dax.c 40.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
/*
 * fs/dax.c - Direct Access filesystem code
 * Copyright (c) 2013-2014 Intel Corporation
 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/atomic.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/dax.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
#include <linux/memcontrol.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/pagevec.h>
#include <linux/sched.h>
#include <linux/sched/signal.h>
#include <linux/uio.h>
#include <linux/vmstat.h>
#include <linux/pfn_t.h>
#include <linux/sizes.h>
#include <linux/mmu_notifier.h>
#include <linux/iomap.h>
#include "internal.h"

#define CREATE_TRACE_POINTS
#include <trace/events/fs_dax.h>

/* We choose 4096 entries - same as per-zone page wait tables */
#define DAX_WAIT_TABLE_BITS 12
#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)

/* The 'colour' (ie low bits) within a PMD of a page offset.  */
#define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)

static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];

static int __init init_dax_wait_table(void)
{
	int i;

	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
		init_waitqueue_head(wait_table + i);
	return 0;
}
fs_initcall(init_dax_wait_table);

/*
 * We use lowest available bit in exceptional entry for locking, one bit for
 * the entry size (PMD) and two more to tell us if the entry is a zero page or
 * an empty entry that is just used for locking.  In total four special bits.
 *
 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
 * block allocation.
 */
#define RADIX_DAX_SHIFT		(RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
#define RADIX_DAX_ENTRY_LOCK	(1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
#define RADIX_DAX_PMD		(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
#define RADIX_DAX_ZERO_PAGE	(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
#define RADIX_DAX_EMPTY		(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))

static unsigned long dax_radix_sector(void *entry)
{
	return (unsigned long)entry >> RADIX_DAX_SHIFT;
}

static void *dax_radix_locked_entry(sector_t sector, unsigned long flags)
{
	return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
			((unsigned long)sector << RADIX_DAX_SHIFT) |
			RADIX_DAX_ENTRY_LOCK);
}

static unsigned int dax_radix_order(void *entry)
{
	if ((unsigned long)entry & RADIX_DAX_PMD)
		return PMD_SHIFT - PAGE_SHIFT;
	return 0;
}

static int dax_is_pmd_entry(void *entry)
{
	return (unsigned long)entry & RADIX_DAX_PMD;
}

static int dax_is_pte_entry(void *entry)
{
	return !((unsigned long)entry & RADIX_DAX_PMD);
}

static int dax_is_zero_entry(void *entry)
{
	return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
}

static int dax_is_empty_entry(void *entry)
{
	return (unsigned long)entry & RADIX_DAX_EMPTY;
}

/*
 * DAX radix tree locking
 */
struct exceptional_entry_key {
	struct address_space *mapping;
	pgoff_t entry_start;
};

struct wait_exceptional_entry_queue {
	wait_queue_entry_t wait;
	struct exceptional_entry_key key;
};

static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
		pgoff_t index, void *entry, struct exceptional_entry_key *key)
{
	unsigned long hash;

	/*
	 * If 'entry' is a PMD, align the 'index' that we use for the wait
	 * queue to the start of that PMD.  This ensures that all offsets in
	 * the range covered by the PMD map to the same bit lock.
	 */
	if (dax_is_pmd_entry(entry))
		index &= ~PG_PMD_COLOUR;

	key->mapping = mapping;
	key->entry_start = index;

	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
	return wait_table + hash;
}

static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
				       int sync, void *keyp)
{
	struct exceptional_entry_key *key = keyp;
	struct wait_exceptional_entry_queue *ewait =
		container_of(wait, struct wait_exceptional_entry_queue, wait);

	if (key->mapping != ewait->key.mapping ||
	    key->entry_start != ewait->key.entry_start)
		return 0;
	return autoremove_wake_function(wait, mode, sync, NULL);
}

/*
 * We do not necessarily hold the mapping->tree_lock when we call this
 * function so it is possible that 'entry' is no longer a valid item in the
 * radix tree.  This is okay because all we really need to do is to find the
 * correct waitqueue where tasks might be waiting for that old 'entry' and
 * wake them.
 */
static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
		pgoff_t index, void *entry, bool wake_all)
{
	struct exceptional_entry_key key;
	wait_queue_head_t *wq;

	wq = dax_entry_waitqueue(mapping, index, entry, &key);

	/*
	 * Checking for locked entry and prepare_to_wait_exclusive() happens
	 * under mapping->tree_lock, ditto for entry handling in our callers.
	 * So at this point all tasks that could have seen our entry locked
	 * must be in the waitqueue and the following check will see them.
	 */
	if (waitqueue_active(wq))
		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
}

/*
 * Check whether the given slot is locked. The function must be called with
 * mapping->tree_lock held
 */
static inline int slot_locked(struct address_space *mapping, void **slot)
{
	unsigned long entry = (unsigned long)
		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
	return entry & RADIX_DAX_ENTRY_LOCK;
}

/*
 * Mark the given slot is locked. The function must be called with
 * mapping->tree_lock held
 */
static inline void *lock_slot(struct address_space *mapping, void **slot)
{
	unsigned long entry = (unsigned long)
		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);

	entry |= RADIX_DAX_ENTRY_LOCK;
	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
	return (void *)entry;
}

/*
 * Mark the given slot is unlocked. The function must be called with
 * mapping->tree_lock held
 */
static inline void *unlock_slot(struct address_space *mapping, void **slot)
{
	unsigned long entry = (unsigned long)
		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);

	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
	return (void *)entry;
}

/*
 * Lookup entry in radix tree, wait for it to become unlocked if it is
 * exceptional entry and return it. The caller must call
 * put_unlocked_mapping_entry() when he decided not to lock the entry or
 * put_locked_mapping_entry() when he locked the entry and now wants to
 * unlock it.
 *
 * The function must be called with mapping->tree_lock held.
 */
static void *get_unlocked_mapping_entry(struct address_space *mapping,
					pgoff_t index, void ***slotp)
{
	void *entry, **slot;
	struct wait_exceptional_entry_queue ewait;
	wait_queue_head_t *wq;

	init_wait(&ewait.wait);
	ewait.wait.func = wake_exceptional_entry_func;

	for (;;) {
		entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
					  &slot);
		if (!entry ||
		    WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
		    !slot_locked(mapping, slot)) {
			if (slotp)
				*slotp = slot;
			return entry;
		}

		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
		prepare_to_wait_exclusive(wq, &ewait.wait,
					  TASK_UNINTERRUPTIBLE);
		spin_unlock_irq(&mapping->tree_lock);
		schedule();
		finish_wait(wq, &ewait.wait);
		spin_lock_irq(&mapping->tree_lock);
	}
}

static void dax_unlock_mapping_entry(struct address_space *mapping,
				     pgoff_t index)
{
	void *entry, **slot;

	spin_lock_irq(&mapping->tree_lock);
	entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
			 !slot_locked(mapping, slot))) {
		spin_unlock_irq(&mapping->tree_lock);
		return;
	}
	unlock_slot(mapping, slot);
	spin_unlock_irq(&mapping->tree_lock);
	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
}

static void put_locked_mapping_entry(struct address_space *mapping,
		pgoff_t index)
{
	dax_unlock_mapping_entry(mapping, index);
}

/*
 * Called when we are done with radix tree entry we looked up via
 * get_unlocked_mapping_entry() and which we didn't lock in the end.
 */
static void put_unlocked_mapping_entry(struct address_space *mapping,
				       pgoff_t index, void *entry)
{
	if (!entry)
		return;

	/* We have to wake up next waiter for the radix tree entry lock */
	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
}

/*
 * Find radix tree entry at given index. If it points to an exceptional entry,
 * return it with the radix tree entry locked. If the radix tree doesn't
 * contain given index, create an empty exceptional entry for the index and
 * return with it locked.
 *
 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
 * either return that locked entry or will return an error.  This error will
 * happen if there are any 4k entries within the 2MiB range that we are
 * requesting.
 *
 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
 * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
 * insertion will fail if it finds any 4k entries already in the tree, and a
 * 4k insertion will cause an existing 2MiB entry to be unmapped and
 * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
 * well as 2MiB empty entries.
 *
 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
 * real storage backing them.  We will leave these real 2MiB DAX entries in
 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
 *
 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 * persistent memory the benefit is doubtful. We can add that later if we can
 * show it helps.
 */
static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
		unsigned long size_flag)
{
	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
	void *entry, **slot;

restart:
	spin_lock_irq(&mapping->tree_lock);
	entry = get_unlocked_mapping_entry(mapping, index, &slot);

	if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
		entry = ERR_PTR(-EIO);
		goto out_unlock;
	}

	if (entry) {
		if (size_flag & RADIX_DAX_PMD) {
			if (dax_is_pte_entry(entry)) {
				put_unlocked_mapping_entry(mapping, index,
						entry);
				entry = ERR_PTR(-EEXIST);
				goto out_unlock;
			}
		} else { /* trying to grab a PTE entry */
			if (dax_is_pmd_entry(entry) &&
			    (dax_is_zero_entry(entry) ||
			     dax_is_empty_entry(entry))) {
				pmd_downgrade = true;
			}
		}
	}

	/* No entry for given index? Make sure radix tree is big enough. */
	if (!entry || pmd_downgrade) {
		int err;

		if (pmd_downgrade) {
			/*
			 * Make sure 'entry' remains valid while we drop
			 * mapping->tree_lock.
			 */
			entry = lock_slot(mapping, slot);
		}

		spin_unlock_irq(&mapping->tree_lock);
		/*
		 * Besides huge zero pages the only other thing that gets
		 * downgraded are empty entries which don't need to be
		 * unmapped.
		 */
		if (pmd_downgrade && dax_is_zero_entry(entry))
			unmap_mapping_range(mapping,
				(index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);

		err = radix_tree_preload(
				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
		if (err) {
			if (pmd_downgrade)
				put_locked_mapping_entry(mapping, index);
			return ERR_PTR(err);
		}
		spin_lock_irq(&mapping->tree_lock);

		if (!entry) {
			/*
			 * We needed to drop the page_tree lock while calling
			 * radix_tree_preload() and we didn't have an entry to
			 * lock.  See if another thread inserted an entry at
			 * our index during this time.
			 */
			entry = __radix_tree_lookup(&mapping->page_tree, index,
					NULL, &slot);
			if (entry) {
				radix_tree_preload_end();
				spin_unlock_irq(&mapping->tree_lock);
				goto restart;
			}
		}

		if (pmd_downgrade) {
			radix_tree_delete(&mapping->page_tree, index);
			mapping->nrexceptional--;
			dax_wake_mapping_entry_waiter(mapping, index, entry,
					true);
		}

		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);

		err = __radix_tree_insert(&mapping->page_tree, index,
				dax_radix_order(entry), entry);
		radix_tree_preload_end();
		if (err) {
			spin_unlock_irq(&mapping->tree_lock);
			/*
			 * Our insertion of a DAX entry failed, most likely
			 * because we were inserting a PMD entry and it
			 * collided with a PTE sized entry at a different
			 * index in the PMD range.  We haven't inserted
			 * anything into the radix tree and have no waiters to
			 * wake.
			 */
			return ERR_PTR(err);
		}
		/* Good, we have inserted empty locked entry into the tree. */
		mapping->nrexceptional++;
		spin_unlock_irq(&mapping->tree_lock);
		return entry;
	}
	entry = lock_slot(mapping, slot);
 out_unlock:
	spin_unlock_irq(&mapping->tree_lock);
	return entry;
}

static int __dax_invalidate_mapping_entry(struct address_space *mapping,
					  pgoff_t index, bool trunc)
{
	int ret = 0;
	void *entry;
	struct radix_tree_root *page_tree = &mapping->page_tree;

	spin_lock_irq(&mapping->tree_lock);
	entry = get_unlocked_mapping_entry(mapping, index, NULL);
	if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
		goto out;
	if (!trunc &&
	    (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
	     radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
		goto out;
	radix_tree_delete(page_tree, index);
	mapping->nrexceptional--;
	ret = 1;
out:
	put_unlocked_mapping_entry(mapping, index, entry);
	spin_unlock_irq(&mapping->tree_lock);
	return ret;
}
/*
 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
 * entry to get unlocked before deleting it.
 */
int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
{
	int ret = __dax_invalidate_mapping_entry(mapping, index, true);

	/*
	 * This gets called from truncate / punch_hole path. As such, the caller
	 * must hold locks protecting against concurrent modifications of the
	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
	 * caller has seen exceptional entry for this index, we better find it
	 * at that index as well...
	 */
	WARN_ON_ONCE(!ret);
	return ret;
}

/*
 * Invalidate exceptional DAX entry if it is clean.
 */
int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
				      pgoff_t index)
{
	return __dax_invalidate_mapping_entry(mapping, index, false);
}

static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
		sector_t sector, size_t size, struct page *to,
		unsigned long vaddr)
{
	void *vto, *kaddr;
	pgoff_t pgoff;
	pfn_t pfn;
	long rc;
	int id;

	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
	if (rc)
		return rc;

	id = dax_read_lock();
	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
	if (rc < 0) {
		dax_read_unlock(id);
		return rc;
	}
	vto = kmap_atomic(to);
	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
	kunmap_atomic(vto);
	dax_read_unlock(id);
	return 0;
}

/*
 * By this point grab_mapping_entry() has ensured that we have a locked entry
 * of the appropriate size so we don't have to worry about downgrading PMDs to
 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 * already in the tree, we will skip the insertion and just dirty the PMD as
 * appropriate.
 */
static void *dax_insert_mapping_entry(struct address_space *mapping,
				      struct vm_fault *vmf,
				      void *entry, sector_t sector,
				      unsigned long flags)
{
	struct radix_tree_root *page_tree = &mapping->page_tree;
	void *new_entry;
	pgoff_t index = vmf->pgoff;

	if (vmf->flags & FAULT_FLAG_WRITE)
		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);

	if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
		/* we are replacing a zero page with block mapping */
		if (dax_is_pmd_entry(entry))
			unmap_mapping_range(mapping,
					(vmf->pgoff << PAGE_SHIFT) & PMD_MASK,
					PMD_SIZE, 0);
		else /* pte entry */
			unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
					PAGE_SIZE, 0);
	}

	spin_lock_irq(&mapping->tree_lock);
	new_entry = dax_radix_locked_entry(sector, flags);

	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
		/*
		 * Only swap our new entry into the radix tree if the current
		 * entry is a zero page or an empty entry.  If a normal PTE or
		 * PMD entry is already in the tree, we leave it alone.  This
		 * means that if we are trying to insert a PTE and the
		 * existing entry is a PMD, we will just leave the PMD in the
		 * tree and dirty it if necessary.
		 */
		struct radix_tree_node *node;
		void **slot;
		void *ret;

		ret = __radix_tree_lookup(page_tree, index, &node, &slot);
		WARN_ON_ONCE(ret != entry);
		__radix_tree_replace(page_tree, node, slot,
				     new_entry, NULL, NULL);
		entry = new_entry;
	}

	if (vmf->flags & FAULT_FLAG_WRITE)
		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);

	spin_unlock_irq(&mapping->tree_lock);
	return entry;
}

static inline unsigned long
pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
{
	unsigned long address;

	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
	return address;
}

/* Walk all mappings of a given index of a file and writeprotect them */
static void dax_mapping_entry_mkclean(struct address_space *mapping,
				      pgoff_t index, unsigned long pfn)
{
	struct vm_area_struct *vma;
	pte_t pte, *ptep = NULL;
	pmd_t *pmdp = NULL;
	spinlock_t *ptl;

	i_mmap_lock_read(mapping);
	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
		unsigned long address, start, end;

		cond_resched();

		if (!(vma->vm_flags & VM_SHARED))
			continue;

		address = pgoff_address(index, vma);

		/*
		 * Note because we provide start/end to follow_pte_pmd it will
		 * call mmu_notifier_invalidate_range_start() on our behalf
		 * before taking any lock.
		 */
		if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
			continue;

		if (pmdp) {
#ifdef CONFIG_FS_DAX_PMD
			pmd_t pmd;

			if (pfn != pmd_pfn(*pmdp))
				goto unlock_pmd;
			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
				goto unlock_pmd;

			flush_cache_page(vma, address, pfn);
			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
			pmd = pmd_wrprotect(pmd);
			pmd = pmd_mkclean(pmd);
			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
			mmu_notifier_invalidate_range(vma->vm_mm, start, end);
unlock_pmd:
#endif
			spin_unlock(ptl);
		} else {
			if (pfn != pte_pfn(*ptep))
				goto unlock_pte;
			if (!pte_dirty(*ptep) && !pte_write(*ptep))
				goto unlock_pte;

			flush_cache_page(vma, address, pfn);
			pte = ptep_clear_flush(vma, address, ptep);
			pte = pte_wrprotect(pte);
			pte = pte_mkclean(pte);
			set_pte_at(vma->vm_mm, address, ptep, pte);
			mmu_notifier_invalidate_range(vma->vm_mm, start, end);
unlock_pte:
			pte_unmap_unlock(ptep, ptl);
		}

		mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
	}
	i_mmap_unlock_read(mapping);
}

static int dax_writeback_one(struct block_device *bdev,
		struct dax_device *dax_dev, struct address_space *mapping,
		pgoff_t index, void *entry)
{
	struct radix_tree_root *page_tree = &mapping->page_tree;
	void *entry2, **slot, *kaddr;
	long ret = 0, id;
	sector_t sector;
	pgoff_t pgoff;
	size_t size;
	pfn_t pfn;

	/*
	 * A page got tagged dirty in DAX mapping? Something is seriously
	 * wrong.
	 */
	if (WARN_ON(!radix_tree_exceptional_entry(entry)))
		return -EIO;

	spin_lock_irq(&mapping->tree_lock);
	entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
	/* Entry got punched out / reallocated? */
	if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
		goto put_unlocked;
	/*
	 * Entry got reallocated elsewhere? No need to writeback. We have to
	 * compare sectors as we must not bail out due to difference in lockbit
	 * or entry type.
	 */
	if (dax_radix_sector(entry2) != dax_radix_sector(entry))
		goto put_unlocked;
	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
				dax_is_zero_entry(entry))) {
		ret = -EIO;
		goto put_unlocked;
	}

	/* Another fsync thread may have already written back this entry */
	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
		goto put_unlocked;
	/* Lock the entry to serialize with page faults */
	entry = lock_slot(mapping, slot);
	/*
	 * We can clear the tag now but we have to be careful so that concurrent
	 * dax_writeback_one() calls for the same index cannot finish before we
	 * actually flush the caches. This is achieved as the calls will look
	 * at the entry only under tree_lock and once they do that they will
	 * see the entry locked and wait for it to unlock.
	 */
	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
	spin_unlock_irq(&mapping->tree_lock);

	/*
	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
	 * in the middle of a PMD, the 'index' we are given will be aligned to
	 * the start index of the PMD, as will the sector we pull from
	 * 'entry'.  This allows us to flush for PMD_SIZE and not have to
	 * worry about partial PMD writebacks.
	 */
	sector = dax_radix_sector(entry);
	size = PAGE_SIZE << dax_radix_order(entry);

	id = dax_read_lock();
	ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
	if (ret)
		goto dax_unlock;

	/*
	 * dax_direct_access() may sleep, so cannot hold tree_lock over
	 * its invocation.
	 */
	ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
	if (ret < 0)
		goto dax_unlock;

	if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
		ret = -EIO;
		goto dax_unlock;
	}

	dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
	dax_flush(dax_dev, kaddr, size);
	/*
	 * After we have flushed the cache, we can clear the dirty tag. There
	 * cannot be new dirty data in the pfn after the flush has completed as
	 * the pfn mappings are writeprotected and fault waits for mapping
	 * entry lock.
	 */
	spin_lock_irq(&mapping->tree_lock);
	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
	spin_unlock_irq(&mapping->tree_lock);
	trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
 dax_unlock:
	dax_read_unlock(id);
	put_locked_mapping_entry(mapping, index);
	return ret;

 put_unlocked:
	put_unlocked_mapping_entry(mapping, index, entry2);
	spin_unlock_irq(&mapping->tree_lock);
	return ret;
}

/*
 * Flush the mapping to the persistent domain within the byte range of [start,
 * end]. This is required by data integrity operations to ensure file data is
 * on persistent storage prior to completion of the operation.
 */
int dax_writeback_mapping_range(struct address_space *mapping,
		struct block_device *bdev, struct writeback_control *wbc)
{
	struct inode *inode = mapping->host;
	pgoff_t start_index, end_index;
	pgoff_t indices[PAGEVEC_SIZE];
	struct dax_device *dax_dev;
	struct pagevec pvec;
	bool done = false;
	int i, ret = 0;

	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
		return -EIO;

	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
		return 0;

	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
	if (!dax_dev)
		return -EIO;

	start_index = wbc->range_start >> PAGE_SHIFT;
	end_index = wbc->range_end >> PAGE_SHIFT;

	trace_dax_writeback_range(inode, start_index, end_index);

	tag_pages_for_writeback(mapping, start_index, end_index);

	pagevec_init(&pvec, 0);
	while (!done) {
		pvec.nr = find_get_entries_tag(mapping, start_index,
				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
				pvec.pages, indices);

		if (pvec.nr == 0)
			break;

		for (i = 0; i < pvec.nr; i++) {
			if (indices[i] > end_index) {
				done = true;
				break;
			}

			ret = dax_writeback_one(bdev, dax_dev, mapping,
					indices[i], pvec.pages[i]);
			if (ret < 0) {
				mapping_set_error(mapping, ret);
				goto out;
			}
		}
		start_index = indices[pvec.nr - 1] + 1;
	}
out:
	put_dax(dax_dev);
	trace_dax_writeback_range_done(inode, start_index, end_index);
	return (ret < 0 ? ret : 0);
}
EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);

static int dax_insert_mapping(struct address_space *mapping,
		struct block_device *bdev, struct dax_device *dax_dev,
		sector_t sector, size_t size, void *entry,
		struct vm_area_struct *vma, struct vm_fault *vmf)
{
	unsigned long vaddr = vmf->address;
	void *ret, *kaddr;
	pgoff_t pgoff;
	int id, rc;
	pfn_t pfn;

	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
	if (rc)
		return rc;

	id = dax_read_lock();
	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
	if (rc < 0) {
		dax_read_unlock(id);
		return rc;
	}
	dax_read_unlock(id);

	ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
	if (IS_ERR(ret))
		return PTR_ERR(ret);

	trace_dax_insert_mapping(mapping->host, vmf, ret);
	if (vmf->flags & FAULT_FLAG_WRITE)
		return vm_insert_mixed_mkwrite(vma, vaddr, pfn);
	else
		return vm_insert_mixed(vma, vaddr, pfn);
}

/*
 * The user has performed a load from a hole in the file.  Allocating a new
 * page in the file would cause excessive storage usage for workloads with
 * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
 * If this page is ever written to we will re-fault and change the mapping to
 * point to real DAX storage instead.
 */
static int dax_load_hole(struct address_space *mapping, void *entry,
			 struct vm_fault *vmf)
{
	struct inode *inode = mapping->host;
	unsigned long vaddr = vmf->address;
	int ret = VM_FAULT_NOPAGE;
	struct page *zero_page;
	void *entry2;

	zero_page = ZERO_PAGE(0);
	if (unlikely(!zero_page)) {
		ret = VM_FAULT_OOM;
		goto out;
	}

	entry2 = dax_insert_mapping_entry(mapping, vmf, entry, 0,
			RADIX_DAX_ZERO_PAGE);
	if (IS_ERR(entry2)) {
		ret = VM_FAULT_SIGBUS;
		goto out;
	}

	vm_insert_mixed(vmf->vma, vaddr, page_to_pfn_t(zero_page));
out:
	trace_dax_load_hole(inode, vmf, ret);
	return ret;
}

static bool dax_range_is_aligned(struct block_device *bdev,
				 unsigned int offset, unsigned int length)
{
	unsigned short sector_size = bdev_logical_block_size(bdev);

	if (!IS_ALIGNED(offset, sector_size))
		return false;
	if (!IS_ALIGNED(length, sector_size))
		return false;

	return true;
}

int __dax_zero_page_range(struct block_device *bdev,
		struct dax_device *dax_dev, sector_t sector,
		unsigned int offset, unsigned int size)
{
	if (dax_range_is_aligned(bdev, offset, size)) {
		sector_t start_sector = sector + (offset >> 9);

		return blkdev_issue_zeroout(bdev, start_sector,
				size >> 9, GFP_NOFS, 0);
	} else {
		pgoff_t pgoff;
		long rc, id;
		void *kaddr;
		pfn_t pfn;

		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
		if (rc)
			return rc;

		id = dax_read_lock();
		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
				&pfn);
		if (rc < 0) {
			dax_read_unlock(id);
			return rc;
		}
		memset(kaddr + offset, 0, size);
		dax_flush(dax_dev, kaddr + offset, size);
		dax_read_unlock(id);
	}
	return 0;
}
EXPORT_SYMBOL_GPL(__dax_zero_page_range);

static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
{
	return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
}

static loff_t
dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
		struct iomap *iomap)
{
	struct block_device *bdev = iomap->bdev;
	struct dax_device *dax_dev = iomap->dax_dev;
	struct iov_iter *iter = data;
	loff_t end = pos + length, done = 0;
	ssize_t ret = 0;
	int id;

	if (iov_iter_rw(iter) == READ) {
		end = min(end, i_size_read(inode));
		if (pos >= end)
			return 0;

		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
			return iov_iter_zero(min(length, end - pos), iter);
	}

	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
		return -EIO;

	/*
	 * Write can allocate block for an area which has a hole page mapped
	 * into page tables. We have to tear down these mappings so that data
	 * written by write(2) is visible in mmap.
	 */
	if (iomap->flags & IOMAP_F_NEW) {
		invalidate_inode_pages2_range(inode->i_mapping,
					      pos >> PAGE_SHIFT,
					      (end - 1) >> PAGE_SHIFT);
	}

	id = dax_read_lock();
	while (pos < end) {
		unsigned offset = pos & (PAGE_SIZE - 1);
		const size_t size = ALIGN(length + offset, PAGE_SIZE);
		const sector_t sector = dax_iomap_sector(iomap, pos);
		ssize_t map_len;
		pgoff_t pgoff;
		void *kaddr;
		pfn_t pfn;

		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
		if (ret)
			break;

		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
				&kaddr, &pfn);
		if (map_len < 0) {
			ret = map_len;
			break;
		}

		map_len = PFN_PHYS(map_len);
		kaddr += offset;
		map_len -= offset;
		if (map_len > end - pos)
			map_len = end - pos;

		/*
		 * The userspace address for the memory copy has already been
		 * validated via access_ok() in either vfs_read() or
		 * vfs_write(), depending on which operation we are doing.
		 */
		if (iov_iter_rw(iter) == WRITE)
			map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
					map_len, iter);
		else
			map_len = copy_to_iter(kaddr, map_len, iter);
		if (map_len <= 0) {
			ret = map_len ? map_len : -EFAULT;
			break;
		}

		pos += map_len;
		length -= map_len;
		done += map_len;
	}
	dax_read_unlock(id);

	return done ? done : ret;
}

/**
 * dax_iomap_rw - Perform I/O to a DAX file
 * @iocb:	The control block for this I/O
 * @iter:	The addresses to do I/O from or to
 * @ops:	iomap ops passed from the file system
 *
 * This function performs read and write operations to directly mapped
 * persistent memory.  The callers needs to take care of read/write exclusion
 * and evicting any page cache pages in the region under I/O.
 */
ssize_t
dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
		const struct iomap_ops *ops)
{
	struct address_space *mapping = iocb->ki_filp->f_mapping;
	struct inode *inode = mapping->host;
	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
	unsigned flags = 0;

	if (iov_iter_rw(iter) == WRITE) {
		lockdep_assert_held_exclusive(&inode->i_rwsem);
		flags |= IOMAP_WRITE;
	} else {
		lockdep_assert_held(&inode->i_rwsem);
	}

	while (iov_iter_count(iter)) {
		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
				iter, dax_iomap_actor);
		if (ret <= 0)
			break;
		pos += ret;
		done += ret;
	}

	iocb->ki_pos += done;
	return done ? done : ret;
}
EXPORT_SYMBOL_GPL(dax_iomap_rw);

static int dax_fault_return(int error)
{
	if (error == 0)
		return VM_FAULT_NOPAGE;
	if (error == -ENOMEM)
		return VM_FAULT_OOM;
	return VM_FAULT_SIGBUS;
}

static int dax_iomap_pte_fault(struct vm_fault *vmf,
			       const struct iomap_ops *ops)
{
	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
	unsigned long vaddr = vmf->address;
	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
	sector_t sector;
	struct iomap iomap = { 0 };
	unsigned flags = IOMAP_FAULT;
	int error, major = 0;
	int vmf_ret = 0;
	void *entry;

	trace_dax_pte_fault(inode, vmf, vmf_ret);
	/*
	 * Check whether offset isn't beyond end of file now. Caller is supposed
	 * to hold locks serializing us with truncate / punch hole so this is
	 * a reliable test.
	 */
	if (pos >= i_size_read(inode)) {
		vmf_ret = VM_FAULT_SIGBUS;
		goto out;
	}

	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
		flags |= IOMAP_WRITE;

	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
	if (IS_ERR(entry)) {
		vmf_ret = dax_fault_return(PTR_ERR(entry));
		goto out;
	}

	/*
	 * It is possible, particularly with mixed reads & writes to private
	 * mappings, that we have raced with a PMD fault that overlaps with
	 * the PTE we need to set up.  If so just return and the fault will be
	 * retried.
	 */
	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
		vmf_ret = VM_FAULT_NOPAGE;
		goto unlock_entry;
	}

	/*
	 * Note that we don't bother to use iomap_apply here: DAX required
	 * the file system block size to be equal the page size, which means
	 * that we never have to deal with more than a single extent here.
	 */
	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
	if (error) {
		vmf_ret = dax_fault_return(error);
		goto unlock_entry;
	}
	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
		error = -EIO;	/* fs corruption? */
		goto error_finish_iomap;
	}

	sector = dax_iomap_sector(&iomap, pos);

	if (vmf->cow_page) {
		switch (iomap.type) {
		case IOMAP_HOLE:
		case IOMAP_UNWRITTEN:
			clear_user_highpage(vmf->cow_page, vaddr);
			break;
		case IOMAP_MAPPED:
			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
					sector, PAGE_SIZE, vmf->cow_page, vaddr);
			break;
		default:
			WARN_ON_ONCE(1);
			error = -EIO;
			break;
		}

		if (error)
			goto error_finish_iomap;

		__SetPageUptodate(vmf->cow_page);
		vmf_ret = finish_fault(vmf);
		if (!vmf_ret)
			vmf_ret = VM_FAULT_DONE_COW;
		goto finish_iomap;
	}

	switch (iomap.type) {
	case IOMAP_MAPPED:
		if (iomap.flags & IOMAP_F_NEW) {
			count_vm_event(PGMAJFAULT);
			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
			major = VM_FAULT_MAJOR;
		}
		error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
				sector, PAGE_SIZE, entry, vmf->vma, vmf);
		/* -EBUSY is fine, somebody else faulted on the same PTE */
		if (error == -EBUSY)
			error = 0;
		break;
	case IOMAP_UNWRITTEN:
	case IOMAP_HOLE:
		if (!(vmf->flags & FAULT_FLAG_WRITE)) {
			vmf_ret = dax_load_hole(mapping, entry, vmf);
			goto finish_iomap;
		}
		/*FALLTHRU*/
	default:
		WARN_ON_ONCE(1);
		error = -EIO;
		break;
	}

 error_finish_iomap:
	vmf_ret = dax_fault_return(error) | major;
 finish_iomap:
	if (ops->iomap_end) {
		int copied = PAGE_SIZE;

		if (vmf_ret & VM_FAULT_ERROR)
			copied = 0;
		/*
		 * The fault is done by now and there's no way back (other
		 * thread may be already happily using PTE we have installed).
		 * Just ignore error from ->iomap_end since we cannot do much
		 * with it.
		 */
		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
	}
 unlock_entry:
	put_locked_mapping_entry(mapping, vmf->pgoff);
 out:
	trace_dax_pte_fault_done(inode, vmf, vmf_ret);
	return vmf_ret;
}

#ifdef CONFIG_FS_DAX_PMD
static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
		loff_t pos, void *entry)
{
	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
	const sector_t sector = dax_iomap_sector(iomap, pos);
	struct dax_device *dax_dev = iomap->dax_dev;
	struct block_device *bdev = iomap->bdev;
	struct inode *inode = mapping->host;
	const size_t size = PMD_SIZE;
	void *ret = NULL, *kaddr;
	long length = 0;
	pgoff_t pgoff;
	pfn_t pfn = {};
	int id;

	if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
		goto fallback;

	id = dax_read_lock();
	length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
	if (length < 0)
		goto unlock_fallback;
	length = PFN_PHYS(length);

	if (length < size)
		goto unlock_fallback;
	if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
		goto unlock_fallback;
	if (!pfn_t_devmap(pfn))
		goto unlock_fallback;
	dax_read_unlock(id);

	ret = dax_insert_mapping_entry(mapping, vmf, entry, sector,
			RADIX_DAX_PMD);
	if (IS_ERR(ret))
		goto fallback;

	trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
	return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
			pfn, vmf->flags & FAULT_FLAG_WRITE);

unlock_fallback:
	dax_read_unlock(id);
fallback:
	trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
	return VM_FAULT_FALLBACK;
}

static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
		void *entry)
{
	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
	unsigned long pmd_addr = vmf->address & PMD_MASK;
	struct inode *inode = mapping->host;
	struct page *zero_page;
	void *ret = NULL;
	spinlock_t *ptl;
	pmd_t pmd_entry;

	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);

	if (unlikely(!zero_page))
		goto fallback;

	ret = dax_insert_mapping_entry(mapping, vmf, entry, 0,
			RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE);
	if (IS_ERR(ret))
		goto fallback;

	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (!pmd_none(*(vmf->pmd))) {
		spin_unlock(ptl);
		goto fallback;
	}

	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
	pmd_entry = pmd_mkhuge(pmd_entry);
	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
	spin_unlock(ptl);
	trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
	return VM_FAULT_NOPAGE;

fallback:
	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
	return VM_FAULT_FALLBACK;
}

static int dax_iomap_pmd_fault(struct vm_fault *vmf,
			       const struct iomap_ops *ops)
{
	struct vm_area_struct *vma = vmf->vma;
	struct address_space *mapping = vma->vm_file->f_mapping;
	unsigned long pmd_addr = vmf->address & PMD_MASK;
	bool write = vmf->flags & FAULT_FLAG_WRITE;
	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
	struct inode *inode = mapping->host;
	int result = VM_FAULT_FALLBACK;
	struct iomap iomap = { 0 };
	pgoff_t max_pgoff, pgoff;
	void *entry;
	loff_t pos;
	int error;

	/*
	 * Check whether offset isn't beyond end of file now. Caller is
	 * supposed to hold locks serializing us with truncate / punch hole so
	 * this is a reliable test.
	 */
	pgoff = linear_page_index(vma, pmd_addr);
	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);

	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);

	/*
	 * Make sure that the faulting address's PMD offset (color) matches
	 * the PMD offset from the start of the file.  This is necessary so
	 * that a PMD range in the page table overlaps exactly with a PMD
	 * range in the radix tree.
	 */
	if ((vmf->pgoff & PG_PMD_COLOUR) !=
	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
		goto fallback;

	/* Fall back to PTEs if we're going to COW */
	if (write && !(vma->vm_flags & VM_SHARED))
		goto fallback;

	/* If the PMD would extend outside the VMA */
	if (pmd_addr < vma->vm_start)
		goto fallback;
	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
		goto fallback;

	if (pgoff >= max_pgoff) {
		result = VM_FAULT_SIGBUS;
		goto out;
	}

	/* If the PMD would extend beyond the file size */
	if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
		goto fallback;

	/*
	 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
	 * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
	 * is already in the tree, for instance), it will return -EEXIST and
	 * we just fall back to 4k entries.
	 */
	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
	if (IS_ERR(entry))
		goto fallback;

	/*
	 * It is possible, particularly with mixed reads & writes to private
	 * mappings, that we have raced with a PTE fault that overlaps with
	 * the PMD we need to set up.  If so just return and the fault will be
	 * retried.
	 */
	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
			!pmd_devmap(*vmf->pmd)) {
		result = 0;
		goto unlock_entry;
	}

	/*
	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
	 * setting up a mapping, so really we're using iomap_begin() as a way
	 * to look up our filesystem block.
	 */
	pos = (loff_t)pgoff << PAGE_SHIFT;
	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
	if (error)
		goto unlock_entry;

	if (iomap.offset + iomap.length < pos + PMD_SIZE)
		goto finish_iomap;

	switch (iomap.type) {
	case IOMAP_MAPPED:
		result = dax_pmd_insert_mapping(vmf, &iomap, pos, entry);
		break;
	case IOMAP_UNWRITTEN:
	case IOMAP_HOLE:
		if (WARN_ON_ONCE(write))
			break;
		result = dax_pmd_load_hole(vmf, &iomap, entry);
		break;
	default:
		WARN_ON_ONCE(1);
		break;
	}

 finish_iomap:
	if (ops->iomap_end) {
		int copied = PMD_SIZE;

		if (result == VM_FAULT_FALLBACK)
			copied = 0;
		/*
		 * The fault is done by now and there's no way back (other
		 * thread may be already happily using PMD we have installed).
		 * Just ignore error from ->iomap_end since we cannot do much
		 * with it.
		 */
		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
				&iomap);
	}
 unlock_entry:
	put_locked_mapping_entry(mapping, pgoff);
 fallback:
	if (result == VM_FAULT_FALLBACK) {
		split_huge_pmd(vma, vmf->pmd, vmf->address);
		count_vm_event(THP_FAULT_FALLBACK);
	}
out:
	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
	return result;
}
#else
static int dax_iomap_pmd_fault(struct vm_fault *vmf,
			       const struct iomap_ops *ops)
{
	return VM_FAULT_FALLBACK;
}
#endif /* CONFIG_FS_DAX_PMD */

/**
 * dax_iomap_fault - handle a page fault on a DAX file
 * @vmf: The description of the fault
 * @ops: iomap ops passed from the file system
 *
 * When a page fault occurs, filesystems may call this helper in
 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
 * has done all the necessary locking for page fault to proceed
 * successfully.
 */
int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
		    const struct iomap_ops *ops)
{
	switch (pe_size) {
	case PE_SIZE_PTE:
		return dax_iomap_pte_fault(vmf, ops);
	case PE_SIZE_PMD:
		return dax_iomap_pmd_fault(vmf, ops);
	default:
		return VM_FAULT_FALLBACK;
	}
}
EXPORT_SYMBOL_GPL(dax_iomap_fault);