mapping.c 18.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
// SPDX-License-Identifier: GPL-2.0
/*
 * arch-independent dma-mapping routines
 *
 * Copyright (c) 2006  SUSE Linux Products GmbH
 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
 */
#include <linux/memblock.h> /* for max_pfn */
#include <linux/acpi.h>
#include <linux/dma-map-ops.h>
#include <linux/export.h>
#include <linux/gfp.h>
#include <linux/of_device.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include "debug.h"
#include "direct.h"

/*
 * Managed DMA API
 */
struct dma_devres {
	size_t		size;
	void		*vaddr;
	dma_addr_t	dma_handle;
	unsigned long	attrs;
};

static void dmam_release(struct device *dev, void *res)
{
	struct dma_devres *this = res;

	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
			this->attrs);
}

static int dmam_match(struct device *dev, void *res, void *match_data)
{
	struct dma_devres *this = res, *match = match_data;

	if (this->vaddr == match->vaddr) {
		WARN_ON(this->size != match->size ||
			this->dma_handle != match->dma_handle);
		return 1;
	}
	return 0;
}

/**
 * dmam_free_coherent - Managed dma_free_coherent()
 * @dev: Device to free coherent memory for
 * @size: Size of allocation
 * @vaddr: Virtual address of the memory to free
 * @dma_handle: DMA handle of the memory to free
 *
 * Managed dma_free_coherent().
 */
void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
			dma_addr_t dma_handle)
{
	struct dma_devres match_data = { size, vaddr, dma_handle };

	dma_free_coherent(dev, size, vaddr, dma_handle);
	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
}
EXPORT_SYMBOL(dmam_free_coherent);

/**
 * dmam_alloc_attrs - Managed dma_alloc_attrs()
 * @dev: Device to allocate non_coherent memory for
 * @size: Size of allocation
 * @dma_handle: Out argument for allocated DMA handle
 * @gfp: Allocation flags
 * @attrs: Flags in the DMA_ATTR_* namespace.
 *
 * Managed dma_alloc_attrs().  Memory allocated using this function will be
 * automatically released on driver detach.
 *
 * RETURNS:
 * Pointer to allocated memory on success, NULL on failure.
 */
void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
		gfp_t gfp, unsigned long attrs)
{
	struct dma_devres *dr;
	void *vaddr;

	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
	if (!dr)
		return NULL;

	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
	if (!vaddr) {
		devres_free(dr);
		return NULL;
	}

	dr->vaddr = vaddr;
	dr->dma_handle = *dma_handle;
	dr->size = size;
	dr->attrs = attrs;

	devres_add(dev, dr);

	return vaddr;
}
EXPORT_SYMBOL(dmam_alloc_attrs);

static bool dma_go_direct(struct device *dev, dma_addr_t mask,
		const struct dma_map_ops *ops)
{
	if (likely(!ops))
		return true;
#ifdef CONFIG_DMA_OPS_BYPASS
	if (dev->dma_ops_bypass)
		return min_not_zero(mask, dev->bus_dma_limit) >=
			    dma_direct_get_required_mask(dev);
#endif
	return false;
}


/*
 * Check if the devices uses a direct mapping for streaming DMA operations.
 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
 * enough.
 */
static inline bool dma_alloc_direct(struct device *dev,
		const struct dma_map_ops *ops)
{
	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
}

static inline bool dma_map_direct(struct device *dev,
		const struct dma_map_ops *ops)
{
	return dma_go_direct(dev, *dev->dma_mask, ops);
}

dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
		size_t offset, size_t size, enum dma_data_direction dir,
		unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	dma_addr_t addr;

	BUG_ON(!valid_dma_direction(dir));

	if (WARN_ON_ONCE(!dev->dma_mask))
		return DMA_MAPPING_ERROR;

	if (dma_map_direct(dev, ops))
		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
	else
		addr = ops->map_page(dev, page, offset, size, dir, attrs);
	debug_dma_map_page(dev, page, offset, size, dir, addr);

	return addr;
}
EXPORT_SYMBOL(dma_map_page_attrs);

void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
		enum dma_data_direction dir, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (dma_map_direct(dev, ops))
		dma_direct_unmap_page(dev, addr, size, dir, attrs);
	else if (ops->unmap_page)
		ops->unmap_page(dev, addr, size, dir, attrs);
	debug_dma_unmap_page(dev, addr, size, dir);
}
EXPORT_SYMBOL(dma_unmap_page_attrs);

/*
 * dma_maps_sg_attrs returns 0 on error and > 0 on success.
 * It should never return a value < 0.
 */
int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	int ents;

	BUG_ON(!valid_dma_direction(dir));

	if (WARN_ON_ONCE(!dev->dma_mask))
		return 0;

	if (dma_map_direct(dev, ops))
		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
	else
		ents = ops->map_sg(dev, sg, nents, dir, attrs);
	BUG_ON(ents < 0);
	debug_dma_map_sg(dev, sg, nents, ents, dir);

	return ents;
}
EXPORT_SYMBOL(dma_map_sg_attrs);

void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
				      int nents, enum dma_data_direction dir,
				      unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	debug_dma_unmap_sg(dev, sg, nents, dir);
	if (dma_map_direct(dev, ops))
		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
	else if (ops->unmap_sg)
		ops->unmap_sg(dev, sg, nents, dir, attrs);
}
EXPORT_SYMBOL(dma_unmap_sg_attrs);

dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	dma_addr_t addr = DMA_MAPPING_ERROR;

	BUG_ON(!valid_dma_direction(dir));

	if (WARN_ON_ONCE(!dev->dma_mask))
		return DMA_MAPPING_ERROR;

	/* Don't allow RAM to be mapped */
	if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
		return DMA_MAPPING_ERROR;

	if (dma_map_direct(dev, ops))
		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
	else if (ops->map_resource)
		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);

	debug_dma_map_resource(dev, phys_addr, size, dir, addr);
	return addr;
}
EXPORT_SYMBOL(dma_map_resource);

void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
		enum dma_data_direction dir, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
		ops->unmap_resource(dev, addr, size, dir, attrs);
	debug_dma_unmap_resource(dev, addr, size, dir);
}
EXPORT_SYMBOL(dma_unmap_resource);

void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
		enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (dma_map_direct(dev, ops))
		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
	else if (ops->sync_single_for_cpu)
		ops->sync_single_for_cpu(dev, addr, size, dir);
	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
}
EXPORT_SYMBOL(dma_sync_single_for_cpu);

void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
		size_t size, enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (dma_map_direct(dev, ops))
		dma_direct_sync_single_for_device(dev, addr, size, dir);
	else if (ops->sync_single_for_device)
		ops->sync_single_for_device(dev, addr, size, dir);
	debug_dma_sync_single_for_device(dev, addr, size, dir);
}
EXPORT_SYMBOL(dma_sync_single_for_device);

void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
		    int nelems, enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (dma_map_direct(dev, ops))
		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
	else if (ops->sync_sg_for_cpu)
		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
}
EXPORT_SYMBOL(dma_sync_sg_for_cpu);

void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
		       int nelems, enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (dma_map_direct(dev, ops))
		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
	else if (ops->sync_sg_for_device)
		ops->sync_sg_for_device(dev, sg, nelems, dir);
	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
}
EXPORT_SYMBOL(dma_sync_sg_for_device);

/*
 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
 * that the intention is to allow exporting memory allocated via the
 * coherent DMA APIs through the dma_buf API, which only accepts a
 * scattertable.  This presents a couple of problems:
 * 1. Not all memory allocated via the coherent DMA APIs is backed by
 *    a struct page
 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
 *    as we will try to flush the memory through a different alias to that
 *    actually being used (and the flushes are redundant.)
 */
int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
		void *cpu_addr, dma_addr_t dma_addr, size_t size,
		unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_alloc_direct(dev, ops))
		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
				size, attrs);
	if (!ops->get_sgtable)
		return -ENXIO;
	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
}
EXPORT_SYMBOL(dma_get_sgtable_attrs);

#ifdef CONFIG_MMU
/*
 * Return the page attributes used for mapping dma_alloc_* memory, either in
 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
 */
pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
{
	if (force_dma_unencrypted(dev))
		prot = pgprot_decrypted(prot);
	if (dev_is_dma_coherent(dev))
		return prot;
#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
	if (attrs & DMA_ATTR_WRITE_COMBINE)
		return pgprot_writecombine(prot);
#endif
	if (attrs & DMA_ATTR_SYS_CACHE_ONLY ||
	    attrs & DMA_ATTR_SYS_CACHE_ONLY_NWA)
		return pgprot_syscached(prot);
	return pgprot_dmacoherent(prot);
}
#endif /* CONFIG_MMU */

/**
 * dma_can_mmap - check if a given device supports dma_mmap_*
 * @dev: device to check
 *
 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
 * map DMA allocations to userspace.
 */
bool dma_can_mmap(struct device *dev)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_alloc_direct(dev, ops))
		return dma_direct_can_mmap(dev);
	return ops->mmap != NULL;
}
EXPORT_SYMBOL_GPL(dma_can_mmap);

/**
 * dma_mmap_attrs - map a coherent DMA allocation into user space
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @vma: vm_area_struct describing requested user mapping
 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
 * @dma_addr: device-view address returned from dma_alloc_attrs
 * @size: size of memory originally requested in dma_alloc_attrs
 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
 *
 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
 * space.  The coherent DMA buffer must not be freed by the driver until the
 * user space mapping has been released.
 */
int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		void *cpu_addr, dma_addr_t dma_addr, size_t size,
		unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_alloc_direct(dev, ops))
		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
				attrs);
	if (!ops->mmap)
		return -ENXIO;
	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
}
EXPORT_SYMBOL(dma_mmap_attrs);

u64 dma_get_required_mask(struct device *dev)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_alloc_direct(dev, ops))
		return dma_direct_get_required_mask(dev);
	if (ops->get_required_mask)
		return ops->get_required_mask(dev);

	/*
	 * We require every DMA ops implementation to at least support a 32-bit
	 * DMA mask (and use bounce buffering if that isn't supported in
	 * hardware).  As the direct mapping code has its own routine to
	 * actually report an optimal mask we default to 32-bit here as that
	 * is the right thing for most IOMMUs, and at least not actively
	 * harmful in general.
	 */
	return DMA_BIT_MASK(32);
}
EXPORT_SYMBOL_GPL(dma_get_required_mask);

void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
		gfp_t flag, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	void *cpu_addr;

	WARN_ON_ONCE(!dev->coherent_dma_mask);

	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
		return cpu_addr;

	/* let the implementation decide on the zone to allocate from: */
	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);

	if (dma_alloc_direct(dev, ops))
		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
	else if (ops->alloc)
		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
	else
		return NULL;

	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
	return cpu_addr;
}
EXPORT_SYMBOL(dma_alloc_attrs);

void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
		dma_addr_t dma_handle, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
		return;
	/*
	 * On non-coherent platforms which implement DMA-coherent buffers via
	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
	 * sleep on some machines, and b) an indication that the driver is
	 * probably misusing the coherent API anyway.
	 */
	WARN_ON(irqs_disabled());

	if (!cpu_addr)
		return;

	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
	if (dma_alloc_direct(dev, ops))
		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
	else if (ops->free)
		ops->free(dev, size, cpu_addr, dma_handle, attrs);
}
EXPORT_SYMBOL(dma_free_attrs);

struct page *dma_alloc_pages(struct device *dev, size_t size,
		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	struct page *page;

	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
		return NULL;
	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
		return NULL;

	size = PAGE_ALIGN(size);
	if (dma_alloc_direct(dev, ops))
		page = dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
	else if (ops->alloc_pages)
		page = ops->alloc_pages(dev, size, dma_handle, dir, gfp);
	else
		return NULL;

	debug_dma_map_page(dev, page, 0, size, dir, *dma_handle);

	return page;
}
EXPORT_SYMBOL_GPL(dma_alloc_pages);

void dma_free_pages(struct device *dev, size_t size, struct page *page,
		dma_addr_t dma_handle, enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	size = PAGE_ALIGN(size);
	debug_dma_unmap_page(dev, dma_handle, size, dir);

	if (dma_alloc_direct(dev, ops))
		dma_direct_free_pages(dev, size, page, dma_handle, dir);
	else if (ops->free_pages)
		ops->free_pages(dev, size, page, dma_handle, dir);
}
EXPORT_SYMBOL_GPL(dma_free_pages);

void *dma_alloc_noncoherent(struct device *dev, size_t size,
		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	void *vaddr;

	if (!ops || !ops->alloc_noncoherent) {
		struct page *page;

		page = dma_alloc_pages(dev, size, dma_handle, dir, gfp);
		if (!page)
			return NULL;
		return page_address(page);
	}

	size = PAGE_ALIGN(size);
	vaddr = ops->alloc_noncoherent(dev, size, dma_handle, dir, gfp);
	if (vaddr)
		debug_dma_map_page(dev, virt_to_page(vaddr), 0, size, dir,
				   *dma_handle);
	return vaddr;
}
EXPORT_SYMBOL_GPL(dma_alloc_noncoherent);

void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
		dma_addr_t dma_handle, enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (!ops || !ops->free_noncoherent) {
		dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir);
		return;
	}

	size = PAGE_ALIGN(size);
	debug_dma_unmap_page(dev, dma_handle, size, dir);
	ops->free_noncoherent(dev, size, vaddr, dma_handle, dir);
}
EXPORT_SYMBOL_GPL(dma_free_noncoherent);

int dma_supported(struct device *dev, u64 mask)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	/*
	 * ->dma_supported sets the bypass flag, so we must always call
	 * into the method here unless the device is truly direct mapped.
	 */
	if (!ops)
		return dma_direct_supported(dev, mask);
	if (!ops->dma_supported)
		return 1;
	return ops->dma_supported(dev, mask);
}
EXPORT_SYMBOL(dma_supported);

#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
void arch_dma_set_mask(struct device *dev, u64 mask);
#else
#define arch_dma_set_mask(dev, mask)	do { } while (0)
#endif

int dma_set_mask(struct device *dev, u64 mask)
{
	/*
	 * Truncate the mask to the actually supported dma_addr_t width to
	 * avoid generating unsupportable addresses.
	 */
	mask = (dma_addr_t)mask;

	if (!dev->dma_mask || !dma_supported(dev, mask))
		return -EIO;

	arch_dma_set_mask(dev, mask);
	*dev->dma_mask = mask;
	return 0;
}
EXPORT_SYMBOL(dma_set_mask);

#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
int dma_set_coherent_mask(struct device *dev, u64 mask)
{
	/*
	 * Truncate the mask to the actually supported dma_addr_t width to
	 * avoid generating unsupportable addresses.
	 */
	mask = (dma_addr_t)mask;

	if (!dma_supported(dev, mask))
		return -EIO;

	dev->coherent_dma_mask = mask;
	return 0;
}
EXPORT_SYMBOL(dma_set_coherent_mask);
#endif

size_t dma_max_mapping_size(struct device *dev)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	size_t size = SIZE_MAX;

	if (dma_map_direct(dev, ops))
		size = dma_direct_max_mapping_size(dev);
	else if (ops && ops->max_mapping_size)
		size = ops->max_mapping_size(dev);

	return size;
}
EXPORT_SYMBOL_GPL(dma_max_mapping_size);

bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_map_direct(dev, ops))
		return dma_direct_need_sync(dev, dma_addr);
	return ops->sync_single_for_cpu || ops->sync_single_for_device;
}
EXPORT_SYMBOL_GPL(dma_need_sync);

unsigned long dma_get_merge_boundary(struct device *dev)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (!ops || !ops->get_merge_boundary)
		return 0;	/* can't merge */

	return ops->get_merge_boundary(dev);
}
EXPORT_SYMBOL_GPL(dma_get_merge_boundary);