xen_snd_front_evtchnl.c 12 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
// SPDX-License-Identifier: GPL-2.0 OR MIT

/*
 * Xen para-virtual sound device
 *
 * Copyright (C) 2016-2018 EPAM Systems Inc.
 *
 * Author: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
 */

#include <xen/events.h>
#include <xen/grant_table.h>
#include <xen/xen.h>
#include <xen/xenbus.h>

#include "xen_snd_front.h"
#include "xen_snd_front_alsa.h"
#include "xen_snd_front_cfg.h"
#include "xen_snd_front_evtchnl.h"

static irqreturn_t evtchnl_interrupt_req(int irq, void *dev_id)
{
	struct xen_snd_front_evtchnl *channel = dev_id;
	struct xen_snd_front_info *front_info = channel->front_info;
	struct xensnd_resp *resp;
	RING_IDX i, rp;

	if (unlikely(channel->state != EVTCHNL_STATE_CONNECTED))
		return IRQ_HANDLED;

	mutex_lock(&channel->ring_io_lock);

again:
	rp = channel->u.req.ring.sring->rsp_prod;
	/* Ensure we see queued responses up to rp. */
	rmb();

	/*
	 * Assume that the backend is trusted to always write sane values
	 * to the ring counters, so no overflow checks on frontend side
	 * are required.
	 */
	for (i = channel->u.req.ring.rsp_cons; i != rp; i++) {
		resp = RING_GET_RESPONSE(&channel->u.req.ring, i);
		if (resp->id != channel->evt_id)
			continue;
		switch (resp->operation) {
		case XENSND_OP_OPEN:
		case XENSND_OP_CLOSE:
		case XENSND_OP_READ:
		case XENSND_OP_WRITE:
		case XENSND_OP_TRIGGER:
			channel->u.req.resp_status = resp->status;
			complete(&channel->u.req.completion);
			break;
		case XENSND_OP_HW_PARAM_QUERY:
			channel->u.req.resp_status = resp->status;
			channel->u.req.resp.hw_param =
					resp->resp.hw_param;
			complete(&channel->u.req.completion);
			break;

		default:
			dev_err(&front_info->xb_dev->dev,
				"Operation %d is not supported\n",
				resp->operation);
			break;
		}
	}

	channel->u.req.ring.rsp_cons = i;
	if (i != channel->u.req.ring.req_prod_pvt) {
		int more_to_do;

		RING_FINAL_CHECK_FOR_RESPONSES(&channel->u.req.ring,
					       more_to_do);
		if (more_to_do)
			goto again;
	} else {
		channel->u.req.ring.sring->rsp_event = i + 1;
	}

	mutex_unlock(&channel->ring_io_lock);
	return IRQ_HANDLED;
}

static irqreturn_t evtchnl_interrupt_evt(int irq, void *dev_id)
{
	struct xen_snd_front_evtchnl *channel = dev_id;
	struct xensnd_event_page *page = channel->u.evt.page;
	u32 cons, prod;

	if (unlikely(channel->state != EVTCHNL_STATE_CONNECTED))
		return IRQ_HANDLED;

	mutex_lock(&channel->ring_io_lock);

	prod = page->in_prod;
	/* Ensure we see ring contents up to prod. */
	virt_rmb();
	if (prod == page->in_cons)
		goto out;

	/*
	 * Assume that the backend is trusted to always write sane values
	 * to the ring counters, so no overflow checks on frontend side
	 * are required.
	 */
	for (cons = page->in_cons; cons != prod; cons++) {
		struct xensnd_evt *event;

		event = &XENSND_IN_RING_REF(page, cons);
		if (unlikely(event->id != channel->evt_id++))
			continue;

		switch (event->type) {
		case XENSND_EVT_CUR_POS:
			xen_snd_front_alsa_handle_cur_pos(channel,
							  event->op.cur_pos.position);
			break;
		}
	}

	page->in_cons = cons;
	/* Ensure ring contents. */
	virt_wmb();

out:
	mutex_unlock(&channel->ring_io_lock);
	return IRQ_HANDLED;
}

void xen_snd_front_evtchnl_flush(struct xen_snd_front_evtchnl *channel)
{
	int notify;

	channel->u.req.ring.req_prod_pvt++;
	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&channel->u.req.ring, notify);
	if (notify)
		notify_remote_via_irq(channel->irq);
}

static void evtchnl_free(struct xen_snd_front_info *front_info,
			 struct xen_snd_front_evtchnl *channel)
{
	unsigned long page = 0;

	if (channel->type == EVTCHNL_TYPE_REQ)
		page = (unsigned long)channel->u.req.ring.sring;
	else if (channel->type == EVTCHNL_TYPE_EVT)
		page = (unsigned long)channel->u.evt.page;

	if (!page)
		return;

	channel->state = EVTCHNL_STATE_DISCONNECTED;
	if (channel->type == EVTCHNL_TYPE_REQ) {
		/* Release all who still waits for response if any. */
		channel->u.req.resp_status = -EIO;
		complete_all(&channel->u.req.completion);
	}

	if (channel->irq)
		unbind_from_irqhandler(channel->irq, channel);

	if (channel->port)
		xenbus_free_evtchn(front_info->xb_dev, channel->port);

	/* End access and free the page. */
	if (channel->gref != GRANT_INVALID_REF)
		gnttab_end_foreign_access(channel->gref, 0, page);
	else
		free_page(page);

	memset(channel, 0, sizeof(*channel));
}

void xen_snd_front_evtchnl_free_all(struct xen_snd_front_info *front_info)
{
	int i;

	if (!front_info->evt_pairs)
		return;

	for (i = 0; i < front_info->num_evt_pairs; i++) {
		evtchnl_free(front_info, &front_info->evt_pairs[i].req);
		evtchnl_free(front_info, &front_info->evt_pairs[i].evt);
	}

	kfree(front_info->evt_pairs);
	front_info->evt_pairs = NULL;
}

static int evtchnl_alloc(struct xen_snd_front_info *front_info, int index,
			 struct xen_snd_front_evtchnl *channel,
			 enum xen_snd_front_evtchnl_type type)
{
	struct xenbus_device *xb_dev = front_info->xb_dev;
	unsigned long page;
	grant_ref_t gref;
	irq_handler_t handler;
	char *handler_name = NULL;
	int ret;

	memset(channel, 0, sizeof(*channel));
	channel->type = type;
	channel->index = index;
	channel->front_info = front_info;
	channel->state = EVTCHNL_STATE_DISCONNECTED;
	channel->gref = GRANT_INVALID_REF;
	page = get_zeroed_page(GFP_KERNEL);
	if (!page) {
		ret = -ENOMEM;
		goto fail;
	}

	handler_name = kasprintf(GFP_KERNEL, "%s-%s", XENSND_DRIVER_NAME,
				 type == EVTCHNL_TYPE_REQ ?
				 XENSND_FIELD_RING_REF :
				 XENSND_FIELD_EVT_RING_REF);
	if (!handler_name) {
		ret = -ENOMEM;
		goto fail;
	}

	mutex_init(&channel->ring_io_lock);

	if (type == EVTCHNL_TYPE_REQ) {
		struct xen_sndif_sring *sring = (struct xen_sndif_sring *)page;

		init_completion(&channel->u.req.completion);
		mutex_init(&channel->u.req.req_io_lock);
		SHARED_RING_INIT(sring);
		FRONT_RING_INIT(&channel->u.req.ring, sring, XEN_PAGE_SIZE);

		ret = xenbus_grant_ring(xb_dev, sring, 1, &gref);
		if (ret < 0) {
			channel->u.req.ring.sring = NULL;
			goto fail;
		}

		handler = evtchnl_interrupt_req;
	} else {
		ret = gnttab_grant_foreign_access(xb_dev->otherend_id,
						  virt_to_gfn((void *)page), 0);
		if (ret < 0)
			goto fail;

		channel->u.evt.page = (struct xensnd_event_page *)page;
		gref = ret;
		handler = evtchnl_interrupt_evt;
	}

	channel->gref = gref;

	ret = xenbus_alloc_evtchn(xb_dev, &channel->port);
	if (ret < 0)
		goto fail;

	ret = bind_evtchn_to_irq(channel->port);
	if (ret < 0) {
		dev_err(&xb_dev->dev,
			"Failed to bind IRQ for domid %d port %d: %d\n",
			front_info->xb_dev->otherend_id, channel->port, ret);
		goto fail;
	}

	channel->irq = ret;

	ret = request_threaded_irq(channel->irq, NULL, handler,
				   IRQF_ONESHOT, handler_name, channel);
	if (ret < 0) {
		dev_err(&xb_dev->dev, "Failed to request IRQ %d: %d\n",
			channel->irq, ret);
		goto fail;
	}

	kfree(handler_name);
	return 0;

fail:
	if (page)
		free_page(page);
	kfree(handler_name);
	dev_err(&xb_dev->dev, "Failed to allocate ring: %d\n", ret);
	return ret;
}

int xen_snd_front_evtchnl_create_all(struct xen_snd_front_info *front_info,
				     int num_streams)
{
	struct xen_front_cfg_card *cfg = &front_info->cfg;
	struct device *dev = &front_info->xb_dev->dev;
	int d, ret = 0;

	front_info->evt_pairs =
			kcalloc(num_streams,
				sizeof(struct xen_snd_front_evtchnl_pair),
				GFP_KERNEL);
	if (!front_info->evt_pairs)
		return -ENOMEM;

	/* Iterate over devices and their streams and create event channels. */
	for (d = 0; d < cfg->num_pcm_instances; d++) {
		struct xen_front_cfg_pcm_instance *pcm_instance;
		int s, index;

		pcm_instance = &cfg->pcm_instances[d];

		for (s = 0; s < pcm_instance->num_streams_pb; s++) {
			index = pcm_instance->streams_pb[s].index;

			ret = evtchnl_alloc(front_info, index,
					    &front_info->evt_pairs[index].req,
					    EVTCHNL_TYPE_REQ);
			if (ret < 0) {
				dev_err(dev, "Error allocating control channel\n");
				goto fail;
			}

			ret = evtchnl_alloc(front_info, index,
					    &front_info->evt_pairs[index].evt,
					    EVTCHNL_TYPE_EVT);
			if (ret < 0) {
				dev_err(dev, "Error allocating in-event channel\n");
				goto fail;
			}
		}

		for (s = 0; s < pcm_instance->num_streams_cap; s++) {
			index = pcm_instance->streams_cap[s].index;

			ret = evtchnl_alloc(front_info, index,
					    &front_info->evt_pairs[index].req,
					    EVTCHNL_TYPE_REQ);
			if (ret < 0) {
				dev_err(dev, "Error allocating control channel\n");
				goto fail;
			}

			ret = evtchnl_alloc(front_info, index,
					    &front_info->evt_pairs[index].evt,
					    EVTCHNL_TYPE_EVT);
			if (ret < 0) {
				dev_err(dev, "Error allocating in-event channel\n");
				goto fail;
			}
		}
	}

	front_info->num_evt_pairs = num_streams;
	return 0;

fail:
	xen_snd_front_evtchnl_free_all(front_info);
	return ret;
}

static int evtchnl_publish(struct xenbus_transaction xbt,
			   struct xen_snd_front_evtchnl *channel,
			   const char *path, const char *node_ring,
			   const char *node_chnl)
{
	struct xenbus_device *xb_dev = channel->front_info->xb_dev;
	int ret;

	/* Write control channel ring reference. */
	ret = xenbus_printf(xbt, path, node_ring, "%u", channel->gref);
	if (ret < 0) {
		dev_err(&xb_dev->dev, "Error writing ring-ref: %d\n", ret);
		return ret;
	}

	/* Write event channel ring reference. */
	ret = xenbus_printf(xbt, path, node_chnl, "%u", channel->port);
	if (ret < 0) {
		dev_err(&xb_dev->dev, "Error writing event channel: %d\n", ret);
		return ret;
	}

	return 0;
}

int xen_snd_front_evtchnl_publish_all(struct xen_snd_front_info *front_info)
{
	struct xen_front_cfg_card *cfg = &front_info->cfg;
	struct xenbus_transaction xbt;
	int ret, d;

again:
	ret = xenbus_transaction_start(&xbt);
	if (ret < 0) {
		xenbus_dev_fatal(front_info->xb_dev, ret,
				 "starting transaction");
		return ret;
	}

	for (d = 0; d < cfg->num_pcm_instances; d++) {
		struct xen_front_cfg_pcm_instance *pcm_instance;
		int s, index;

		pcm_instance = &cfg->pcm_instances[d];

		for (s = 0; s < pcm_instance->num_streams_pb; s++) {
			index = pcm_instance->streams_pb[s].index;

			ret = evtchnl_publish(xbt,
					      &front_info->evt_pairs[index].req,
					      pcm_instance->streams_pb[s].xenstore_path,
					      XENSND_FIELD_RING_REF,
					      XENSND_FIELD_EVT_CHNL);
			if (ret < 0)
				goto fail;

			ret = evtchnl_publish(xbt,
					      &front_info->evt_pairs[index].evt,
					      pcm_instance->streams_pb[s].xenstore_path,
					      XENSND_FIELD_EVT_RING_REF,
					      XENSND_FIELD_EVT_EVT_CHNL);
			if (ret < 0)
				goto fail;
		}

		for (s = 0; s < pcm_instance->num_streams_cap; s++) {
			index = pcm_instance->streams_cap[s].index;

			ret = evtchnl_publish(xbt,
					      &front_info->evt_pairs[index].req,
					      pcm_instance->streams_cap[s].xenstore_path,
					      XENSND_FIELD_RING_REF,
					      XENSND_FIELD_EVT_CHNL);
			if (ret < 0)
				goto fail;

			ret = evtchnl_publish(xbt,
					      &front_info->evt_pairs[index].evt,
					      pcm_instance->streams_cap[s].xenstore_path,
					      XENSND_FIELD_EVT_RING_REF,
					      XENSND_FIELD_EVT_EVT_CHNL);
			if (ret < 0)
				goto fail;
		}
	}
	ret = xenbus_transaction_end(xbt, 0);
	if (ret < 0) {
		if (ret == -EAGAIN)
			goto again;

		xenbus_dev_fatal(front_info->xb_dev, ret,
				 "completing transaction");
		goto fail_to_end;
	}
	return 0;
fail:
	xenbus_transaction_end(xbt, 1);
fail_to_end:
	xenbus_dev_fatal(front_info->xb_dev, ret, "writing XenStore");
	return ret;
}

void xen_snd_front_evtchnl_pair_set_connected(struct xen_snd_front_evtchnl_pair *evt_pair,
					      bool is_connected)
{
	enum xen_snd_front_evtchnl_state state;

	if (is_connected)
		state = EVTCHNL_STATE_CONNECTED;
	else
		state = EVTCHNL_STATE_DISCONNECTED;

	mutex_lock(&evt_pair->req.ring_io_lock);
	evt_pair->req.state = state;
	mutex_unlock(&evt_pair->req.ring_io_lock);

	mutex_lock(&evt_pair->evt.ring_io_lock);
	evt_pair->evt.state = state;
	mutex_unlock(&evt_pair->evt.ring_io_lock);
}

void xen_snd_front_evtchnl_pair_clear(struct xen_snd_front_evtchnl_pair *evt_pair)
{
	mutex_lock(&evt_pair->req.ring_io_lock);
	evt_pair->req.evt_next_id = 0;
	mutex_unlock(&evt_pair->req.ring_io_lock);

	mutex_lock(&evt_pair->evt.ring_io_lock);
	evt_pair->evt.evt_next_id = 0;
	mutex_unlock(&evt_pair->evt.ring_io_lock);
}