skeletonfb.c 35.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/*
 * linux/drivers/video/skeletonfb.c -- Skeleton for a frame buffer device
 *
 *  Modified to new api Jan 2001 by James Simmons (jsimmons@transvirtual.com)
 *
 *  Created 28 Dec 1997 by Geert Uytterhoeven
 *
 *
 *  I have started rewriting this driver as a example of the upcoming new API
 *  The primary goal is to remove the console code from fbdev and place it
 *  into fbcon.c. This reduces the code and makes writing a new fbdev driver
 *  easy since the author doesn't need to worry about console internals. It
 *  also allows the ability to run fbdev without a console/tty system on top 
 *  of it. 
 *
 *  First the roles of struct fb_info and struct display have changed. Struct
 *  display will go away. The way the new framebuffer console code will
 *  work is that it will act to translate data about the tty/console in 
 *  struct vc_data to data in a device independent way in struct fb_info. Then
 *  various functions in struct fb_ops will be called to store the device 
 *  dependent state in the par field in struct fb_info and to change the 
 *  hardware to that state. This allows a very clean separation of the fbdev
 *  layer from the console layer. It also allows one to use fbdev on its own
 *  which is a bounus for embedded devices. The reason this approach works is  
 *  for each framebuffer device when used as a tty/console device is allocated
 *  a set of virtual terminals to it. Only one virtual terminal can be active 
 *  per framebuffer device. We already have all the data we need in struct 
 *  vc_data so why store a bunch of colormaps and other fbdev specific data
 *  per virtual terminal. 
 *
 *  As you can see doing this makes the con parameter pretty much useless
 *  for struct fb_ops functions, as it should be. Also having struct  
 *  fb_var_screeninfo and other data in fb_info pretty much eliminates the 
 *  need for get_fix and get_var. Once all drivers use the fix, var, and cmap
 *  fbcon can be written around these fields. This will also eliminate the
 *  need to regenerate struct fb_var_screeninfo, struct fb_fix_screeninfo
 *  struct fb_cmap every time get_var, get_fix, get_cmap functions are called
 *  as many drivers do now. 
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License. See the file COPYING in the main directory of this archive for
 *  more details.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/pci.h>

    /*
     *  This is just simple sample code.
     *
     *  No warranty that it actually compiles.
     *  Even less warranty that it actually works :-)
     */

/*
 * Driver data
 */
static char *mode_option __devinitdata;

/*
 *  If your driver supports multiple boards, you should make the  
 *  below data types arrays, or allocate them dynamically (using kmalloc()). 
 */ 

/* 
 * This structure defines the hardware state of the graphics card. Normally
 * you place this in a header file in linux/include/video. This file usually
 * also includes register information. That allows other driver subsystems
 * and userland applications the ability to use the same header file to 
 * avoid duplicate work and easy porting of software. 
 */
struct xxx_par;

/*
 * Here we define the default structs fb_fix_screeninfo and fb_var_screeninfo
 * if we don't use modedb. If we do use modedb see xxxfb_init how to use it
 * to get a fb_var_screeninfo. Otherwise define a default var as well. 
 */
static struct fb_fix_screeninfo xxxfb_fix __devinitdata = {
	.id =		"FB's name", 
	.type =		FB_TYPE_PACKED_PIXELS,
	.visual =	FB_VISUAL_PSEUDOCOLOR,
	.xpanstep =	1,
	.ypanstep =	1,
	.ywrapstep =	1, 
	.accel =	FB_ACCEL_NONE,
};

    /*
     * 	Modern graphical hardware not only supports pipelines but some 
     *  also support multiple monitors where each display can have its  
     *  its own unique data. In this case each display could be  
     *  represented by a separate framebuffer device thus a separate 
     *  struct fb_info. Now the struct xxx_par represents the graphics
     *  hardware state thus only one exist per card. In this case the 
     *  struct xxx_par for each graphics card would be shared between 
     *  every struct fb_info that represents a framebuffer on that card. 
     *  This allows when one display changes it video resolution (info->var) 
     *  the other displays know instantly. Each display can always be
     *  aware of the entire hardware state that affects it because they share
     *  the same xxx_par struct. The other side of the coin is multiple
     *  graphics cards that pass data around until it is finally displayed
     *  on one monitor. Such examples are the voodoo 1 cards and high end
     *  NUMA graphics servers. For this case we have a bunch of pars, each
     *  one that represents a graphics state, that belong to one struct 
     *  fb_info. Their you would want to have *par point to a array of device
     *  states and have each struct fb_ops function deal with all those 
     *  states. I hope this covers every possible hardware design. If not
     *  feel free to send your ideas at jsimmons@users.sf.net 
     */

    /*
     *  If your driver supports multiple boards or it supports multiple 
     *  framebuffers, you should make these arrays, or allocate them 
     *  dynamically using framebuffer_alloc() and free them with
     *  framebuffer_release().
     */ 
static struct fb_info info;

    /* 
     * Each one represents the state of the hardware. Most hardware have
     * just one hardware state. These here represent the default state(s). 
     */
static struct xxx_par __initdata current_par;

int xxxfb_init(void);

/**
 *	xxxfb_open - Optional function. Called when the framebuffer is
 *		     first accessed.
 *	@info: frame buffer structure that represents a single frame buffer
 *	@user: tell us if the userland (value=1) or the console is accessing
 *	       the framebuffer. 
 *
 *	This function is the first function called in the framebuffer api.
 *	Usually you don't need to provide this function. The case where it 
 *	is used is to change from a text mode hardware state to a graphics
 * 	mode state. 
 *
 *	Returns negative errno on error, or zero on success.
 */
static int xxxfb_open(struct fb_info *info, int user)
{
    return 0;
}

/**
 *	xxxfb_release - Optional function. Called when the framebuffer 
 *			device is closed. 
 *	@info: frame buffer structure that represents a single frame buffer
 *	@user: tell us if the userland (value=1) or the console is accessing
 *	       the framebuffer. 
 *	
 *	Thus function is called when we close /dev/fb or the framebuffer 
 *	console system is released. Usually you don't need this function.
 *	The case where it is usually used is to go from a graphics state
 *	to a text mode state.
 *
 *	Returns negative errno on error, or zero on success.
 */
static int xxxfb_release(struct fb_info *info, int user)
{
    return 0;
}

/**
 *      xxxfb_check_var - Optional function. Validates a var passed in. 
 *      @var: frame buffer variable screen structure
 *      @info: frame buffer structure that represents a single frame buffer 
 *
 *	Checks to see if the hardware supports the state requested by
 *	var passed in. This function does not alter the hardware state!!! 
 *	This means the data stored in struct fb_info and struct xxx_par do 
 *      not change. This includes the var inside of struct fb_info. 
 *	Do NOT change these. This function can be called on its own if we
 *	intent to only test a mode and not actually set it. The stuff in 
 *	modedb.c is a example of this. If the var passed in is slightly 
 *	off by what the hardware can support then we alter the var PASSED in
 *	to what we can do.
 *
 *      For values that are off, this function must round them _up_ to the
 *      next value that is supported by the hardware.  If the value is
 *      greater than the highest value supported by the hardware, then this
 *      function must return -EINVAL.
 *
 *      Exception to the above rule:  Some drivers have a fixed mode, ie,
 *      the hardware is already set at boot up, and cannot be changed.  In
 *      this case, it is more acceptable that this function just return
 *      a copy of the currently working var (info->var). Better is to not
 *      implement this function, as the upper layer will do the copying
 *      of the current var for you.
 *
 *      Note:  This is the only function where the contents of var can be
 *      freely adjusted after the driver has been registered. If you find
 *      that you have code outside of this function that alters the content
 *      of var, then you are doing something wrong.  Note also that the
 *      contents of info->var must be left untouched at all times after
 *      driver registration.
 *
 *	Returns negative errno on error, or zero on success.
 */
static int xxxfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
    /* ... */
    return 0;	   	
}

/**
 *      xxxfb_set_par - Optional function. Alters the hardware state.
 *      @info: frame buffer structure that represents a single frame buffer
 *
 *	Using the fb_var_screeninfo in fb_info we set the resolution of the
 *	this particular framebuffer. This function alters the par AND the
 *	fb_fix_screeninfo stored in fb_info. It doesn't not alter var in 
 *	fb_info since we are using that data. This means we depend on the
 *	data in var inside fb_info to be supported by the hardware. 
 *
 *      This function is also used to recover/restore the hardware to a
 *      known working state.
 *
 *	xxxfb_check_var is always called before xxxfb_set_par to ensure that
 *      the contents of var is always valid.
 *
 *	Again if you can't change the resolution you don't need this function.
 *
 *      However, even if your hardware does not support mode changing,
 *      a set_par might be needed to at least initialize the hardware to
 *      a known working state, especially if it came back from another
 *      process that also modifies the same hardware, such as X.
 *
 *      If this is the case, a combination such as the following should work:
 *
 *      static int xxxfb_check_var(struct fb_var_screeninfo *var,
 *                                struct fb_info *info)
 *      {
 *              *var = info->var;
 *              return 0;
 *      }
 *
 *      static int xxxfb_set_par(struct fb_info *info)
 *      {
 *              init your hardware here
 *      }
 *
 *	Returns negative errno on error, or zero on success.
 */
static int xxxfb_set_par(struct fb_info *info)
{
    struct xxx_par *par = info->par;
    /* ... */
    return 0;	
}

/**
 *  	xxxfb_setcolreg - Optional function. Sets a color register.
 *      @regno: Which register in the CLUT we are programming 
 *      @red: The red value which can be up to 16 bits wide 
 *	@green: The green value which can be up to 16 bits wide 
 *	@blue:  The blue value which can be up to 16 bits wide.
 *	@transp: If supported, the alpha value which can be up to 16 bits wide.
 *      @info: frame buffer info structure
 * 
 *  	Set a single color register. The values supplied have a 16 bit
 *  	magnitude which needs to be scaled in this function for the hardware. 
 *	Things to take into consideration are how many color registers, if
 *	any, are supported with the current color visual. With truecolor mode
 *	no color palettes are supported. Here a pseudo palette is created
 *	which we store the value in pseudo_palette in struct fb_info. For
 *	pseudocolor mode we have a limited color palette. To deal with this
 *	we can program what color is displayed for a particular pixel value.
 *	DirectColor is similar in that we can program each color field. If
 *	we have a static colormap we don't need to implement this function. 
 * 
 *	Returns negative errno on error, or zero on success.
 */
static int xxxfb_setcolreg(unsigned regno, unsigned red, unsigned green,
			   unsigned blue, unsigned transp,
			   struct fb_info *info)
{
    if (regno >= 256)  /* no. of hw registers */
       return -EINVAL;
    /*
     * Program hardware... do anything you want with transp
     */

    /* grayscale works only partially under directcolor */
    if (info->var.grayscale) {
       /* grayscale = 0.30*R + 0.59*G + 0.11*B */
       red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
    }

    /* Directcolor:
     *   var->{color}.offset contains start of bitfield
     *   var->{color}.length contains length of bitfield
     *   {hardwarespecific} contains width of DAC
     *   pseudo_palette[X] is programmed to (X << red.offset) |
     *                                      (X << green.offset) |
     *                                      (X << blue.offset)
     *   RAMDAC[X] is programmed to (red, green, blue)
     *   color depth = SUM(var->{color}.length)
     *
     * Pseudocolor:
     *    var->{color}.offset is 0
     *    var->{color}.length contains width of DAC or the number of unique
     *                        colors available (color depth)
     *    pseudo_palette is not used
     *    RAMDAC[X] is programmed to (red, green, blue)
     *    color depth = var->{color}.length
     *
     * Static pseudocolor:
     *    same as Pseudocolor, but the RAMDAC is not programmed (read-only)
     *
     * Mono01/Mono10:
     *    Has only 2 values, black on white or white on black (fg on bg),
     *    var->{color}.offset is 0
     *    white = (1 << var->{color}.length) - 1, black = 0
     *    pseudo_palette is not used
     *    RAMDAC does not exist
     *    color depth is always 2
     *
     * Truecolor:
     *    does not use RAMDAC (usually has 3 of them).
     *    var->{color}.offset contains start of bitfield
     *    var->{color}.length contains length of bitfield
     *    pseudo_palette is programmed to (red << red.offset) |
     *                                    (green << green.offset) |
     *                                    (blue << blue.offset) |
     *                                    (transp << transp.offset)
     *    RAMDAC does not exist
     *    color depth = SUM(var->{color}.length})
     *
     *  The color depth is used by fbcon for choosing the logo and also
     *  for color palette transformation if color depth < 4
     *
     *  As can be seen from the above, the field bits_per_pixel is _NOT_
     *  a criteria for describing the color visual.
     *
     *  A common mistake is assuming that bits_per_pixel <= 8 is pseudocolor,
     *  and higher than that, true/directcolor.  This is incorrect, one needs
     *  to look at the fix->visual.
     *
     *  Another common mistake is using bits_per_pixel to calculate the color
     *  depth.  The bits_per_pixel field does not directly translate to color
     *  depth. You have to compute for the color depth (using the color
     *  bitfields) and fix->visual as seen above.
     */

    /*
     * This is the point where the color is converted to something that
     * is acceptable by the hardware.
     */
#define CNVT_TOHW(val,width) ((((val)<<(width))+0x7FFF-(val))>>16)
    red = CNVT_TOHW(red, info->var.red.length);
    green = CNVT_TOHW(green, info->var.green.length);
    blue = CNVT_TOHW(blue, info->var.blue.length);
    transp = CNVT_TOHW(transp, info->var.transp.length);
#undef CNVT_TOHW
    /*
     * This is the point where the function feeds the color to the hardware
     * palette after converting the colors to something acceptable by
     * the hardware. Note, only FB_VISUAL_DIRECTCOLOR and
     * FB_VISUAL_PSEUDOCOLOR visuals need to write to the hardware palette.
     * If you have code that writes to the hardware CLUT, and it's not
     * any of the above visuals, then you are doing something wrong.
     */
    if (info->fix.visual == FB_VISUAL_DIRECTCOLOR ||
	info->fix.visual == FB_VISUAL_TRUECOLOR)
	    write_{red|green|blue|transp}_to_clut();

    /* This is the point were you need to fill up the contents of
     * info->pseudo_palette. This structure is used _only_ by fbcon, thus
     * it only contains 16 entries to match the number of colors supported
     * by the console. The pseudo_palette is used only if the visual is
     * in directcolor or truecolor mode.  With other visuals, the
     * pseudo_palette is not used. (This might change in the future.)
     *
     * The contents of the pseudo_palette is in raw pixel format.  Ie, each
     * entry can be written directly to the framebuffer without any conversion.
     * The pseudo_palette is (void *).  However, if using the generic
     * drawing functions (cfb_imageblit, cfb_fillrect), the pseudo_palette
     * must be casted to (u32 *) _regardless_ of the bits per pixel. If the
     * driver is using its own drawing functions, then it can use whatever
     * size it wants.
     */
    if (info->fix.visual == FB_VISUAL_TRUECOLOR ||
	info->fix.visual == FB_VISUAL_DIRECTCOLOR) {
	    u32 v;

	    if (regno >= 16)
		    return -EINVAL;

	    v = (red << info->var.red.offset) |
		    (green << info->var.green.offset) |
		    (blue << info->var.blue.offset) |
		    (transp << info->var.transp.offset);

	    ((u32*)(info->pseudo_palette))[regno] = v;
    }

    /* ... */
    return 0;
}

/**
 *      xxxfb_pan_display - NOT a required function. Pans the display.
 *      @var: frame buffer variable screen structure
 *      @info: frame buffer structure that represents a single frame buffer
 *
 *	Pan (or wrap, depending on the `vmode' field) the display using the
 *  	`xoffset' and `yoffset' fields of the `var' structure.
 *  	If the values don't fit, return -EINVAL.
 *
 *      Returns negative errno on error, or zero on success.
 */
static int xxxfb_pan_display(struct fb_var_screeninfo *var,
			     struct fb_info *info)
{
    /*
     * If your hardware does not support panning, _do_ _not_ implement this
     * function. Creating a dummy function will just confuse user apps.
     */

    /*
     * Note that even if this function is fully functional, a setting of
     * 0 in both xpanstep and ypanstep means that this function will never
     * get called.
     */

    /* ... */
    return 0;
}

/**
 *      xxxfb_blank - NOT a required function. Blanks the display.
 *      @blank_mode: the blank mode we want. 
 *      @info: frame buffer structure that represents a single frame buffer
 *
 *      Blank the screen if blank_mode != FB_BLANK_UNBLANK, else unblank.
 *      Return 0 if blanking succeeded, != 0 if un-/blanking failed due to
 *      e.g. a video mode which doesn't support it.
 *
 *      Implements VESA suspend and powerdown modes on hardware that supports
 *      disabling hsync/vsync:
 *
 *      FB_BLANK_NORMAL = display is blanked, syncs are on.
 *      FB_BLANK_HSYNC_SUSPEND = hsync off
 *      FB_BLANK_VSYNC_SUSPEND = vsync off
 *      FB_BLANK_POWERDOWN =  hsync and vsync off
 *
 *      If implementing this function, at least support FB_BLANK_UNBLANK.
 *      Return !0 for any modes that are unimplemented.
 *
 */
static int xxxfb_blank(int blank_mode, struct fb_info *info)
{
    /* ... */
    return 0;
}

/* ------------ Accelerated Functions --------------------- */

/*
 * We provide our own functions if we have hardware acceleration
 * or non packed pixel format layouts. If we have no hardware 
 * acceleration, we can use a generic unaccelerated function. If using
 * a pack pixel format just use the functions in cfb_*.c. Each file 
 * has one of the three different accel functions we support.
 */

/**
 *      xxxfb_fillrect - REQUIRED function. Can use generic routines if 
 *		 	 non acclerated hardware and packed pixel based.
 *			 Draws a rectangle on the screen.		
 *
 *      @info: frame buffer structure that represents a single frame buffer
 *	@region: The structure representing the rectangular region we 
 *		 wish to draw to.
 *
 *	This drawing operation places/removes a retangle on the screen 
 *	depending on the rastering operation with the value of color which
 *	is in the current color depth format.
 */
void xxxfb_fillrect(struct fb_info *p, const struct fb_fillrect *region)
{
/*	Meaning of struct fb_fillrect
 *
 *	@dx: The x and y corrdinates of the upper left hand corner of the 
 *	@dy: area we want to draw to. 
 *	@width: How wide the rectangle is we want to draw.
 *	@height: How tall the rectangle is we want to draw.
 *	@color:	The color to fill in the rectangle with. 
 *	@rop: The raster operation. We can draw the rectangle with a COPY
 *	      of XOR which provides erasing effect. 
 */
}

/**
 *      xxxfb_copyarea - REQUIRED function. Can use generic routines if
 *                       non acclerated hardware and packed pixel based.
 *                       Copies one area of the screen to another area.
 *
 *      @info: frame buffer structure that represents a single frame buffer
 *      @area: Structure providing the data to copy the framebuffer contents
 *	       from one region to another.
 *
 *      This drawing operation copies a rectangular area from one area of the
 *	screen to another area.
 */
void xxxfb_copyarea(struct fb_info *p, const struct fb_copyarea *area) 
{
/*
 *      @dx: The x and y coordinates of the upper left hand corner of the
 *	@dy: destination area on the screen.
 *      @width: How wide the rectangle is we want to copy.
 *      @height: How tall the rectangle is we want to copy.
 *      @sx: The x and y coordinates of the upper left hand corner of the
 *      @sy: source area on the screen.
 */
}


/**
 *      xxxfb_imageblit - REQUIRED function. Can use generic routines if
 *                        non acclerated hardware and packed pixel based.
 *                        Copies a image from system memory to the screen. 
 *
 *      @info: frame buffer structure that represents a single frame buffer
 *	@image:	structure defining the image.
 *
 *      This drawing operation draws a image on the screen. It can be a 
 *	mono image (needed for font handling) or a color image (needed for
 *	tux). 
 */
void xxxfb_imageblit(struct fb_info *p, const struct fb_image *image) 
{
/*
 *      @dx: The x and y coordinates of the upper left hand corner of the
 *	@dy: destination area to place the image on the screen.
 *      @width: How wide the image is we want to copy.
 *      @height: How tall the image is we want to copy.
 *      @fg_color: For mono bitmap images this is color data for     
 *      @bg_color: the foreground and background of the image to
 *		   write directly to the frmaebuffer.
 *	@depth:	How many bits represent a single pixel for this image.
 *	@data: The actual data used to construct the image on the display.
 *	@cmap: The colormap used for color images.   
 */

/*
 * The generic function, cfb_imageblit, expects that the bitmap scanlines are
 * padded to the next byte.  Most hardware accelerators may require padding to
 * the next u16 or the next u32.  If that is the case, the driver can specify
 * this by setting info->pixmap.scan_align = 2 or 4.  See a more
 * comprehensive description of the pixmap below.
 */
}

/**
 *	xxxfb_cursor - 	OPTIONAL. If your hardware lacks support
 *			for a cursor, leave this field NULL.
 *
 *      @info: frame buffer structure that represents a single frame buffer
 *	@cursor: structure defining the cursor to draw.
 *
 *      This operation is used to set or alter the properities of the
 *	cursor.
 *
 *	Returns negative errno on error, or zero on success.
 */
int xxxfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
{
/*
 *      @set: 	Which fields we are altering in struct fb_cursor 
 *	@enable: Disable or enable the cursor 
 *      @rop: 	The bit operation we want to do. 
 *      @mask:  This is the cursor mask bitmap. 
 *      @dest:  A image of the area we are going to display the cursor.
 *		Used internally by the driver.	 
 *      @hot:	The hot spot. 
 *	@image:	The actual data for the cursor image.
 *
 *      NOTES ON FLAGS (cursor->set):
 *
 *      FB_CUR_SETIMAGE - the cursor image has changed (cursor->image.data)
 *      FB_CUR_SETPOS   - the cursor position has changed (cursor->image.dx|dy)
 *      FB_CUR_SETHOT   - the cursor hot spot has changed (cursor->hot.dx|dy)
 *      FB_CUR_SETCMAP  - the cursor colors has changed (cursor->fg_color|bg_color)
 *      FB_CUR_SETSHAPE - the cursor bitmask has changed (cursor->mask)
 *      FB_CUR_SETSIZE  - the cursor size has changed (cursor->width|height)
 *      FB_CUR_SETALL   - everything has changed
 *
 *      NOTES ON ROPs (cursor->rop, Raster Operation)
 *
 *      ROP_XOR         - cursor->image.data XOR cursor->mask
 *      ROP_COPY        - curosr->image.data AND cursor->mask
 *
 *      OTHER NOTES:
 *
 *      - fbcon only supports a 2-color cursor (cursor->image.depth = 1)
 *      - The fb_cursor structure, @cursor, _will_ always contain valid
 *        fields, whether any particular bitfields in cursor->set is set
 *        or not.
 */
}

/**
 *	xxxfb_rotate -  NOT a required function. If your hardware
 *			supports rotation the whole screen then 
 *			you would provide a hook for this. 
 *
 *      @info: frame buffer structure that represents a single frame buffer
 *	@angle: The angle we rotate the screen.   
 *
 *      This operation is used to set or alter the properities of the
 *	cursor.
 */
void xxxfb_rotate(struct fb_info *info, int angle)
{
/* Will be deprecated */
}

/**
 *	xxxfb_sync - NOT a required function. Normally the accel engine 
 *		     for a graphics card take a specific amount of time.
 *		     Often we have to wait for the accelerator to finish
 *		     its operation before we can write to the framebuffer
 *		     so we can have consistent display output. 
 *
 *      @info: frame buffer structure that represents a single frame buffer
 *
 *      If the driver has implemented its own hardware-based drawing function,
 *      implementing this function is highly recommended.
 */
int xxxfb_sync(struct fb_info *info)
{
	return 0;
}

    /*
     *  Frame buffer operations
     */

static struct fb_ops xxxfb_ops = {
	.owner		= THIS_MODULE,
	.fb_open	= xxxfb_open,
	.fb_read	= xxxfb_read,
	.fb_write	= xxxfb_write,
	.fb_release	= xxxfb_release,
	.fb_check_var	= xxxfb_check_var,
	.fb_set_par	= xxxfb_set_par,
	.fb_setcolreg	= xxxfb_setcolreg,
	.fb_blank	= xxxfb_blank,
	.fb_pan_display	= xxxfb_pan_display,
	.fb_fillrect	= xxxfb_fillrect, 	/* Needed !!! */
	.fb_copyarea	= xxxfb_copyarea,	/* Needed !!! */
	.fb_imageblit	= xxxfb_imageblit,	/* Needed !!! */
	.fb_cursor	= xxxfb_cursor,		/* Optional !!! */
	.fb_rotate	= xxxfb_rotate,
	.fb_sync	= xxxfb_sync,
	.fb_ioctl	= xxxfb_ioctl,
	.fb_mmap	= xxxfb_mmap,
};

/* ------------------------------------------------------------------------- */

    /*
     *  Initialization
     */

/* static int __init xxfb_probe (struct platform_device *pdev) -- for platform devs */
static int __devinit xxxfb_probe(struct pci_dev *dev,
			      const struct pci_device_id *ent)
{
    struct fb_info *info;
    struct xxx_par *par;
    struct device *device = &dev->dev; /* or &pdev->dev */
    int cmap_len, retval;	
   
    /*
     * Dynamically allocate info and par
     */
    info = framebuffer_alloc(sizeof(struct xxx_par), device);

    if (!info) {
	    /* goto error path */
    }

    par = info->par;

    /* 
     * Here we set the screen_base to the virtual memory address
     * for the framebuffer. Usually we obtain the resource address
     * from the bus layer and then translate it to virtual memory
     * space via ioremap. Consult ioport.h. 
     */
    info->screen_base = framebuffer_virtual_memory;
    info->fbops = &xxxfb_ops;
    info->fix = xxxfb_fix; /* this will be the only time xxxfb_fix will be
			    * used, so mark it as __devinitdata
			    */
    info->pseudo_palette = pseudo_palette; /* The pseudopalette is an
					    * 16-member array
					    */
    /*
     * Set up flags to indicate what sort of acceleration your
     * driver can provide (pan/wrap/copyarea/etc.) and whether it
     * is a module -- see FBINFO_* in include/linux/fb.h
     *
     * If your hardware can support any of the hardware accelerated functions
     * fbcon performance will improve if info->flags is set properly.
     *
     * FBINFO_HWACCEL_COPYAREA - hardware moves
     * FBINFO_HWACCEL_FILLRECT - hardware fills
     * FBINFO_HWACCEL_IMAGEBLIT - hardware mono->color expansion
     * FBINFO_HWACCEL_YPAN - hardware can pan display in y-axis
     * FBINFO_HWACCEL_YWRAP - hardware can wrap display in y-axis
     * FBINFO_HWACCEL_DISABLED - supports hardware accels, but disabled
     * FBINFO_READS_FAST - if set, prefer moves over mono->color expansion
     * FBINFO_MISC_TILEBLITTING - hardware can do tile blits
     *
     * NOTE: These are for fbcon use only.
     */
    info->flags = FBINFO_DEFAULT;

/********************* This stage is optional ******************************/
     /*
     * The struct pixmap is a scratch pad for the drawing functions. This
     * is where the monochrome bitmap is constructed by the higher layers
     * and then passed to the accelerator.  For drivers that uses
     * cfb_imageblit, you can skip this part.  For those that have a more
     * rigorous requirement, this stage is needed
     */

    /* PIXMAP_SIZE should be small enough to optimize drawing, but not
     * large enough that memory is wasted.  A safe size is
     * (max_xres * max_font_height/8). max_xres is driver dependent,
     * max_font_height is 32.
     */
    info->pixmap.addr = kmalloc(PIXMAP_SIZE, GFP_KERNEL);
    if (!info->pixmap.addr) {
	    /* goto error */
    }

    info->pixmap.size = PIXMAP_SIZE;

    /*
     * FB_PIXMAP_SYSTEM - memory is in system ram
     * FB_PIXMAP_IO     - memory is iomapped
     * FB_PIXMAP_SYNC   - if set, will call fb_sync() per access to pixmap,
     *                    usually if FB_PIXMAP_IO is set.
     *
     * Currently, FB_PIXMAP_IO is unimplemented.
     */
    info->pixmap.flags = FB_PIXMAP_SYSTEM;

    /*
     * scan_align is the number of padding for each scanline.  It is in bytes.
     * Thus for accelerators that need padding to the next u32, put 4 here.
     */
    info->pixmap.scan_align = 4;

    /*
     * buf_align is the amount to be padded for the buffer. For example,
     * the i810fb needs a scan_align of 2 but expects it to be fed with
     * dwords, so a buf_align = 4 is required.
     */
    info->pixmap.buf_align = 4;

    /* access_align is how many bits can be accessed from the framebuffer
     * ie. some epson cards allow 16-bit access only.  Most drivers will
     * be safe with u32 here.
     *
     * NOTE: This field is currently unused.
     */
    info->pixmap.access_align = 32;
/***************************** End optional stage ***************************/

    /*
     * This should give a reasonable default video mode. The following is
     * done when we can set a video mode. 
     */
    if (!mode_option)
	mode_option = "640x480@60";	 	

    retval = fb_find_mode(&info->var, info, mode_option, NULL, 0, NULL, 8);
  
    if (!retval || retval == 4)
	return -EINVAL;			

    /* This has to been done !!! */	
    fb_alloc_cmap(&info->cmap, cmap_len, 0);
	
    /* 
     * The following is done in the case of having hardware with a static 
     * mode. If we are setting the mode ourselves we don't call this. 
     */	
    info->var = xxxfb_var;

    /*
     * For drivers that can...
     */
    xxxfb_check_var(&info->var, info);

    /*
     * Does a call to fb_set_par() before register_framebuffer needed?  This
     * will depend on you and the hardware.  If you are sure that your driver
     * is the only device in the system, a call to fb_set_par() is safe.
     *
     * Hardware in x86 systems has a VGA core.  Calling set_par() at this
     * point will corrupt the VGA console, so it might be safer to skip a
     * call to set_par here and just allow fbcon to do it for you.
     */
    /* xxxfb_set_par(info); */

    if (register_framebuffer(info) < 0)
	return -EINVAL;
    printk(KERN_INFO "fb%d: %s frame buffer device\n", info->node,
	   info->fix.id);
    pci_set_drvdata(dev, info); /* or platform_set_drvdata(pdev, info) */
    return 0;
}

    /*
     *  Cleanup
     */
/* static void __devexit xxxfb_remove(struct platform_device *pdev) */
static void __devexit xxxfb_remove(struct pci_dev *dev)
{
	struct fb_info *info = pci_get_drvdata(dev);
	/* or platform_get_drvdata(pdev); */

	if (info) {
		unregister_framebuffer(info);
		fb_dealloc_cmap(&info->cmap);
		/* ... */
		framebuffer_release(info);
	}
}

#ifdef CONFIG_PCI
#ifdef CONFIG_PM
/**
 *	xxxfb_suspend - Optional but recommended function. Suspend the device.
 *	@dev: PCI device
 *	@msg: the suspend event code.
 *
 *      See Documentation/power/devices.txt for more information
 */
static int xxxfb_suspend(struct pci_dev *dev, pm_message_t msg)
{
	struct fb_info *info = pci_get_drvdata(dev);
	struct xxxfb_par *par = info->par;

	/* suspend here */
	return 0;
}

/**
 *	xxxfb_resume - Optional but recommended function. Resume the device.
 *	@dev: PCI device
 *
 *      See Documentation/power/devices.txt for more information
 */
static int xxxfb_resume(struct pci_dev *dev)
{
	struct fb_info *info = pci_get_drvdata(dev);
	struct xxxfb_par *par = info->par;

	/* resume here */
	return 0;
}
#else
#define xxxfb_suspend NULL
#define xxxfb_resume NULL
#endif /* CONFIG_PM */

static struct pci_device_id xxxfb_id_table[] = {
	{ PCI_VENDOR_ID_XXX, PCI_DEVICE_ID_XXX,
	  PCI_ANY_ID, PCI_ANY_ID, PCI_BASE_CLASS_DISPLAY << 16,
	  PCI_CLASS_MASK, 0 },
	{ 0, }
};

/* For PCI drivers */
static struct pci_driver xxxfb_driver = {
	.name =		"xxxfb",
	.id_table =	xxxfb_id_table,
	.probe =	xxxfb_probe,
	.remove =	__devexit_p(xxxfb_remove),
	.suspend =      xxxfb_suspend, /* optional but recommended */
	.resume =       xxxfb_resume,  /* optional but recommended */
};

MODULE_DEVICE_TABLE(pci, xxxfb_id_table);

int __init xxxfb_init(void)
{
	/*
	 *  For kernel boot options (in 'video=xxxfb:<options>' format)
	 */
#ifndef MODULE
	char *option = NULL;

	if (fb_get_options("xxxfb", &option))
		return -ENODEV;
	xxxfb_setup(option);
#endif

	return pci_register_driver(&xxxfb_driver);
}

static void __exit xxxfb_exit(void)
{
	pci_unregister_driver(&xxxfb_driver);
}
#else /* non PCI, platform drivers */
#include <linux/platform_device.h>
/* for platform devices */

#ifdef CONFIG_PM
/**
 *	xxxfb_suspend - Optional but recommended function. Suspend the device.
 *	@dev: platform device
 *	@msg: the suspend event code.
 *
 *      See Documentation/power/devices.txt for more information
 */
static int xxxfb_suspend(struct platform_device *dev, pm_message_t msg)
{
	struct fb_info *info = platform_get_drvdata(dev);
	struct xxxfb_par *par = info->par;

	/* suspend here */
	return 0;
}

/**
 *	xxxfb_resume - Optional but recommended function. Resume the device.
 *	@dev: platform device
 *
 *      See Documentation/power/devices.txt for more information
 */
static int xxxfb_resume(struct platform_dev *dev)
{
	struct fb_info *info = platform_get_drvdata(dev);
	struct xxxfb_par *par = info->par;

	/* resume here */
	return 0;
}
#else
#define xxxfb_suspend NULL
#define xxxfb_resume NULL
#endif /* CONFIG_PM */

static struct platform_device_driver xxxfb_driver = {
	.probe = xxxfb_probe,
	.remove = xxxfb_remove,
	.suspend = xxxfb_suspend, /* optional but recommended */
	.resume = xxxfb_resume,   /* optional but recommended */
	.driver = {
		.name = "xxxfb",
	},
};

static struct platform_device *xxxfb_device;

#ifndef MODULE
    /*
     *  Setup
     */

/*
 * Only necessary if your driver takes special options,
 * otherwise we fall back on the generic fb_setup().
 */
int __init xxxfb_setup(char *options)
{
    /* Parse user speficied options (`video=xxxfb:') */
}
#endif /* MODULE */

static int __init xxxfb_init(void)
{
	int ret;
	/*
	 *  For kernel boot options (in 'video=xxxfb:<options>' format)
	 */
#ifndef MODULE
	char *option = NULL;

	if (fb_get_options("xxxfb", &option))
		return -ENODEV;
	xxxfb_setup(option);
#endif
	ret = platform_driver_register(&xxxfb_driver);

	if (!ret) {
		xxxfb_device = platform_device_register_simple("xxxfb", 0,
								NULL, 0);

		if (IS_ERR(xxxfb_device)) {
			platform_driver_unregister(&xxxfb_driver);
			ret = PTR_ERR(xxxfb_device);
		}
	}

	return ret;
}

static void __exit xxxfb_exit(void)
{
	platform_device_unregister(xxxfb_device);
	platform_driver_unregister(&xxxfb_driver);
}
#endif /* CONFIG_PCI */

/* ------------------------------------------------------------------------- */


    /*
     *  Modularization
     */

module_init(xxxfb_init);
module_exit(xxxfb_remove);

MODULE_LICENSE("GPL");