encryption.  The
 * derived secret is guaranteed to be cryptographically isolated from the key
 * with which any inline encryption with this wrapped key would actually be
 * done.  I.e., both will be derived from the unwrapped key.
 *
 * Return: 0 on success, -EOPNOTSUPP if hardware-wrapped keys are unsupported,
 *	   or another -errno code.
 */
int keyslot_manager_derive_raw_secret(struct keyslot_manager *ksm,
				      const u8 *wrapped_key,
				      unsigned int wrapped_key_size,
				      u8 *secret, unsigned int secret_size)
{
	int err;

	if (ksm->ksm_ll_ops.derive_raw_secret) {
		keyslot_manager_hw_enter(ksm);
		err = ksm->ksm_ll_ops.derive_raw_secret(ksm, wrapped_key,
							wrapped_key_size,
							secret, secret_size);
		keyslot_manager_hw_exit(ksm);
	} else {
		err = -EOPNOTSUPP;
	}

	return err;
}
EXPORT_SYMBOL_GPL(keyslot_manager_derive_raw_secret);