xfs_file.c 30.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_error.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_icache.h"
#include "xfs_pnfs.h"
#include "xfs_iomap.h"
#include "xfs_reflink.h"

#include <linux/dcache.h>
#include <linux/falloc.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>

static const struct vm_operations_struct xfs_file_vm_ops;

/*
 * Clear the specified ranges to zero through either the pagecache or DAX.
 * Holes and unwritten extents will be left as-is as they already are zeroed.
 */
int
xfs_zero_range(
	struct xfs_inode	*ip,
	xfs_off_t		pos,
	xfs_off_t		count,
	bool			*did_zero)
{
	return iomap_zero_range(VFS_I(ip), pos, count, did_zero, &xfs_iomap_ops);
}

int
xfs_update_prealloc_flags(
	struct xfs_inode	*ip,
	enum xfs_prealloc_flags	flags)
{
	struct xfs_trans	*tp;
	int			error;

	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
			0, 0, 0, &tp);
	if (error)
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);

	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
		VFS_I(ip)->i_mode &= ~S_ISUID;
		if (VFS_I(ip)->i_mode & S_IXGRP)
			VFS_I(ip)->i_mode &= ~S_ISGID;
		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}

	if (flags & XFS_PREALLOC_SET)
		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
	if (flags & XFS_PREALLOC_CLEAR)
		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;

	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	if (flags & XFS_PREALLOC_SYNC)
		xfs_trans_set_sync(tp);
	return xfs_trans_commit(tp);
}

/*
 * Fsync operations on directories are much simpler than on regular files,
 * as there is no file data to flush, and thus also no need for explicit
 * cache flush operations, and there are no non-transaction metadata updates
 * on directories either.
 */
STATIC int
xfs_dir_fsync(
	struct file		*file,
	loff_t			start,
	loff_t			end,
	int			datasync)
{
	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_lsn_t		lsn = 0;

	trace_xfs_dir_fsync(ip);

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip))
		lsn = ip->i_itemp->ili_last_lsn;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!lsn)
		return 0;
	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
}

STATIC int
xfs_file_fsync(
	struct file		*file,
	loff_t			start,
	loff_t			end,
	int			datasync)
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	int			error = 0;
	int			log_flushed = 0;
	xfs_lsn_t		lsn = 0;

	trace_xfs_file_fsync(ip);

	error = file_write_and_wait_range(file, start, end);
	if (error)
		return error;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	xfs_iflags_clear(ip, XFS_ITRUNCATED);

	/*
	 * If we have an RT and/or log subvolume we need to make sure to flush
	 * the write cache the device used for file data first.  This is to
	 * ensure newly written file data make it to disk before logging the new
	 * inode size in case of an extending write.
	 */
	if (XFS_IS_REALTIME_INODE(ip))
		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
	else if (mp->m_logdev_targp != mp->m_ddev_targp)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);

	/*
	 * All metadata updates are logged, which means that we just have to
	 * flush the log up to the latest LSN that touched the inode. If we have
	 * concurrent fsync/fdatasync() calls, we need them to all block on the
	 * log force before we clear the ili_fsync_fields field. This ensures
	 * that we don't get a racing sync operation that does not wait for the
	 * metadata to hit the journal before returning. If we race with
	 * clearing the ili_fsync_fields, then all that will happen is the log
	 * force will do nothing as the lsn will already be on disk. We can't
	 * race with setting ili_fsync_fields because that is done under
	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
	 * until after the ili_fsync_fields is cleared.
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip)) {
		if (!datasync ||
		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
			lsn = ip->i_itemp->ili_last_lsn;
	}

	if (lsn) {
		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
		ip->i_itemp->ili_fsync_fields = 0;
	}
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	/*
	 * If we only have a single device, and the log force about was
	 * a no-op we might have to flush the data device cache here.
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
	 * an already allocated file and thus do not have any metadata to
	 * commit.
	 */
	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
	    mp->m_logdev_targp == mp->m_ddev_targp)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);

	return error;
}

STATIC ssize_t
xfs_file_dio_aio_read(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
	size_t			count = iov_iter_count(to);
	ssize_t			ret;

	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);

	if (!count)
		return 0; /* skip atime */

	file_accessed(iocb->ki_filp);

	xfs_ilock(ip, XFS_IOLOCK_SHARED);
	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);

	return ret;
}

static noinline ssize_t
xfs_file_dax_read(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
	size_t			count = iov_iter_count(to);
	ssize_t			ret = 0;

	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);

	if (!count)
		return 0; /* skip atime */

	if (iocb->ki_flags & IOCB_NOWAIT) {
		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
			return -EAGAIN;
	} else {
		xfs_ilock(ip, XFS_IOLOCK_SHARED);
	}

	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);

	file_accessed(iocb->ki_filp);
	return ret;
}

STATIC ssize_t
xfs_file_buffered_aio_read(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
	ssize_t			ret;

	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);

	if (iocb->ki_flags & IOCB_NOWAIT) {
		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
			return -EAGAIN;
	} else {
		xfs_ilock(ip, XFS_IOLOCK_SHARED);
	}
	ret = generic_file_read_iter(iocb, to);
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);

	return ret;
}

STATIC ssize_t
xfs_file_read_iter(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
	struct inode		*inode = file_inode(iocb->ki_filp);
	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
	ssize_t			ret = 0;

	XFS_STATS_INC(mp, xs_read_calls);

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	if (IS_DAX(inode))
		ret = xfs_file_dax_read(iocb, to);
	else if (iocb->ki_flags & IOCB_DIRECT)
		ret = xfs_file_dio_aio_read(iocb, to);
	else
		ret = xfs_file_buffered_aio_read(iocb, to);

	if (ret > 0)
		XFS_STATS_ADD(mp, xs_read_bytes, ret);
	return ret;
}

/*
 * Zero any on disk space between the current EOF and the new, larger EOF.
 *
 * This handles the normal case of zeroing the remainder of the last block in
 * the file and the unusual case of zeroing blocks out beyond the size of the
 * file.  This second case only happens with fixed size extents and when the
 * system crashes before the inode size was updated but after blocks were
 * allocated.
 *
 * Expects the iolock to be held exclusive, and will take the ilock internally.
 */
int					/* error (positive) */
xfs_zero_eof(
	struct xfs_inode	*ip,
	xfs_off_t		offset,		/* starting I/O offset */
	xfs_fsize_t		isize,		/* current inode size */
	bool			*did_zeroing)
{
	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
	ASSERT(offset > isize);

	trace_xfs_zero_eof(ip, isize, offset - isize);
	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
}

/*
 * Common pre-write limit and setup checks.
 *
 * Called with the iolocked held either shared and exclusive according to
 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 * if called for a direct write beyond i_size.
 */
STATIC ssize_t
xfs_file_aio_write_checks(
	struct kiocb		*iocb,
	struct iov_iter		*from,
	int			*iolock)
{
	struct file		*file = iocb->ki_filp;
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			error = 0;
	size_t			count = iov_iter_count(from);
	bool			drained_dio = false;

restart:
	error = generic_write_checks(iocb, from);
	if (error <= 0)
		return error;

	error = xfs_break_layouts(inode, iolock);
	if (error)
		return error;

	/*
	 * For changing security info in file_remove_privs() we need i_rwsem
	 * exclusively.
	 */
	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
		xfs_iunlock(ip, *iolock);
		*iolock = XFS_IOLOCK_EXCL;
		xfs_ilock(ip, *iolock);
		goto restart;
	}
	/*
	 * If the offset is beyond the size of the file, we need to zero any
	 * blocks that fall between the existing EOF and the start of this
	 * write.  If zeroing is needed and we are currently holding the
	 * iolock shared, we need to update it to exclusive which implies
	 * having to redo all checks before.
	 *
	 * We need to serialise against EOF updates that occur in IO
	 * completions here. We want to make sure that nobody is changing the
	 * size while we do this check until we have placed an IO barrier (i.e.
	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
	 * The spinlock effectively forms a memory barrier once we have the
	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
	 * and hence be able to correctly determine if we need to run zeroing.
	 */
	spin_lock(&ip->i_flags_lock);
	if (iocb->ki_pos > i_size_read(inode)) {
		spin_unlock(&ip->i_flags_lock);
		if (!drained_dio) {
			if (*iolock == XFS_IOLOCK_SHARED) {
				xfs_iunlock(ip, *iolock);
				*iolock = XFS_IOLOCK_EXCL;
				xfs_ilock(ip, *iolock);
				iov_iter_reexpand(from, count);
			}
			/*
			 * We now have an IO submission barrier in place, but
			 * AIO can do EOF updates during IO completion and hence
			 * we now need to wait for all of them to drain. Non-AIO
			 * DIO will have drained before we are given the
			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
			 * no-op.
			 */
			inode_dio_wait(inode);
			drained_dio = true;
			goto restart;
		}
		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), NULL);
		if (error)
			return error;
	} else
		spin_unlock(&ip->i_flags_lock);

	/*
	 * Updating the timestamps will grab the ilock again from
	 * xfs_fs_dirty_inode, so we have to call it after dropping the
	 * lock above.  Eventually we should look into a way to avoid
	 * the pointless lock roundtrip.
	 */
	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
		error = file_update_time(file);
		if (error)
			return error;
	}

	/*
	 * If we're writing the file then make sure to clear the setuid and
	 * setgid bits if the process is not being run by root.  This keeps
	 * people from modifying setuid and setgid binaries.
	 */
	if (!IS_NOSEC(inode))
		return file_remove_privs(file);
	return 0;
}

static int
xfs_dio_write_end_io(
	struct kiocb		*iocb,
	ssize_t			size,
	unsigned		flags)
{
	struct inode		*inode = file_inode(iocb->ki_filp);
	struct xfs_inode	*ip = XFS_I(inode);
	loff_t			offset = iocb->ki_pos;
	int			error = 0;

	trace_xfs_end_io_direct_write(ip, offset, size);

	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

	if (size <= 0)
		return size;

	if (flags & IOMAP_DIO_COW) {
		error = xfs_reflink_end_cow(ip, offset, size);
		if (error)
			return error;
	}

	/*
	 * Unwritten conversion updates the in-core isize after extent
	 * conversion but before updating the on-disk size. Updating isize any
	 * earlier allows a racing dio read to find unwritten extents before
	 * they are converted.
	 */
	if (flags & IOMAP_DIO_UNWRITTEN)
		return xfs_iomap_write_unwritten(ip, offset, size, true);

	/*
	 * We need to update the in-core inode size here so that we don't end up
	 * with the on-disk inode size being outside the in-core inode size. We
	 * have no other method of updating EOF for AIO, so always do it here
	 * if necessary.
	 *
	 * We need to lock the test/set EOF update as we can be racing with
	 * other IO completions here to update the EOF. Failing to serialise
	 * here can result in EOF moving backwards and Bad Things Happen when
	 * that occurs.
	 */
	spin_lock(&ip->i_flags_lock);
	if (offset + size > i_size_read(inode)) {
		i_size_write(inode, offset + size);
		spin_unlock(&ip->i_flags_lock);
		error = xfs_setfilesize(ip, offset, size);
	} else {
		spin_unlock(&ip->i_flags_lock);
	}

	return error;
}

/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
 * By separating it from the buffered write path we remove all the tricky to
 * follow locking changes and looping.
 *
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
 * hitting it with a big hammer (i.e. inode_dio_wait()).
 *
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
	struct iov_iter		*from)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
	int			unaligned_io = 0;
	int			iolock;
	size_t			count = iov_iter_count(from);
	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

	/* DIO must be aligned to device logical sector size */
	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
		return -EINVAL;

	/*
	 * Don't take the exclusive iolock here unless the I/O is unaligned to
	 * the file system block size.  We don't need to consider the EOF
	 * extension case here because xfs_file_aio_write_checks() will relock
	 * the inode as necessary for EOF zeroing cases and fill out the new
	 * inode size as appropriate.
	 */
	if ((iocb->ki_pos & mp->m_blockmask) ||
	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
		unaligned_io = 1;

		/*
		 * We can't properly handle unaligned direct I/O to reflink
		 * files yet, as we can't unshare a partial block.
		 */
		if (xfs_is_reflink_inode(ip)) {
			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
			return -EREMCHG;
		}
		iolock = XFS_IOLOCK_EXCL;
	} else {
		iolock = XFS_IOLOCK_SHARED;
	}

	if (iocb->ki_flags & IOCB_NOWAIT) {
		if (!xfs_ilock_nowait(ip, iolock))
			return -EAGAIN;
	} else {
		xfs_ilock(ip, iolock);
	}

	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
	if (ret)
		goto out;
	count = iov_iter_count(from);

	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to take the exclusive lock
	 * for other reasons in xfs_file_aio_write_checks.
	 */
	if (unaligned_io) {
		/* If we are going to wait for other DIO to finish, bail */
		if (iocb->ki_flags & IOCB_NOWAIT) {
			if (atomic_read(&inode->i_dio_count))
				return -EAGAIN;
		} else {
			inode_dio_wait(inode);
		}
	} else if (iolock == XFS_IOLOCK_EXCL) {
		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
		iolock = XFS_IOLOCK_SHARED;
	}

	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
out:
	xfs_iunlock(ip, iolock);

	/*
	 * No fallback to buffered IO on errors for XFS, direct IO will either
	 * complete fully or fail.
	 */
	ASSERT(ret < 0 || ret == count);
	return ret;
}

static noinline ssize_t
xfs_file_dax_write(
	struct kiocb		*iocb,
	struct iov_iter		*from)
{
	struct inode		*inode = iocb->ki_filp->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	int			iolock = XFS_IOLOCK_EXCL;
	ssize_t			ret, error = 0;
	size_t			count;
	loff_t			pos;

	if (iocb->ki_flags & IOCB_NOWAIT) {
		if (!xfs_ilock_nowait(ip, iolock))
			return -EAGAIN;
	} else {
		xfs_ilock(ip, iolock);
	}

	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
	if (ret)
		goto out;

	pos = iocb->ki_pos;
	count = iov_iter_count(from);

	trace_xfs_file_dax_write(ip, count, pos);
	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
		i_size_write(inode, iocb->ki_pos);
		error = xfs_setfilesize(ip, pos, ret);
	}
out:
	xfs_iunlock(ip, iolock);
	return error ? error : ret;
}

STATIC ssize_t
xfs_file_buffered_aio_write(
	struct kiocb		*iocb,
	struct iov_iter		*from)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
	int			enospc = 0;
	int			iolock;

	if (iocb->ki_flags & IOCB_NOWAIT)
		return -EOPNOTSUPP;

write_retry:
	iolock = XFS_IOLOCK_EXCL;
	xfs_ilock(ip, iolock);

	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
	if (ret)
		goto out;

	/* We can write back this queue in page reclaim */
	current->backing_dev_info = inode_to_bdi(inode);

	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
	if (likely(ret >= 0))
		iocb->ki_pos += ret;

	/*
	 * If we hit a space limit, try to free up some lingering preallocated
	 * space before returning an error. In the case of ENOSPC, first try to
	 * write back all dirty inodes to free up some of the excess reserved
	 * metadata space. This reduces the chances that the eofblocks scan
	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
	 * also behaves as a filter to prevent too many eofblocks scans from
	 * running at the same time.
	 */
	if (ret == -EDQUOT && !enospc) {
		xfs_iunlock(ip, iolock);
		enospc = xfs_inode_free_quota_eofblocks(ip);
		if (enospc)
			goto write_retry;
		enospc = xfs_inode_free_quota_cowblocks(ip);
		if (enospc)
			goto write_retry;
		iolock = 0;
	} else if (ret == -ENOSPC && !enospc) {
		struct xfs_eofblocks eofb = {0};

		enospc = 1;
		xfs_flush_inodes(ip->i_mount);

		xfs_iunlock(ip, iolock);
		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
		goto write_retry;
	}

	current->backing_dev_info = NULL;
out:
	if (iolock)
		xfs_iunlock(ip, iolock);
	return ret;
}

STATIC ssize_t
xfs_file_write_iter(
	struct kiocb		*iocb,
	struct iov_iter		*from)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
	size_t			ocount = iov_iter_count(from);

	XFS_STATS_INC(ip->i_mount, xs_write_calls);

	if (ocount == 0)
		return 0;

	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

	if (IS_DAX(inode))
		ret = xfs_file_dax_write(iocb, from);
	else if (iocb->ki_flags & IOCB_DIRECT) {
		/*
		 * Allow a directio write to fall back to a buffered
		 * write *only* in the case that we're doing a reflink
		 * CoW.  In all other directio scenarios we do not
		 * allow an operation to fall back to buffered mode.
		 */
		ret = xfs_file_dio_aio_write(iocb, from);
		if (ret == -EREMCHG)
			goto buffered;
	} else {
buffered:
		ret = xfs_file_buffered_aio_write(iocb, from);
	}

	if (ret > 0) {
		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);

		/* Handle various SYNC-type writes */
		ret = generic_write_sync(iocb, ret);
	}
	return ret;
}

#define	XFS_FALLOC_FL_SUPPORTED						\
		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)

STATIC long
xfs_file_fallocate(
	struct file		*file,
	int			mode,
	loff_t			offset,
	loff_t			len)
{
	struct inode		*inode = file_inode(file);
	struct xfs_inode	*ip = XFS_I(inode);
	long			error;
	enum xfs_prealloc_flags	flags = 0;
	uint			iolock = XFS_IOLOCK_EXCL;
	loff_t			new_size = 0;
	bool			do_file_insert = false;

	if (!S_ISREG(inode->i_mode))
		return -EINVAL;
	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
		return -EOPNOTSUPP;

	xfs_ilock(ip, iolock);
	error = xfs_break_layouts(inode, &iolock);
	if (error)
		goto out_unlock;

	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
	iolock |= XFS_MMAPLOCK_EXCL;

	if (mode & FALLOC_FL_PUNCH_HOLE) {
		error = xfs_free_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
		unsigned int blksize_mask = i_blocksize(inode) - 1;

		if (offset & blksize_mask || len & blksize_mask) {
			error = -EINVAL;
			goto out_unlock;
		}

		/*
		 * There is no need to overlap collapse range with EOF,
		 * in which case it is effectively a truncate operation
		 */
		if (offset + len >= i_size_read(inode)) {
			error = -EINVAL;
			goto out_unlock;
		}

		new_size = i_size_read(inode) - len;

		error = xfs_collapse_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
	} else if (mode & FALLOC_FL_INSERT_RANGE) {
		unsigned int	blksize_mask = i_blocksize(inode) - 1;
		loff_t		isize = i_size_read(inode);

		if (offset & blksize_mask || len & blksize_mask) {
			error = -EINVAL;
			goto out_unlock;
		}

		/*
		 * New inode size must not exceed ->s_maxbytes, accounting for
		 * possible signed overflow.
		 */
		if (inode->i_sb->s_maxbytes - isize < len) {
			error = -EFBIG;
			goto out_unlock;
		}
		new_size = isize + len;

		/* Offset should be less than i_size */
		if (offset >= isize) {
			error = -EINVAL;
			goto out_unlock;
		}
		do_file_insert = true;
	} else {
		flags |= XFS_PREALLOC_SET;

		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
		    offset + len > i_size_read(inode)) {
			new_size = offset + len;
			error = inode_newsize_ok(inode, new_size);
			if (error)
				goto out_unlock;
		}

		if (mode & FALLOC_FL_ZERO_RANGE)
			error = xfs_zero_file_space(ip, offset, len);
		else {
			if (mode & FALLOC_FL_UNSHARE_RANGE) {
				error = xfs_reflink_unshare(ip, offset, len);
				if (error)
					goto out_unlock;
			}
			error = xfs_alloc_file_space(ip, offset, len,
						     XFS_BMAPI_PREALLOC);
		}
		if (error)
			goto out_unlock;
	}

	if (file->f_flags & O_DSYNC)
		flags |= XFS_PREALLOC_SYNC;

	error = xfs_update_prealloc_flags(ip, flags);
	if (error)
		goto out_unlock;

	/* Change file size if needed */
	if (new_size) {
		struct iattr iattr;

		iattr.ia_valid = ATTR_SIZE;
		iattr.ia_size = new_size;
		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
		if (error)
			goto out_unlock;
	}

	/*
	 * Perform hole insertion now that the file size has been
	 * updated so that if we crash during the operation we don't
	 * leave shifted extents past EOF and hence losing access to
	 * the data that is contained within them.
	 */
	if (do_file_insert)
		error = xfs_insert_file_space(ip, offset, len);

out_unlock:
	xfs_iunlock(ip, iolock);
	return error;
}

STATIC int
xfs_file_clone_range(
	struct file	*file_in,
	loff_t		pos_in,
	struct file	*file_out,
	loff_t		pos_out,
	u64		len)
{
	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
				     len, false);
}

STATIC ssize_t
xfs_file_dedupe_range(
	struct file	*src_file,
	u64		loff,
	u64		len,
	struct file	*dst_file,
	u64		dst_loff)
{
	int		error;

	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
				     len, true);
	if (error)
		return error;
	return len;
}

STATIC int
xfs_file_open(
	struct inode	*inode,
	struct file	*file)
{
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
		return -EFBIG;
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
		return -EIO;
	file->f_mode |= FMODE_NOWAIT;
	return 0;
}

STATIC int
xfs_dir_open(
	struct inode	*inode,
	struct file	*file)
{
	struct xfs_inode *ip = XFS_I(inode);
	int		mode;
	int		error;

	error = xfs_file_open(inode, file);
	if (error)
		return error;

	/*
	 * If there are any blocks, read-ahead block 0 as we're almost
	 * certain to have the next operation be a read there.
	 */
	mode = xfs_ilock_data_map_shared(ip);
	if (ip->i_d.di_nextents > 0)
		error = xfs_dir3_data_readahead(ip, 0, -1);
	xfs_iunlock(ip, mode);
	return error;
}

STATIC int
xfs_file_release(
	struct inode	*inode,
	struct file	*filp)
{
	return xfs_release(XFS_I(inode));
}

STATIC int
xfs_file_readdir(
	struct file	*file,
	struct dir_context *ctx)
{
	struct inode	*inode = file_inode(file);
	xfs_inode_t	*ip = XFS_I(inode);
	size_t		bufsize;

	/*
	 * The Linux API doesn't pass down the total size of the buffer
	 * we read into down to the filesystem.  With the filldir concept
	 * it's not needed for correct information, but the XFS dir2 leaf
	 * code wants an estimate of the buffer size to calculate it's
	 * readahead window and size the buffers used for mapping to
	 * physical blocks.
	 *
	 * Try to give it an estimate that's good enough, maybe at some
	 * point we can change the ->readdir prototype to include the
	 * buffer size.  For now we use the current glibc buffer size.
	 */
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);

	return xfs_readdir(NULL, ip, ctx, bufsize);
}

STATIC loff_t
xfs_file_llseek(
	struct file	*file,
	loff_t		offset,
	int		whence)
{
	struct inode		*inode = file->f_mapping->host;

	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
		return -EIO;

	switch (whence) {
	default:
		return generic_file_llseek(file, offset, whence);
	case SEEK_HOLE:
		offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
		break;
	case SEEK_DATA:
		offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
		break;
	}

	if (offset < 0)
		return offset;
	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
}

/*
 * Locking for serialisation of IO during page faults. This results in a lock
 * ordering of:
 *
 * mmap_sem (MM)
 *   sb_start_pagefault(vfs, freeze)
 *     i_mmaplock (XFS - truncate serialisation)
 *       page_lock (MM)
 *         i_lock (XFS - extent map serialisation)
 */
static int
__xfs_filemap_fault(
	struct vm_fault		*vmf,
	enum page_entry_size	pe_size,
	bool			write_fault)
{
	struct inode		*inode = file_inode(vmf->vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret;

	trace_xfs_filemap_fault(ip, pe_size, write_fault);

	if (write_fault) {
		sb_start_pagefault(inode->i_sb);
		file_update_time(vmf->vma->vm_file);
	}

	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	if (IS_DAX(inode)) {
		ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops);
	} else {
		if (write_fault)
			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
		else
			ret = filemap_fault(vmf);
	}
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);

	if (write_fault)
		sb_end_pagefault(inode->i_sb);
	return ret;
}

static int
xfs_filemap_fault(
	struct vm_fault		*vmf)
{
	/* DAX can shortcut the normal fault path on write faults! */
	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
			IS_DAX(file_inode(vmf->vma->vm_file)) &&
			(vmf->flags & FAULT_FLAG_WRITE));
}

static int
xfs_filemap_huge_fault(
	struct vm_fault		*vmf,
	enum page_entry_size	pe_size)
{
	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
		return VM_FAULT_FALLBACK;

	/* DAX can shortcut the normal fault path on write faults! */
	return __xfs_filemap_fault(vmf, pe_size,
			(vmf->flags & FAULT_FLAG_WRITE));
}

static int
xfs_filemap_page_mkwrite(
	struct vm_fault		*vmf)
{
	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
}

/*
 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
 * updates on write faults. In reality, it's need to serialise against
 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
 * to ensure we serialise the fault barrier in place.
 */
static int
xfs_filemap_pfn_mkwrite(
	struct vm_fault		*vmf)
{

	struct inode		*inode = file_inode(vmf->vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret = VM_FAULT_NOPAGE;
	loff_t			size;

	trace_xfs_filemap_pfn_mkwrite(ip);

	sb_start_pagefault(inode->i_sb);
	file_update_time(vmf->vma->vm_file);

	/* check if the faulting page hasn't raced with truncate */
	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size)
		ret = VM_FAULT_SIGBUS;
	else if (IS_DAX(inode))
		ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);
	return ret;

}

static const struct vm_operations_struct xfs_file_vm_ops = {
	.fault		= xfs_filemap_fault,
	.huge_fault	= xfs_filemap_huge_fault,
	.map_pages	= filemap_map_pages,
	.page_mkwrite	= xfs_filemap_page_mkwrite,
	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
};

STATIC int
xfs_file_mmap(
	struct file	*filp,
	struct vm_area_struct *vma)
{
	file_accessed(filp);
	vma->vm_ops = &xfs_file_vm_ops;
	if (IS_DAX(file_inode(filp)))
		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
	return 0;
}

const struct file_operations xfs_file_operations = {
	.llseek		= xfs_file_llseek,
	.read_iter	= xfs_file_read_iter,
	.write_iter	= xfs_file_write_iter,
	.splice_read	= generic_file_splice_read,
	.splice_write	= iter_file_splice_write,
	.unlocked_ioctl	= xfs_file_ioctl,
#ifdef CONFIG_COMPAT
	.compat_ioctl	= xfs_file_compat_ioctl,
#endif
	.mmap		= xfs_file_mmap,
	.open		= xfs_file_open,
	.release	= xfs_file_release,
	.fsync		= xfs_file_fsync,
	.get_unmapped_area = thp_get_unmapped_area,
	.fallocate	= xfs_file_fallocate,
	.clone_file_range = xfs_file_clone_range,
	.dedupe_file_range = xfs_file_dedupe_range,
};

const struct file_operations xfs_dir_file_operations = {
	.open		= xfs_dir_open,
	.read		= generic_read_dir,
	.iterate_shared	= xfs_file_readdir,
	.llseek		= generic_file_llseek,
	.unlocked_ioctl	= xfs_file_ioctl,
#ifdef CONFIG_COMPAT
	.compat_ioctl	= xfs_file_compat_ioctl,
#endif
	.fsync		= xfs_dir_fsync,
};