big_key.c 10.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
// SPDX-License-Identifier: GPL-2.0-or-later
/* Large capacity key type
 *
 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 */

#define pr_fmt(fmt) "big_key: "fmt
#include <linux/init.h>
#include <linux/seq_file.h>
#include <linux/file.h>
#include <linux/shmem_fs.h>
#include <linux/err.h>
#include <linux/scatterlist.h>
#include <linux/random.h>
#include <linux/vmalloc.h>
#include <keys/user-type.h>
#include <keys/big_key-type.h>
#include <crypto/aead.h>
#include <crypto/gcm.h>

struct big_key_buf {
	unsigned int		nr_pages;
	void			*virt;
	struct scatterlist	*sg;
	struct page		*pages[];
};

/*
 * Layout of key payload words.
 */
enum {
	big_key_data,
	big_key_path,
	big_key_path_2nd_part,
	big_key_len,
};

/*
 * Crypto operation with big_key data
 */
enum big_key_op {
	BIG_KEY_ENC,
	BIG_KEY_DEC,
};

/*
 * If the data is under this limit, there's no point creating a shm file to
 * hold it as the permanently resident metadata for the shmem fs will be at
 * least as large as the data.
 */
#define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))

/*
 * Key size for big_key data encryption
 */
#define ENC_KEY_SIZE 32

/*
 * Authentication tag length
 */
#define ENC_AUTHTAG_SIZE 16

/*
 * big_key defined keys take an arbitrary string as the description and an
 * arbitrary blob of data as the payload
 */
struct key_type key_type_big_key = {
	.name			= "big_key",
	.preparse		= big_key_preparse,
	.free_preparse		= big_key_free_preparse,
	.instantiate		= generic_key_instantiate,
	.revoke			= big_key_revoke,
	.destroy		= big_key_destroy,
	.describe		= big_key_describe,
	.read			= big_key_read,
	/* no ->update(); don't add it without changing big_key_crypt() nonce */
};

/*
 * Crypto names for big_key data authenticated encryption
 */
static const char big_key_alg_name[] = "gcm(aes)";
#define BIG_KEY_IV_SIZE		GCM_AES_IV_SIZE

/*
 * Crypto algorithms for big_key data authenticated encryption
 */
static struct crypto_aead *big_key_aead;

/*
 * Since changing the key affects the entire object, we need a mutex.
 */
static DEFINE_MUTEX(big_key_aead_lock);

/*
 * Encrypt/decrypt big_key data
 */
static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key)
{
	int ret;
	struct aead_request *aead_req;
	/* We always use a zero nonce. The reason we can get away with this is
	 * because we're using a different randomly generated key for every
	 * different encryption. Notably, too, key_type_big_key doesn't define
	 * an .update function, so there's no chance we'll wind up reusing the
	 * key to encrypt updated data. Simply put: one key, one encryption.
	 */
	u8 zero_nonce[BIG_KEY_IV_SIZE];

	aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
	if (!aead_req)
		return -ENOMEM;

	memset(zero_nonce, 0, sizeof(zero_nonce));
	aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce);
	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
	aead_request_set_ad(aead_req, 0);

	mutex_lock(&big_key_aead_lock);
	if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
		ret = -EAGAIN;
		goto error;
	}
	if (op == BIG_KEY_ENC)
		ret = crypto_aead_encrypt(aead_req);
	else
		ret = crypto_aead_decrypt(aead_req);
error:
	mutex_unlock(&big_key_aead_lock);
	aead_request_free(aead_req);
	return ret;
}

/*
 * Free up the buffer.
 */
static void big_key_free_buffer(struct big_key_buf *buf)
{
	unsigned int i;

	if (buf->virt) {
		memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE);
		vunmap(buf->virt);
	}

	for (i = 0; i < buf->nr_pages; i++)
		if (buf->pages[i])
			__free_page(buf->pages[i]);

	kfree(buf);
}

/*
 * Allocate a buffer consisting of a set of pages with a virtual mapping
 * applied over them.
 */
static void *big_key_alloc_buffer(size_t len)
{
	struct big_key_buf *buf;
	unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	unsigned int i, l;

	buf = kzalloc(sizeof(struct big_key_buf) +
		      sizeof(struct page) * npg +
		      sizeof(struct scatterlist) * npg,
		      GFP_KERNEL);
	if (!buf)
		return NULL;

	buf->nr_pages = npg;
	buf->sg = (void *)(buf->pages + npg);
	sg_init_table(buf->sg, npg);

	for (i = 0; i < buf->nr_pages; i++) {
		buf->pages[i] = alloc_page(GFP_KERNEL);
		if (!buf->pages[i])
			goto nomem;

		l = min_t(size_t, len, PAGE_SIZE);
		sg_set_page(&buf->sg[i], buf->pages[i], l, 0);
		len -= l;
	}

	buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL);
	if (!buf->virt)
		goto nomem;

	return buf;

nomem:
	big_key_free_buffer(buf);
	return NULL;
}

/*
 * Preparse a big key
 */
int big_key_preparse(struct key_preparsed_payload *prep)
{
	struct big_key_buf *buf;
	struct path *path = (struct path *)&prep->payload.data[big_key_path];
	struct file *file;
	u8 *enckey;
	ssize_t written;
	size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE;
	int ret;

	if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
		return -EINVAL;

	/* Set an arbitrary quota */
	prep->quotalen = 16;

	prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;

	if (datalen > BIG_KEY_FILE_THRESHOLD) {
		/* Create a shmem file to store the data in.  This will permit the data
		 * to be swapped out if needed.
		 *
		 * File content is stored encrypted with randomly generated key.
		 */
		loff_t pos = 0;

		buf = big_key_alloc_buffer(enclen);
		if (!buf)
			return -ENOMEM;
		memcpy(buf->virt, prep->data, datalen);

		/* generate random key */
		enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
		if (!enckey) {
			ret = -ENOMEM;
			goto error;
		}
		ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
		if (unlikely(ret))
			goto err_enckey;

		/* encrypt aligned data */
		ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey);
		if (ret)
			goto err_enckey;

		/* save aligned data to file */
		file = shmem_kernel_file_setup("", enclen, 0);
		if (IS_ERR(file)) {
			ret = PTR_ERR(file);
			goto err_enckey;
		}

		written = kernel_write(file, buf->virt, enclen, &pos);
		if (written != enclen) {
			ret = written;
			if (written >= 0)
				ret = -ENOMEM;
			goto err_fput;
		}

		/* Pin the mount and dentry to the key so that we can open it again
		 * later
		 */
		prep->payload.data[big_key_data] = enckey;
		*path = file->f_path;
		path_get(path);
		fput(file);
		big_key_free_buffer(buf);
	} else {
		/* Just store the data in a buffer */
		void *data = kmalloc(datalen, GFP_KERNEL);

		if (!data)
			return -ENOMEM;

		prep->payload.data[big_key_data] = data;
		memcpy(data, prep->data, prep->datalen);
	}
	return 0;

err_fput:
	fput(file);
err_enckey:
	kzfree(enckey);
error:
	big_key_free_buffer(buf);
	return ret;
}

/*
 * Clear preparsement.
 */
void big_key_free_preparse(struct key_preparsed_payload *prep)
{
	if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
		struct path *path = (struct path *)&prep->payload.data[big_key_path];

		path_put(path);
	}
	kzfree(prep->payload.data[big_key_data]);
}

/*
 * dispose of the links from a revoked keyring
 * - called with the key sem write-locked
 */
void big_key_revoke(struct key *key)
{
	struct path *path = (struct path *)&key->payload.data[big_key_path];

	/* clear the quota */
	key_payload_reserve(key, 0);
	if (key_is_positive(key) &&
	    (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
		vfs_truncate(path, 0);
}

/*
 * dispose of the data dangling from the corpse of a big_key key
 */
void big_key_destroy(struct key *key)
{
	size_t datalen = (size_t)key->payload.data[big_key_len];

	if (datalen > BIG_KEY_FILE_THRESHOLD) {
		struct path *path = (struct path *)&key->payload.data[big_key_path];

		path_put(path);
		path->mnt = NULL;
		path->dentry = NULL;
	}
	kzfree(key->payload.data[big_key_data]);
	key->payload.data[big_key_data] = NULL;
}

/*
 * describe the big_key key
 */
void big_key_describe(const struct key *key, struct seq_file *m)
{
	size_t datalen = (size_t)key->payload.data[big_key_len];

	seq_puts(m, key->description);

	if (key_is_positive(key))
		seq_printf(m, ": %zu [%s]",
			   datalen,
			   datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
}

/*
 * read the key data
 * - the key's semaphore is read-locked
 */
long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
{
	size_t datalen = (size_t)key->payload.data[big_key_len];
	long ret;

	if (!buffer || buflen < datalen)
		return datalen;

	if (datalen > BIG_KEY_FILE_THRESHOLD) {
		struct big_key_buf *buf;
		struct path *path = (struct path *)&key->payload.data[big_key_path];
		struct file *file;
		u8 *enckey = (u8 *)key->payload.data[big_key_data];
		size_t enclen = datalen + ENC_AUTHTAG_SIZE;
		loff_t pos = 0;

		buf = big_key_alloc_buffer(enclen);
		if (!buf)
			return -ENOMEM;

		file = dentry_open(path, O_RDONLY, current_cred());
		if (IS_ERR(file)) {
			ret = PTR_ERR(file);
			goto error;
		}

		/* read file to kernel and decrypt */
		ret = kernel_read(file, buf->virt, enclen, &pos);
		if (ret >= 0 && ret != enclen) {
			ret = -EIO;
			goto err_fput;
		}

		ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey);
		if (ret)
			goto err_fput;

		ret = datalen;

		/* copy decrypted data to user */
		if (copy_to_user(buffer, buf->virt, datalen) != 0)
			ret = -EFAULT;

err_fput:
		fput(file);
error:
		big_key_free_buffer(buf);
	} else {
		ret = datalen;
		if (copy_to_user(buffer, key->payload.data[big_key_data],
				 datalen) != 0)
			ret = -EFAULT;
	}

	return ret;
}

/*
 * Register key type
 */
static int __init big_key_init(void)
{
	int ret;

	/* init block cipher */
	big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
	if (IS_ERR(big_key_aead)) {
		ret = PTR_ERR(big_key_aead);
		pr_err("Can't alloc crypto: %d\n", ret);
		return ret;
	}

	if (unlikely(crypto_aead_ivsize(big_key_aead) != BIG_KEY_IV_SIZE)) {
		WARN(1, "big key algorithm changed?");
		ret = -EINVAL;
		goto free_aead;
	}

	ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
	if (ret < 0) {
		pr_err("Can't set crypto auth tag len: %d\n", ret);
		goto free_aead;
	}

	ret = register_key_type(&key_type_big_key);
	if (ret < 0) {
		pr_err("Can't register type: %d\n", ret);
		goto free_aead;
	}

	return 0;

free_aead:
	crypto_free_aead(big_key_aead);
	return ret;
}

late_initcall(big_key_init);