usb4.c 41.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
// SPDX-License-Identifier: GPL-2.0
/*
 * USB4 specific functionality
 *
 * Copyright (C) 2019, Intel Corporation
 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
 *	    Rajmohan Mani <rajmohan.mani@intel.com>
 */

#include <linux/delay.h>
#include <linux/ktime.h>

#include "sb_regs.h"
#include "tb.h"

#define USB4_DATA_DWORDS		16
#define USB4_DATA_RETRIES		3

enum usb4_switch_op {
	USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10,
	USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11,
	USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12,
	USB4_SWITCH_OP_NVM_WRITE = 0x20,
	USB4_SWITCH_OP_NVM_AUTH = 0x21,
	USB4_SWITCH_OP_NVM_READ = 0x22,
	USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23,
	USB4_SWITCH_OP_DROM_READ = 0x24,
	USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25,
};

enum usb4_sb_target {
	USB4_SB_TARGET_ROUTER,
	USB4_SB_TARGET_PARTNER,
	USB4_SB_TARGET_RETIMER,
};

#define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
#define USB4_NVM_READ_OFFSET_SHIFT	2
#define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
#define USB4_NVM_READ_LENGTH_SHIFT	24

#define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
#define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT

#define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
#define USB4_DROM_ADDRESS_SHIFT		2
#define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
#define USB4_DROM_SIZE_SHIFT		15

#define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)

typedef int (*read_block_fn)(void *, unsigned int, void *, size_t);
typedef int (*write_block_fn)(void *, const void *, size_t);

static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
				    u32 value, int timeout_msec)
{
	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);

	do {
		u32 val;
		int ret;

		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
		if (ret)
			return ret;

		if ((val & bit) == value)
			return 0;

		usleep_range(50, 100);
	} while (ktime_before(ktime_get(), timeout));

	return -ETIMEDOUT;
}

static int usb4_switch_op_read_data(struct tb_switch *sw, void *data,
				    size_t dwords)
{
	if (dwords > USB4_DATA_DWORDS)
		return -EINVAL;

	return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
}

static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data,
				     size_t dwords)
{
	if (dwords > USB4_DATA_DWORDS)
		return -EINVAL;

	return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
}

static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata)
{
	return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
}

static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata)
{
	return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
}

static int usb4_do_read_data(u16 address, void *buf, size_t size,
			     read_block_fn read_block, void *read_block_data)
{
	unsigned int retries = USB4_DATA_RETRIES;
	unsigned int offset;

	offset = address & 3;
	address = address & ~3;

	do {
		size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4);
		unsigned int dwaddress, dwords;
		u8 data[USB4_DATA_DWORDS * 4];
		int ret;

		dwaddress = address / 4;
		dwords = ALIGN(nbytes, 4) / 4;

		ret = read_block(read_block_data, dwaddress, data, dwords);
		if (ret) {
			if (ret != -ENODEV && retries--)
				continue;
			return ret;
		}

		memcpy(buf, data + offset, nbytes);

		size -= nbytes;
		address += nbytes;
		buf += nbytes;
	} while (size > 0);

	return 0;
}

static int usb4_do_write_data(unsigned int address, const void *buf, size_t size,
	write_block_fn write_next_block, void *write_block_data)
{
	unsigned int retries = USB4_DATA_RETRIES;
	unsigned int offset;

	offset = address & 3;
	address = address & ~3;

	do {
		u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
		u8 data[USB4_DATA_DWORDS * 4];
		int ret;

		memcpy(data + offset, buf, nbytes);

		ret = write_next_block(write_block_data, data, nbytes / 4);
		if (ret) {
			if (ret == -ETIMEDOUT) {
				if (retries--)
					continue;
				ret = -EIO;
			}
			return ret;
		}

		size -= nbytes;
		address += nbytes;
		buf += nbytes;
	} while (size > 0);

	return 0;
}

static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status)
{
	u32 val;
	int ret;

	val = opcode | ROUTER_CS_26_OV;
	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
	if (ret)
		return ret;

	ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
	if (ret)
		return ret;

	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
	if (ret)
		return ret;

	if (val & ROUTER_CS_26_ONS)
		return -EOPNOTSUPP;

	*status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT;
	return 0;
}

static void usb4_switch_check_wakes(struct tb_switch *sw)
{
	struct tb_port *port;
	bool wakeup = false;
	u32 val;

	if (!device_may_wakeup(&sw->dev))
		return;

	if (tb_route(sw)) {
		if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
			return;

		tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
			  (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
			  (val & ROUTER_CS_6_WOUS) ? "yes" : "no");

		wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
	}

	/* Check for any connected downstream ports for USB4 wake */
	tb_switch_for_each_port(sw, port) {
		if (!tb_port_has_remote(port))
			continue;

		if (tb_port_read(port, &val, TB_CFG_PORT,
				 port->cap_usb4 + PORT_CS_18, 1))
			break;

		tb_port_dbg(port, "USB4 wake: %s\n",
			    (val & PORT_CS_18_WOU4S) ? "yes" : "no");

		if (val & PORT_CS_18_WOU4S)
			wakeup = true;
	}

	if (wakeup)
		pm_wakeup_event(&sw->dev, 0);
}

static bool link_is_usb4(struct tb_port *port)
{
	u32 val;

	if (!port->cap_usb4)
		return false;

	if (tb_port_read(port, &val, TB_CFG_PORT,
			 port->cap_usb4 + PORT_CS_18, 1))
		return false;

	return !(val & PORT_CS_18_TCM);
}

/**
 * usb4_switch_setup() - Additional setup for USB4 device
 * @sw: USB4 router to setup
 *
 * USB4 routers need additional settings in order to enable all the
 * tunneling. This function enables USB and PCIe tunneling if it can be
 * enabled (e.g the parent switch also supports them). If USB tunneling
 * is not available for some reason (like that there is Thunderbolt 3
 * switch upstream) then the internal xHCI controller is enabled
 * instead.
 */
int usb4_switch_setup(struct tb_switch *sw)
{
	struct tb_port *downstream_port;
	struct tb_switch *parent;
	bool tbt3, xhci;
	u32 val = 0;
	int ret;

	usb4_switch_check_wakes(sw);

	if (!tb_route(sw))
		return 0;

	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
	if (ret)
		return ret;

	parent = tb_switch_parent(sw);
	downstream_port = tb_port_at(tb_route(sw), parent);
	sw->link_usb4 = link_is_usb4(downstream_port);
	tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT3");

	xhci = val & ROUTER_CS_6_HCI;
	tbt3 = !(val & ROUTER_CS_6_TNS);

	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");

	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
	if (ret)
		return ret;

	if (sw->link_usb4 && tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
		val |= ROUTER_CS_5_UTO;
		xhci = false;
	}

	/* Only enable PCIe tunneling if the parent router supports it */
	if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
		val |= ROUTER_CS_5_PTO;
		/*
		 * xHCI can be enabled if PCIe tunneling is supported
		 * and the parent does not have any USB3 dowstream
		 * adapters (so we cannot do USB 3.x tunneling).
		 */
		if (xhci)
			val |= ROUTER_CS_5_HCO;
	}

	/* TBT3 supported by the CM */
	val |= ROUTER_CS_5_C3S;
	/* Tunneling configuration is ready now */
	val |= ROUTER_CS_5_CV;

	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
	if (ret)
		return ret;

	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
					ROUTER_CS_6_CR, 50);
}

/**
 * usb4_switch_read_uid() - Read UID from USB4 router
 * @sw: USB4 router
 * @uid: UID is stored here
 *
 * Reads 64-bit UID from USB4 router config space.
 */
int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
{
	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
}

static int usb4_switch_drom_read_block(void *data,
				       unsigned int dwaddress, void *buf,
				       size_t dwords)
{
	struct tb_switch *sw = data;
	u8 status = 0;
	u32 metadata;
	int ret;

	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
		USB4_DROM_ADDRESS_MASK;

	ret = usb4_switch_op_write_metadata(sw, metadata);
	if (ret)
		return ret;

	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status);
	if (ret)
		return ret;

	if (status)
		return -EIO;

	return usb4_switch_op_read_data(sw, buf, dwords);
}

/**
 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
 * @sw: USB4 router
 * @address: Byte address inside DROM to start reading
 * @buf: Buffer where the DROM content is stored
 * @size: Number of bytes to read from DROM
 *
 * Uses USB4 router operations to read router DROM. For devices this
 * should always work but for hosts it may return %-EOPNOTSUPP in which
 * case the host router does not have DROM.
 */
int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
			  size_t size)
{
	return usb4_do_read_data(address, buf, size,
				 usb4_switch_drom_read_block, sw);
}

/**
 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
 * @sw: USB4 router
 *
 * Checks whether conditions are met so that lane bonding can be
 * established with the upstream router. Call only for device routers.
 */
bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
{
	struct tb_port *up;
	int ret;
	u32 val;

	up = tb_upstream_port(sw);
	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
	if (ret)
		return false;

	return !!(val & PORT_CS_18_BE);
}

/**
 * usb4_switch_set_wake() - Enabled/disable wake
 * @sw: USB4 router
 * @flags: Wakeup flags (%0 to disable)
 *
 * Enables/disables router to wake up from sleep.
 */
int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
{
	struct tb_port *port;
	u64 route = tb_route(sw);
	u32 val;
	int ret;

	/*
	 * Enable wakes coming from all USB4 downstream ports (from
	 * child routers). For device routers do this also for the
	 * upstream USB4 port.
	 */
	tb_switch_for_each_port(sw, port) {
		if (!tb_port_is_null(port))
			continue;
		if (!route && tb_is_upstream_port(port))
			continue;
		if (!port->cap_usb4)
			continue;

		ret = tb_port_read(port, &val, TB_CFG_PORT,
				   port->cap_usb4 + PORT_CS_19, 1);
		if (ret)
			return ret;

		val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);

		if (flags & TB_WAKE_ON_CONNECT)
			val |= PORT_CS_19_WOC;
		if (flags & TB_WAKE_ON_DISCONNECT)
			val |= PORT_CS_19_WOD;
		if (flags & TB_WAKE_ON_USB4)
			val |= PORT_CS_19_WOU4;

		ret = tb_port_write(port, &val, TB_CFG_PORT,
				    port->cap_usb4 + PORT_CS_19, 1);
		if (ret)
			return ret;
	}

	/*
	 * Enable wakes from PCIe and USB 3.x on this router. Only
	 * needed for device routers.
	 */
	if (route) {
		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
		if (ret)
			return ret;

		val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU);
		if (flags & TB_WAKE_ON_USB3)
			val |= ROUTER_CS_5_WOU;
		if (flags & TB_WAKE_ON_PCIE)
			val |= ROUTER_CS_5_WOP;

		ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
		if (ret)
			return ret;
	}

	return 0;
}

/**
 * usb4_switch_set_sleep() - Prepare the router to enter sleep
 * @sw: USB4 router
 *
 * Sets sleep bit for the router. Returns when the router sleep ready
 * bit has been asserted.
 */
int usb4_switch_set_sleep(struct tb_switch *sw)
{
	int ret;
	u32 val;

	/* Set sleep bit and wait for sleep ready to be asserted */
	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
	if (ret)
		return ret;

	val |= ROUTER_CS_5_SLP;

	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
	if (ret)
		return ret;

	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
					ROUTER_CS_6_SLPR, 500);
}

/**
 * usb4_switch_nvm_sector_size() - Return router NVM sector size
 * @sw: USB4 router
 *
 * If the router supports NVM operations this function returns the NVM
 * sector size in bytes. If NVM operations are not supported returns
 * %-EOPNOTSUPP.
 */
int usb4_switch_nvm_sector_size(struct tb_switch *sw)
{
	u32 metadata;
	u8 status;
	int ret;

	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status);
	if (ret)
		return ret;

	if (status)
		return status == 0x2 ? -EOPNOTSUPP : -EIO;

	ret = usb4_switch_op_read_metadata(sw, &metadata);
	if (ret)
		return ret;

	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
}

static int usb4_switch_nvm_read_block(void *data,
	unsigned int dwaddress, void *buf, size_t dwords)
{
	struct tb_switch *sw = data;
	u8 status = 0;
	u32 metadata;
	int ret;

	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
		   USB4_NVM_READ_LENGTH_MASK;
	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
		   USB4_NVM_READ_OFFSET_MASK;

	ret = usb4_switch_op_write_metadata(sw, metadata);
	if (ret)
		return ret;

	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status);
	if (ret)
		return ret;

	if (status)
		return -EIO;

	return usb4_switch_op_read_data(sw, buf, dwords);
}

/**
 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
 * @sw: USB4 router
 * @address: Starting address in bytes
 * @buf: Read data is placed here
 * @size: How many bytes to read
 *
 * Reads NVM contents of the router. If NVM is not supported returns
 * %-EOPNOTSUPP.
 */
int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
			 size_t size)
{
	return usb4_do_read_data(address, buf, size,
				 usb4_switch_nvm_read_block, sw);
}

static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
				      unsigned int address)
{
	u32 metadata, dwaddress;
	u8 status = 0;
	int ret;

	dwaddress = address / 4;
	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
		   USB4_NVM_SET_OFFSET_MASK;

	ret = usb4_switch_op_write_metadata(sw, metadata);
	if (ret)
		return ret;

	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status);
	if (ret)
		return ret;

	return status ? -EIO : 0;
}

static int usb4_switch_nvm_write_next_block(void *data, const void *buf,
					    size_t dwords)
{
	struct tb_switch *sw = data;
	u8 status;
	int ret;

	ret = usb4_switch_op_write_data(sw, buf, dwords);
	if (ret)
		return ret;

	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status);
	if (ret)
		return ret;

	return status ? -EIO : 0;
}

/**
 * usb4_switch_nvm_write() - Write to the router NVM
 * @sw: USB4 router
 * @address: Start address where to write in bytes
 * @buf: Pointer to the data to write
 * @size: Size of @buf in bytes
 *
 * Writes @buf to the router NVM using USB4 router operations. If NVM
 * write is not supported returns %-EOPNOTSUPP.
 */
int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
			  const void *buf, size_t size)
{
	int ret;

	ret = usb4_switch_nvm_set_offset(sw, address);
	if (ret)
		return ret;

	return usb4_do_write_data(address, buf, size,
				  usb4_switch_nvm_write_next_block, sw);
}

/**
 * usb4_switch_nvm_authenticate() - Authenticate new NVM
 * @sw: USB4 router
 *
 * After the new NVM has been written via usb4_switch_nvm_write(), this
 * function triggers NVM authentication process. If the authentication
 * is successful the router is power cycled and the new NVM starts
 * running. In case of failure returns negative errno.
 */
int usb4_switch_nvm_authenticate(struct tb_switch *sw)
{
	u8 status = 0;
	int ret;

	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status);
	if (ret)
		return ret;

	switch (status) {
	case 0x0:
		tb_sw_dbg(sw, "NVM authentication successful\n");
		return 0;
	case 0x1:
		return -EINVAL;
	case 0x2:
		return -EAGAIN;
	case 0x3:
		return -EOPNOTSUPP;
	default:
		return -EIO;
	}
}

/**
 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
 * @sw: USB4 router
 * @in: DP IN adapter
 *
 * For DP tunneling this function can be used to query availability of
 * DP IN resource. Returns true if the resource is available for DP
 * tunneling, false otherwise.
 */
bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
	u8 status;
	int ret;

	ret = usb4_switch_op_write_metadata(sw, in->port);
	if (ret)
		return false;

	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status);
	/*
	 * If DP resource allocation is not supported assume it is
	 * always available.
	 */
	if (ret == -EOPNOTSUPP)
		return true;
	else if (ret)
		return false;

	return !status;
}

/**
 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
 * @sw: USB4 router
 * @in: DP IN adapter
 *
 * Allocates DP IN resource for DP tunneling using USB4 router
 * operations. If the resource was allocated returns %0. Otherwise
 * returns negative errno, in particular %-EBUSY if the resource is
 * already allocated.
 */
int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
	u8 status;
	int ret;

	ret = usb4_switch_op_write_metadata(sw, in->port);
	if (ret)
		return ret;

	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status);
	if (ret == -EOPNOTSUPP)
		return 0;
	else if (ret)
		return ret;

	return status ? -EBUSY : 0;
}

/**
 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
 * @sw: USB4 router
 * @in: DP IN adapter
 *
 * Releases the previously allocated DP IN resource.
 */
int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
	u8 status;
	int ret;

	ret = usb4_switch_op_write_metadata(sw, in->port);
	if (ret)
		return ret;

	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status);
	if (ret == -EOPNOTSUPP)
		return 0;
	else if (ret)
		return ret;

	return status ? -EIO : 0;
}

static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
{
	struct tb_port *p;
	int usb4_idx = 0;

	/* Assume port is primary */
	tb_switch_for_each_port(sw, p) {
		if (!tb_port_is_null(p))
			continue;
		if (tb_is_upstream_port(p))
			continue;
		if (!p->link_nr) {
			if (p == port)
				break;
			usb4_idx++;
		}
	}

	return usb4_idx;
}

/**
 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
 * @sw: USB4 router
 * @port: USB4 port
 *
 * USB4 routers have direct mapping between USB4 ports and PCIe
 * downstream adapters where the PCIe topology is extended. This
 * function returns the corresponding downstream PCIe adapter or %NULL
 * if no such mapping was possible.
 */
struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
					  const struct tb_port *port)
{
	int usb4_idx = usb4_port_idx(sw, port);
	struct tb_port *p;
	int pcie_idx = 0;

	/* Find PCIe down port matching usb4_port */
	tb_switch_for_each_port(sw, p) {
		if (!tb_port_is_pcie_down(p))
			continue;

		if (pcie_idx == usb4_idx)
			return p;

		pcie_idx++;
	}

	return NULL;
}

/**
 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
 * @sw: USB4 router
 * @port: USB4 port
 *
 * USB4 routers have direct mapping between USB4 ports and USB 3.x
 * downstream adapters where the USB 3.x topology is extended. This
 * function returns the corresponding downstream USB 3.x adapter or
 * %NULL if no such mapping was possible.
 */
struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
					  const struct tb_port *port)
{
	int usb4_idx = usb4_port_idx(sw, port);
	struct tb_port *p;
	int usb_idx = 0;

	/* Find USB3 down port matching usb4_port */
	tb_switch_for_each_port(sw, p) {
		if (!tb_port_is_usb3_down(p))
			continue;

		if (usb_idx == usb4_idx)
			return p;

		usb_idx++;
	}

	return NULL;
}

/**
 * usb4_port_unlock() - Unlock USB4 downstream port
 * @port: USB4 port to unlock
 *
 * Unlocks USB4 downstream port so that the connection manager can
 * access the router below this port.
 */
int usb4_port_unlock(struct tb_port *port)
{
	int ret;
	u32 val;

	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
	if (ret)
		return ret;

	val &= ~ADP_CS_4_LCK;
	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
}

static int usb4_port_set_configured(struct tb_port *port, bool configured)
{
	int ret;
	u32 val;

	if (!port->cap_usb4)
		return -EINVAL;

	ret = tb_port_read(port, &val, TB_CFG_PORT,
			   port->cap_usb4 + PORT_CS_19, 1);
	if (ret)
		return ret;

	if (configured)
		val |= PORT_CS_19_PC;
	else
		val &= ~PORT_CS_19_PC;

	return tb_port_write(port, &val, TB_CFG_PORT,
			     port->cap_usb4 + PORT_CS_19, 1);
}

/**
 * usb4_port_configure() - Set USB4 port configured
 * @port: USB4 router
 *
 * Sets the USB4 link to be configured for power management purposes.
 */
int usb4_port_configure(struct tb_port *port)
{
	return usb4_port_set_configured(port, true);
}

/**
 * usb4_port_unconfigure() - Set USB4 port unconfigured
 * @port: USB4 router
 *
 * Sets the USB4 link to be unconfigured for power management purposes.
 */
void usb4_port_unconfigure(struct tb_port *port)
{
	usb4_port_set_configured(port, false);
}

static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
{
	int ret;
	u32 val;

	if (!port->cap_usb4)
		return -EINVAL;

	ret = tb_port_read(port, &val, TB_CFG_PORT,
			   port->cap_usb4 + PORT_CS_19, 1);
	if (ret)
		return ret;

	if (configured)
		val |= PORT_CS_19_PID;
	else
		val &= ~PORT_CS_19_PID;

	return tb_port_write(port, &val, TB_CFG_PORT,
			     port->cap_usb4 + PORT_CS_19, 1);
}

/**
 * usb4_port_configure_xdomain() - Configure port for XDomain
 * @port: USB4 port connected to another host
 *
 * Marks the USB4 port as being connected to another host. Returns %0 in
 * success and negative errno in failure.
 */
int usb4_port_configure_xdomain(struct tb_port *port)
{
	return usb4_set_xdomain_configured(port, true);
}

/**
 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
 * @port: USB4 port that was connected to another host
 *
 * Clears USB4 port from being marked as XDomain.
 */
void usb4_port_unconfigure_xdomain(struct tb_port *port)
{
	usb4_set_xdomain_configured(port, false);
}

static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
				  u32 value, int timeout_msec)
{
	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);

	do {
		u32 val;
		int ret;

		ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
		if (ret)
			return ret;

		if ((val & bit) == value)
			return 0;

		usleep_range(50, 100);
	} while (ktime_before(ktime_get(), timeout));

	return -ETIMEDOUT;
}

static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
{
	if (dwords > USB4_DATA_DWORDS)
		return -EINVAL;

	return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
			    dwords);
}

static int usb4_port_write_data(struct tb_port *port, const void *data,
				size_t dwords)
{
	if (dwords > USB4_DATA_DWORDS)
		return -EINVAL;

	return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
			     dwords);
}

static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
			     u8 index, u8 reg, void *buf, u8 size)
{
	size_t dwords = DIV_ROUND_UP(size, 4);
	int ret;
	u32 val;

	if (!port->cap_usb4)
		return -EINVAL;

	val = reg;
	val |= size << PORT_CS_1_LENGTH_SHIFT;
	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
	if (target == USB4_SB_TARGET_RETIMER)
		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
	val |= PORT_CS_1_PND;

	ret = tb_port_write(port, &val, TB_CFG_PORT,
			    port->cap_usb4 + PORT_CS_1, 1);
	if (ret)
		return ret;

	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
				     PORT_CS_1_PND, 0, 500);
	if (ret)
		return ret;

	ret = tb_port_read(port, &val, TB_CFG_PORT,
			    port->cap_usb4 + PORT_CS_1, 1);
	if (ret)
		return ret;

	if (val & PORT_CS_1_NR)
		return -ENODEV;
	if (val & PORT_CS_1_RC)
		return -EIO;

	return buf ? usb4_port_read_data(port, buf, dwords) : 0;
}

static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
			      u8 index, u8 reg, const void *buf, u8 size)
{
	size_t dwords = DIV_ROUND_UP(size, 4);
	int ret;
	u32 val;

	if (!port->cap_usb4)
		return -EINVAL;

	if (buf) {
		ret = usb4_port_write_data(port, buf, dwords);
		if (ret)
			return ret;
	}

	val = reg;
	val |= size << PORT_CS_1_LENGTH_SHIFT;
	val |= PORT_CS_1_WNR_WRITE;
	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
	if (target == USB4_SB_TARGET_RETIMER)
		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
	val |= PORT_CS_1_PND;

	ret = tb_port_write(port, &val, TB_CFG_PORT,
			    port->cap_usb4 + PORT_CS_1, 1);
	if (ret)
		return ret;

	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
				     PORT_CS_1_PND, 0, 500);
	if (ret)
		return ret;

	ret = tb_port_read(port, &val, TB_CFG_PORT,
			    port->cap_usb4 + PORT_CS_1, 1);
	if (ret)
		return ret;

	if (val & PORT_CS_1_NR)
		return -ENODEV;
	if (val & PORT_CS_1_RC)
		return -EIO;

	return 0;
}

static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
			   u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
{
	ktime_t timeout;
	u32 val;
	int ret;

	val = opcode;
	ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
				 sizeof(val));
	if (ret)
		return ret;

	timeout = ktime_add_ms(ktime_get(), timeout_msec);

	do {
		/* Check results */
		ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
					&val, sizeof(val));
		if (ret)
			return ret;

		switch (val) {
		case 0:
			return 0;

		case USB4_SB_OPCODE_ERR:
			return -EAGAIN;

		case USB4_SB_OPCODE_ONS:
			return -EOPNOTSUPP;

		default:
			if (val != opcode)
				return -EIO;
			break;
		}
	} while (ktime_before(ktime_get(), timeout));

	return -ETIMEDOUT;
}

/**
 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
 * @port: USB4 port
 *
 * This forces the USB4 port to send broadcast RT transaction which
 * makes the retimers on the link to assign index to themselves. Returns
 * %0 in case of success and negative errno if there was an error.
 */
int usb4_port_enumerate_retimers(struct tb_port *port)
{
	u32 val;

	val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
				  USB4_SB_OPCODE, &val, sizeof(val));
}

static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
				       enum usb4_sb_opcode opcode,
				       int timeout_msec)
{
	return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
			       timeout_msec);
}

/**
 * usb4_port_retimer_read() - Read from retimer sideband registers
 * @port: USB4 port
 * @index: Retimer index
 * @reg: Sideband register to read
 * @buf: Data from @reg is stored here
 * @size: Number of bytes to read
 *
 * Function reads retimer sideband registers starting from @reg. The
 * retimer is connected to @port at @index. Returns %0 in case of
 * success, and read data is copied to @buf. If there is no retimer
 * present at given @index returns %-ENODEV. In any other failure
 * returns negative errno.
 */
int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
			   u8 size)
{
	return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
				 size);
}

/**
 * usb4_port_retimer_write() - Write to retimer sideband registers
 * @port: USB4 port
 * @index: Retimer index
 * @reg: Sideband register to write
 * @buf: Data that is written starting from @reg
 * @size: Number of bytes to write
 *
 * Writes retimer sideband registers starting from @reg. The retimer is
 * connected to @port at @index. Returns %0 in case of success. If there
 * is no retimer present at given @index returns %-ENODEV. In any other
 * failure returns negative errno.
 */
int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
			    const void *buf, u8 size)
{
	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
				  size);
}

/**
 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
 * @port: USB4 port
 * @index: Retimer index
 *
 * If the retimer at @index is last one (connected directly to the
 * Type-C port) this function returns %1. If it is not returns %0. If
 * the retimer is not present returns %-ENODEV. Otherwise returns
 * negative errno.
 */
int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
{
	u32 metadata;
	int ret;

	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
				   500);
	if (ret)
		return ret;

	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
				     sizeof(metadata));
	return ret ? ret : metadata & 1;
}

/**
 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
 * @port: USB4 port
 * @index: Retimer index
 *
 * Reads NVM sector size (in bytes) of a retimer at @index. This
 * operation can be used to determine whether the retimer supports NVM
 * upgrade for example. Returns sector size in bytes or negative errno
 * in case of error. Specifically returns %-ENODEV if there is no
 * retimer at @index.
 */
int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
{
	u32 metadata;
	int ret;

	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
				   500);
	if (ret)
		return ret;

	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
				     sizeof(metadata));
	return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
}

static int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
					    unsigned int address)
{
	u32 metadata, dwaddress;
	int ret;

	dwaddress = address / 4;
	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
		  USB4_NVM_SET_OFFSET_MASK;

	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
				      sizeof(metadata));
	if (ret)
		return ret;

	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
				    500);
}

struct retimer_info {
	struct tb_port *port;
	u8 index;
};

static int usb4_port_retimer_nvm_write_next_block(void *data, const void *buf,
						  size_t dwords)

{
	const struct retimer_info *info = data;
	struct tb_port *port = info->port;
	u8 index = info->index;
	int ret;

	ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
				      buf, dwords * 4);
	if (ret)
		return ret;

	return usb4_port_retimer_op(port, index,
			USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
}

/**
 * usb4_port_retimer_nvm_write() - Write to retimer NVM
 * @port: USB4 port
 * @index: Retimer index
 * @address: Byte address where to start the write
 * @buf: Data to write
 * @size: Size in bytes how much to write
 *
 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
 * upgrade. Returns %0 if the data was written successfully and negative
 * errno in case of failure. Specifically returns %-ENODEV if there is
 * no retimer at @index.
 */
int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
				const void *buf, size_t size)
{
	struct retimer_info info = { .port = port, .index = index };
	int ret;

	ret = usb4_port_retimer_nvm_set_offset(port, index, address);
	if (ret)
		return ret;

	return usb4_do_write_data(address, buf, size,
			usb4_port_retimer_nvm_write_next_block, &info);
}

/**
 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
 * @port: USB4 port
 * @index: Retimer index
 *
 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
 * this function can be used to trigger the NVM upgrade process. If
 * successful the retimer restarts with the new NVM and may not have the
 * index set so one needs to call usb4_port_enumerate_retimers() to
 * force index to be assigned.
 */
int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
{
	u32 val;

	/*
	 * We need to use the raw operation here because once the
	 * authentication completes the retimer index is not set anymore
	 * so we do not get back the status now.
	 */
	val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
				  USB4_SB_OPCODE, &val, sizeof(val));
}

/**
 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
 * @port: USB4 port
 * @index: Retimer index
 * @status: Raw status code read from metadata
 *
 * This can be called after usb4_port_retimer_nvm_authenticate() and
 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
 *
 * Returns %0 if the authentication status was successfully read. The
 * completion metadata (the result) is then stored into @status. If
 * reading the status fails, returns negative errno.
 */
int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
					      u32 *status)
{
	u32 metadata, val;
	int ret;

	ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
				     sizeof(val));
	if (ret)
		return ret;

	switch (val) {
	case 0:
		*status = 0;
		return 0;

	case USB4_SB_OPCODE_ERR:
		ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
					     &metadata, sizeof(metadata));
		if (ret)
			return ret;

		*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
		return 0;

	case USB4_SB_OPCODE_ONS:
		return -EOPNOTSUPP;

	default:
		return -EIO;
	}
}

static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
					    void *buf, size_t dwords)
{
	const struct retimer_info *info = data;
	struct tb_port *port = info->port;
	u8 index = info->index;
	u32 metadata;
	int ret;

	metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
	if (dwords < USB4_DATA_DWORDS)
		metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;

	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
				      sizeof(metadata));
	if (ret)
		return ret;

	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
	if (ret)
		return ret;

	return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
				      dwords * 4);
}

/**
 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
 * @port: USB4 port
 * @index: Retimer index
 * @address: NVM address (in bytes) to start reading
 * @buf: Data read from NVM is stored here
 * @size: Number of bytes to read
 *
 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
 * read was successful and negative errno in case of failure.
 * Specifically returns %-ENODEV if there is no retimer at @index.
 */
int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
			       unsigned int address, void *buf, size_t size)
{
	struct retimer_info info = { .port = port, .index = index };

	return usb4_do_read_data(address, buf, size,
			usb4_port_retimer_nvm_read_block, &info);
}

/**
 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
 * @port: USB3 adapter port
 *
 * Return maximum supported link rate of a USB3 adapter in Mb/s.
 * Negative errno in case of error.
 */
int usb4_usb3_port_max_link_rate(struct tb_port *port)
{
	int ret, lr;
	u32 val;

	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
		return -EINVAL;

	ret = tb_port_read(port, &val, TB_CFG_PORT,
			   port->cap_adap + ADP_USB3_CS_4, 1);
	if (ret)
		return ret;

	lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
	return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
}

/**
 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
 * @port: USB3 adapter port
 *
 * Return actual established link rate of a USB3 adapter in Mb/s. If the
 * link is not up returns %0 and negative errno in case of failure.
 */
int usb4_usb3_port_actual_link_rate(struct tb_port *port)
{
	int ret, lr;
	u32 val;

	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
		return -EINVAL;

	ret = tb_port_read(port, &val, TB_CFG_PORT,
			   port->cap_adap + ADP_USB3_CS_4, 1);
	if (ret)
		return ret;

	if (!(val & ADP_USB3_CS_4_ULV))
		return 0;

	lr = val & ADP_USB3_CS_4_ALR_MASK;
	return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
}

static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
{
	int ret;
	u32 val;

	if (!tb_port_is_usb3_down(port))
		return -EINVAL;
	if (tb_route(port->sw))
		return -EINVAL;

	ret = tb_port_read(port, &val, TB_CFG_PORT,
			   port->cap_adap + ADP_USB3_CS_2, 1);
	if (ret)
		return ret;

	if (request)
		val |= ADP_USB3_CS_2_CMR;
	else
		val &= ~ADP_USB3_CS_2_CMR;

	ret = tb_port_write(port, &val, TB_CFG_PORT,
			    port->cap_adap + ADP_USB3_CS_2, 1);
	if (ret)
		return ret;

	/*
	 * We can use val here directly as the CMR bit is in the same place
	 * as HCA. Just mask out others.
	 */
	val &= ADP_USB3_CS_2_CMR;
	return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
				      ADP_USB3_CS_1_HCA, val, 1500);
}

static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
{
	return usb4_usb3_port_cm_request(port, true);
}

static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
{
	return usb4_usb3_port_cm_request(port, false);
}

static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
{
	unsigned long uframes;

	uframes = bw * 512UL << scale;
	return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
}

static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
{
	unsigned long uframes;

	/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
	uframes = ((unsigned long)mbps * 1000 *  1000) / 8000;
	return DIV_ROUND_UP(uframes, 512UL << scale);
}

static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
						   int *upstream_bw,
						   int *downstream_bw)
{
	u32 val, bw, scale;
	int ret;

	ret = tb_port_read(port, &val, TB_CFG_PORT,
			   port->cap_adap + ADP_USB3_CS_2, 1);
	if (ret)
		return ret;

	ret = tb_port_read(port, &scale, TB_CFG_PORT,
			   port->cap_adap + ADP_USB3_CS_3, 1);
	if (ret)
		return ret;

	scale &= ADP_USB3_CS_3_SCALE_MASK;

	bw = val & ADP_USB3_CS_2_AUBW_MASK;
	*upstream_bw = usb3_bw_to_mbps(bw, scale);

	bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
	*downstream_bw = usb3_bw_to_mbps(bw, scale);

	return 0;
}

/**
 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
 * @port: USB3 adapter port
 * @upstream_bw: Allocated upstream bandwidth is stored here
 * @downstream_bw: Allocated downstream bandwidth is stored here
 *
 * Stores currently allocated USB3 bandwidth into @upstream_bw and
 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
 * errno in failure.
 */
int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
				       int *downstream_bw)
{
	int ret;

	ret = usb4_usb3_port_set_cm_request(port);
	if (ret)
		return ret;

	ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
						      downstream_bw);
	usb4_usb3_port_clear_cm_request(port);

	return ret;
}

static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
						  int *upstream_bw,
						  int *downstream_bw)
{
	u32 val, bw, scale;
	int ret;

	ret = tb_port_read(port, &val, TB_CFG_PORT,
			   port->cap_adap + ADP_USB3_CS_1, 1);
	if (ret)
		return ret;

	ret = tb_port_read(port, &scale, TB_CFG_PORT,
			   port->cap_adap + ADP_USB3_CS_3, 1);
	if (ret)
		return ret;

	scale &= ADP_USB3_CS_3_SCALE_MASK;

	bw = val & ADP_USB3_CS_1_CUBW_MASK;
	*upstream_bw = usb3_bw_to_mbps(bw, scale);

	bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
	*downstream_bw = usb3_bw_to_mbps(bw, scale);

	return 0;
}

static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
						    int upstream_bw,
						    int downstream_bw)
{
	u32 val, ubw, dbw, scale;
	int ret;

	/* Read the used scale, hardware default is 0 */
	ret = tb_port_read(port, &scale, TB_CFG_PORT,
			   port->cap_adap + ADP_USB3_CS_3, 1);
	if (ret)
		return ret;

	scale &= ADP_USB3_CS_3_SCALE_MASK;
	ubw = mbps_to_usb3_bw(upstream_bw, scale);
	dbw = mbps_to_usb3_bw(downstream_bw, scale);

	ret = tb_port_read(port, &val, TB_CFG_PORT,
			   port->cap_adap + ADP_USB3_CS_2, 1);
	if (ret)
		return ret;

	val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
	val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
	val |= ubw;

	return tb_port_write(port, &val, TB_CFG_PORT,
			     port->cap_adap + ADP_USB3_CS_2, 1);
}

/**
 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
 * @port: USB3 adapter port
 * @upstream_bw: New upstream bandwidth
 * @downstream_bw: New downstream bandwidth
 *
 * This can be used to set how much bandwidth is allocated for the USB3
 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
 * new values programmed to the USB3 adapter allocation registers. If
 * the values are lower than what is currently consumed the allocation
 * is set to what is currently consumed instead (consumed bandwidth
 * cannot be taken away by CM). The actual new values are returned in
 * @upstream_bw and @downstream_bw.
 *
 * Returns %0 in case of success and negative errno if there was a
 * failure.
 */
int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
				      int *downstream_bw)
{
	int ret, consumed_up, consumed_down, allocate_up, allocate_down;

	ret = usb4_usb3_port_set_cm_request(port);
	if (ret)
		return ret;

	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
						     &consumed_down);
	if (ret)
		goto err_request;

	/* Don't allow it go lower than what is consumed */
	allocate_up = max(*upstream_bw, consumed_up);
	allocate_down = max(*downstream_bw, consumed_down);

	ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
						       allocate_down);
	if (ret)
		goto err_request;

	*upstream_bw = allocate_up;
	*downstream_bw = allocate_down;

err_request:
	usb4_usb3_port_clear_cm_request(port);
	return ret;
}

/**
 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
 * @port: USB3 adapter port
 * @upstream_bw: New allocated upstream bandwidth
 * @downstream_bw: New allocated downstream bandwidth
 *
 * Releases USB3 allocated bandwidth down to what is actually consumed.
 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
 *
 * Returns 0% in success and negative errno in case of failure.
 */
int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
				     int *downstream_bw)
{
	int ret, consumed_up, consumed_down;

	ret = usb4_usb3_port_set_cm_request(port);
	if (ret)
		return ret;

	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
						     &consumed_down);
	if (ret)
		goto err_request;

	/*
	 * Always keep 1000 Mb/s to make sure xHCI has at least some
	 * bandwidth available for isochronous traffic.
	 */
	if (consumed_up < 1000)
		consumed_up = 1000;
	if (consumed_down < 1000)
		consumed_down = 1000;

	ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
						       consumed_down);
	if (ret)
		goto err_request;

	*upstream_bw = consumed_up;
	*downstream_bw = consumed_down;

err_request:
	usb4_usb3_port_clear_cm_request(port);
	return ret;
}