fork.c 74.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
// SPDX-License-Identifier: GPL-2.0-only
/*
 *  linux/kernel/fork.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

/*
 *  'fork.c' contains the help-routines for the 'fork' system call
 * (see also entry.S and others).
 * Fork is rather simple, once you get the hang of it, but the memory
 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
 */

#include <linux/anon_inodes.h>
#include <linux/slab.h>
#include <linux/sched/autogroup.h>
#include <linux/sched/mm.h>
#include <linux/sched/coredump.h>
#include <linux/sched/user.h>
#include <linux/sched/numa_balancing.h>
#include <linux/sched/stat.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/sched/cputime.h>
#include <linux/seq_file.h>
#include <linux/rtmutex.h>
#include <linux/init.h>
#include <linux/unistd.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/completion.h>
#include <linux/personality.h>
#include <linux/mempolicy.h>
#include <linux/sem.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/iocontext.h>
#include <linux/key.h>
#include <linux/binfmts.h>
#include <linux/mman.h>
#include <linux/mmu_notifier.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/vmacache.h>
#include <linux/nsproxy.h>
#include <linux/capability.h>
#include <linux/cpu.h>
#include <linux/cgroup.h>
#include <linux/security.h>
#include <linux/hugetlb.h>
#include <linux/seccomp.h>
#include <linux/swap.h>
#include <linux/syscalls.h>
#include <linux/jiffies.h>
#include <linux/futex.h>
#include <linux/compat.h>
#include <linux/kthread.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/rcupdate.h>
#include <linux/ptrace.h>
#include <linux/mount.h>
#include <linux/audit.h>
#include <linux/memcontrol.h>
#include <linux/ftrace.h>
#include <linux/proc_fs.h>
#include <linux/profile.h>
#include <linux/rmap.h>
#include <linux/ksm.h>
#include <linux/acct.h>
#include <linux/userfaultfd_k.h>
#include <linux/tsacct_kern.h>
#include <linux/cn_proc.h>
#include <linux/freezer.h>
#include <linux/delayacct.h>
#include <linux/taskstats_kern.h>
#include <linux/random.h>
#include <linux/tty.h>
#include <linux/blkdev.h>
#include <linux/fs_struct.h>
#include <linux/magic.h>
#include <linux/perf_event.h>
#include <linux/posix-timers.h>
#include <linux/user-return-notifier.h>
#include <linux/oom.h>
#include <linux/khugepaged.h>
#include <linux/signalfd.h>
#include <linux/uprobes.h>
#include <linux/aio.h>
#include <linux/compiler.h>
#include <linux/sysctl.h>
#include <linux/kcov.h>
#include <linux/livepatch.h>
#include <linux/thread_info.h>
#include <linux/stackleak.h>
#include <linux/kasan.h>
#include <linux/scs.h>
#include <linux/io_uring.h>
#include <linux/cpufreq_times.h>

#include <asm/pgalloc.h>
#include <linux/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>

#include <trace/events/sched.h>

#define CREATE_TRACE_POINTS
#include <trace/events/task.h>

/*
 * Minimum number of threads to boot the kernel
 */
#define MIN_THREADS 20

/*
 * Maximum number of threads
 */
#define MAX_THREADS FUTEX_TID_MASK

/*
 * Protected counters by write_lock_irq(&tasklist_lock)
 */
unsigned long total_forks;	/* Handle normal Linux uptimes. */
int nr_threads;			/* The idle threads do not count.. */

static int max_threads;		/* tunable limit on nr_threads */

#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)

static const char * const resident_page_types[] = {
	NAMED_ARRAY_INDEX(MM_FILEPAGES),
	NAMED_ARRAY_INDEX(MM_ANONPAGES),
	NAMED_ARRAY_INDEX(MM_SWAPENTS),
	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
};

DEFINE_PER_CPU(unsigned long, process_counts) = 0;

__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
EXPORT_SYMBOL_GPL(tasklist_lock);

#ifdef CONFIG_PROVE_RCU
int lockdep_tasklist_lock_is_held(void)
{
	return lockdep_is_held(&tasklist_lock);
}
EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
#endif /* #ifdef CONFIG_PROVE_RCU */

int nr_processes(void)
{
	int cpu;
	int total = 0;

	for_each_possible_cpu(cpu)
		total += per_cpu(process_counts, cpu);

	return total;
}

void __weak arch_release_task_struct(struct task_struct *tsk)
{
}

#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
static struct kmem_cache *task_struct_cachep;

static inline struct task_struct *alloc_task_struct_node(int node)
{
	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
}

static inline void free_task_struct(struct task_struct *tsk)
{
	kmem_cache_free(task_struct_cachep, tsk);
}
#endif

#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR

/*
 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 * kmemcache based allocator.
 */
# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)

#ifdef CONFIG_VMAP_STACK
/*
 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 * flush.  Try to minimize the number of calls by caching stacks.
 */
#define NR_CACHED_STACKS 2
static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);

static int free_vm_stack_cache(unsigned int cpu)
{
	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
	int i;

	for (i = 0; i < NR_CACHED_STACKS; i++) {
		struct vm_struct *vm_stack = cached_vm_stacks[i];

		if (!vm_stack)
			continue;

		vfree(vm_stack->addr);
		cached_vm_stacks[i] = NULL;
	}

	return 0;
}
#endif

static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
{
#ifdef CONFIG_VMAP_STACK
	void *stack;
	int i;

	for (i = 0; i < NR_CACHED_STACKS; i++) {
		struct vm_struct *s;

		s = this_cpu_xchg(cached_stacks[i], NULL);

		if (!s)
			continue;

		/* Clear the KASAN shadow of the stack. */
		kasan_unpoison_shadow(s->addr, THREAD_SIZE);

		/* Clear stale pointers from reused stack. */
		memset(s->addr, 0, THREAD_SIZE);

		tsk->stack_vm_area = s;
		tsk->stack = s->addr;
		return s->addr;
	}

	/*
	 * Allocated stacks are cached and later reused by new threads,
	 * so memcg accounting is performed manually on assigning/releasing
	 * stacks to tasks. Drop __GFP_ACCOUNT.
	 */
	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
				     VMALLOC_START, VMALLOC_END,
				     THREADINFO_GFP & ~__GFP_ACCOUNT,
				     PAGE_KERNEL,
				     0, node, __builtin_return_address(0));

	/*
	 * We can't call find_vm_area() in interrupt context, and
	 * free_thread_stack() can be called in interrupt context,
	 * so cache the vm_struct.
	 */
	if (stack) {
		tsk->stack_vm_area = find_vm_area(stack);
		tsk->stack = stack;
	}
	return stack;
#else
	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
					     THREAD_SIZE_ORDER);

	if (likely(page)) {
		tsk->stack = kasan_reset_tag(page_address(page));
		return tsk->stack;
	}
	return NULL;
#endif
}

static inline void free_thread_stack(struct task_struct *tsk)
{
#ifdef CONFIG_VMAP_STACK
	struct vm_struct *vm = task_stack_vm_area(tsk);

	if (vm) {
		int i;

		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
			memcg_kmem_uncharge_page(vm->pages[i], 0);

		for (i = 0; i < NR_CACHED_STACKS; i++) {
			if (this_cpu_cmpxchg(cached_stacks[i],
					NULL, tsk->stack_vm_area) != NULL)
				continue;

			return;
		}

		vfree_atomic(tsk->stack);
		return;
	}
#endif

	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
}
# else
static struct kmem_cache *thread_stack_cache;

static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
						  int node)
{
	unsigned long *stack;
	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
	stack = kasan_reset_tag(stack);
	tsk->stack = stack;
	return stack;
}

static void free_thread_stack(struct task_struct *tsk)
{
	kmem_cache_free(thread_stack_cache, tsk->stack);
}

void thread_stack_cache_init(void)
{
	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
					THREAD_SIZE, THREAD_SIZE, 0, 0,
					THREAD_SIZE, NULL);
	BUG_ON(thread_stack_cache == NULL);
}
# endif
#endif

/* SLAB cache for signal_struct structures (tsk->signal) */
static struct kmem_cache *signal_cachep;

/* SLAB cache for sighand_struct structures (tsk->sighand) */
struct kmem_cache *sighand_cachep;

/* SLAB cache for files_struct structures (tsk->files) */
struct kmem_cache *files_cachep;

/* SLAB cache for fs_struct structures (tsk->fs) */
struct kmem_cache *fs_cachep;

/* SLAB cache for vm_area_struct structures */
static struct kmem_cache *vm_area_cachep;

/* SLAB cache for mm_struct structures (tsk->mm) */
static struct kmem_cache *mm_cachep;

struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
	if (vma)
		vma_init(vma, mm);
	return vma;
}

struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
{
	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);

	if (new) {
		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
		/*
		 * orig->shared.rb may be modified concurrently, but the clone
		 * will be reinitialized.
		 */
		*new = data_race(*orig);
		INIT_LIST_HEAD(&new->anon_vma_chain);
		new->vm_next = new->vm_prev = NULL;
	}
	return new;
}

void vm_area_free(struct vm_area_struct *vma)
{
	kmem_cache_free(vm_area_cachep, vma);
}

static void account_kernel_stack(struct task_struct *tsk, int account)
{
	void *stack = task_stack_page(tsk);
	struct vm_struct *vm = task_stack_vm_area(tsk);


	/* All stack pages are in the same node. */
	if (vm)
		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
				      account * (THREAD_SIZE / 1024));
	else
		mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
				      account * (THREAD_SIZE / 1024));
}

static int memcg_charge_kernel_stack(struct task_struct *tsk)
{
#ifdef CONFIG_VMAP_STACK
	struct vm_struct *vm = task_stack_vm_area(tsk);
	int ret;

	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);

	if (vm) {
		int i;

		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);

		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
			/*
			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
			 * pointer is NULL, and memcg_kmem_uncharge_page() in
			 * free_thread_stack() will ignore this page.
			 */
			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
						     0);
			if (ret)
				return ret;
		}
	}
#endif
	return 0;
}

static void release_task_stack(struct task_struct *tsk)
{
	if (WARN_ON(tsk->state != TASK_DEAD))
		return;  /* Better to leak the stack than to free prematurely */

	account_kernel_stack(tsk, -1);
	free_thread_stack(tsk);
	tsk->stack = NULL;
#ifdef CONFIG_VMAP_STACK
	tsk->stack_vm_area = NULL;
#endif
}

#ifdef CONFIG_THREAD_INFO_IN_TASK
void put_task_stack(struct task_struct *tsk)
{
	if (refcount_dec_and_test(&tsk->stack_refcount))
		release_task_stack(tsk);
}
#endif

void free_task(struct task_struct *tsk)
{
	cpufreq_task_times_exit(tsk);
	scs_release(tsk);

#ifndef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * The task is finally done with both the stack and thread_info,
	 * so free both.
	 */
	release_task_stack(tsk);
#else
	/*
	 * If the task had a separate stack allocation, it should be gone
	 * by now.
	 */
	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
#endif
	rt_mutex_debug_task_free(tsk);
	ftrace_graph_exit_task(tsk);
	arch_release_task_struct(tsk);
	if (tsk->flags & PF_KTHREAD)
		free_kthread_struct(tsk);
	free_task_struct(tsk);
}
EXPORT_SYMBOL(free_task);

#ifdef CONFIG_MMU
static __latent_entropy int dup_mmap(struct mm_struct *mm,
					struct mm_struct *oldmm)
{
	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
	struct rb_node **rb_link, *rb_parent;
	int retval;
	unsigned long charge;
	LIST_HEAD(uf);

	uprobe_start_dup_mmap();
	if (mmap_write_lock_killable(oldmm)) {
		retval = -EINTR;
		goto fail_uprobe_end;
	}
	flush_cache_dup_mm(oldmm);
	uprobe_dup_mmap(oldmm, mm);
	/*
	 * Not linked in yet - no deadlock potential:
	 */
	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);

	/* No ordering required: file already has been exposed. */
	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));

	mm->total_vm = oldmm->total_vm;
	mm->data_vm = oldmm->data_vm;
	mm->exec_vm = oldmm->exec_vm;
	mm->stack_vm = oldmm->stack_vm;

	rb_link = &mm->mm_rb.rb_node;
	rb_parent = NULL;
	pprev = &mm->mmap;
	retval = ksm_fork(mm, oldmm);
	if (retval)
		goto out;
	retval = khugepaged_fork(mm, oldmm);
	if (retval)
		goto out;

	prev = NULL;
	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
		struct file *file;

		if (mpnt->vm_flags & VM_DONTCOPY) {
			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
			continue;
		}
		charge = 0;
		/*
		 * Don't duplicate many vmas if we've been oom-killed (for
		 * example)
		 */
		if (fatal_signal_pending(current)) {
			retval = -EINTR;
			goto out;
		}
		if (mpnt->vm_flags & VM_ACCOUNT) {
			unsigned long len = vma_pages(mpnt);

			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
				goto fail_nomem;
			charge = len;
		}
		tmp = vm_area_dup(mpnt);
		if (!tmp)
			goto fail_nomem;
		retval = vma_dup_policy(mpnt, tmp);
		if (retval)
			goto fail_nomem_policy;
		tmp->vm_mm = mm;
		retval = dup_userfaultfd(tmp, &uf);
		if (retval)
			goto fail_nomem_anon_vma_fork;
		if (tmp->vm_flags & VM_WIPEONFORK) {
			/*
			 * VM_WIPEONFORK gets a clean slate in the child.
			 * Don't prepare anon_vma until fault since we don't
			 * copy page for current vma.
			 */
			tmp->anon_vma = NULL;
		} else if (anon_vma_fork(tmp, mpnt))
			goto fail_nomem_anon_vma_fork;
		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
		file = tmp->vm_file;
		if (file) {
			struct inode *inode = file_inode(file);
			struct address_space *mapping = file->f_mapping;

			get_file(file);
			if (tmp->vm_flags & VM_DENYWRITE)
				put_write_access(inode);
			i_mmap_lock_write(mapping);
			if (tmp->vm_flags & VM_SHARED)
				mapping_allow_writable(mapping);
			flush_dcache_mmap_lock(mapping);
			/* insert tmp into the share list, just after mpnt */
			vma_interval_tree_insert_after(tmp, mpnt,
					&mapping->i_mmap);
			flush_dcache_mmap_unlock(mapping);
			i_mmap_unlock_write(mapping);
		}

		/*
		 * Clear hugetlb-related page reserves for children. This only
		 * affects MAP_PRIVATE mappings. Faults generated by the child
		 * are not guaranteed to succeed, even if read-only
		 */
		if (is_vm_hugetlb_page(tmp))
			reset_vma_resv_huge_pages(tmp);

		/*
		 * Link in the new vma and copy the page table entries.
		 */
		*pprev = tmp;
		pprev = &tmp->vm_next;
		tmp->vm_prev = prev;
		prev = tmp;

		__vma_link_rb(mm, tmp, rb_link, rb_parent);
		rb_link = &tmp->vm_rb.rb_right;
		rb_parent = &tmp->vm_rb;

		mm->map_count++;
		if (!(tmp->vm_flags & VM_WIPEONFORK))
			retval = copy_page_range(tmp, mpnt);

		if (tmp->vm_ops && tmp->vm_ops->open)
			tmp->vm_ops->open(tmp);

		if (retval)
			goto out;
	}
	/* a new mm has just been created */
	retval = arch_dup_mmap(oldmm, mm);
out:
	mmap_write_unlock(mm);
	flush_tlb_mm(oldmm);
	mmap_write_unlock(oldmm);
	dup_userfaultfd_complete(&uf);
fail_uprobe_end:
	uprobe_end_dup_mmap();
	return retval;
fail_nomem_anon_vma_fork:
	mpol_put(vma_policy(tmp));
fail_nomem_policy:
	vm_area_free(tmp);
fail_nomem:
	retval = -ENOMEM;
	vm_unacct_memory(charge);
	goto out;
}

static inline int mm_alloc_pgd(struct mm_struct *mm)
{
	mm->pgd = pgd_alloc(mm);
	if (unlikely(!mm->pgd))
		return -ENOMEM;
	return 0;
}

static inline void mm_free_pgd(struct mm_struct *mm)
{
	pgd_free(mm, mm->pgd);
}
#else
static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
{
	mmap_write_lock(oldmm);
	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
	mmap_write_unlock(oldmm);
	return 0;
}
#define mm_alloc_pgd(mm)	(0)
#define mm_free_pgd(mm)
#endif /* CONFIG_MMU */

static void check_mm(struct mm_struct *mm)
{
	int i;

	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
			 "Please make sure 'struct resident_page_types[]' is updated as well");

	for (i = 0; i < NR_MM_COUNTERS; i++) {
		long x = atomic_long_read(&mm->rss_stat.count[i]);

		if (unlikely(x))
			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
				 mm, resident_page_types[i], x);
	}

	if (mm_pgtables_bytes(mm))
		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
				mm_pgtables_bytes(mm));

#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
#endif
}

#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))

/*
 * Called when the last reference to the mm
 * is dropped: either by a lazy thread or by
 * mmput. Free the page directory and the mm.
 */
void __mmdrop(struct mm_struct *mm)
{
	BUG_ON(mm == &init_mm);
	WARN_ON_ONCE(mm == current->mm);
	WARN_ON_ONCE(mm == current->active_mm);
	mm_free_pgd(mm);
	destroy_context(mm);
	mmu_notifier_subscriptions_destroy(mm);
	check_mm(mm);
	put_user_ns(mm->user_ns);
	free_mm(mm);
}
EXPORT_SYMBOL_GPL(__mmdrop);

static void mmdrop_async_fn(struct work_struct *work)
{
	struct mm_struct *mm;

	mm = container_of(work, struct mm_struct, async_put_work);
	__mmdrop(mm);
}

static void mmdrop_async(struct mm_struct *mm)
{
	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
		schedule_work(&mm->async_put_work);
	}
}

static inline void free_signal_struct(struct signal_struct *sig)
{
	taskstats_tgid_free(sig);
	sched_autogroup_exit(sig);
	/*
	 * __mmdrop is not safe to call from softirq context on x86 due to
	 * pgd_dtor so postpone it to the async context
	 */
	if (sig->oom_mm)
		mmdrop_async(sig->oom_mm);
	kmem_cache_free(signal_cachep, sig);
}

static inline void put_signal_struct(struct signal_struct *sig)
{
	if (refcount_dec_and_test(&sig->sigcnt))
		free_signal_struct(sig);
}

void __put_task_struct(struct task_struct *tsk)
{
	WARN_ON(!tsk->exit_state);
	WARN_ON(refcount_read(&tsk->usage));
	WARN_ON(tsk == current);

	io_uring_free(tsk);
	cgroup_free(tsk);
	task_numa_free(tsk, true);
	security_task_free(tsk);
	exit_creds(tsk);
	delayacct_tsk_free(tsk);
	put_signal_struct(tsk->signal);

	if (!profile_handoff_task(tsk))
		free_task(tsk);
}
EXPORT_SYMBOL_GPL(__put_task_struct);

void __init __weak arch_task_cache_init(void) { }

/*
 * set_max_threads
 */
static void set_max_threads(unsigned int max_threads_suggested)
{
	u64 threads;
	unsigned long nr_pages = totalram_pages();

	/*
	 * The number of threads shall be limited such that the thread
	 * structures may only consume a small part of the available memory.
	 */
	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
		threads = MAX_THREADS;
	else
		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
				    (u64) THREAD_SIZE * 8UL);

	if (threads > max_threads_suggested)
		threads = max_threads_suggested;

	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
}

#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
/* Initialized by the architecture: */
int arch_task_struct_size __read_mostly;
#endif

#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
{
	/* Fetch thread_struct whitelist for the architecture. */
	arch_thread_struct_whitelist(offset, size);

	/*
	 * Handle zero-sized whitelist or empty thread_struct, otherwise
	 * adjust offset to position of thread_struct in task_struct.
	 */
	if (unlikely(*size == 0))
		*offset = 0;
	else
		*offset += offsetof(struct task_struct, thread);
}
#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */

void __init fork_init(void)
{
	int i;
#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
#ifndef ARCH_MIN_TASKALIGN
#define ARCH_MIN_TASKALIGN	0
#endif
	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
	unsigned long useroffset, usersize;

	/* create a slab on which task_structs can be allocated */
	task_struct_whitelist(&useroffset, &usersize);
	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
			arch_task_struct_size, align,
			SLAB_PANIC|SLAB_ACCOUNT,
			useroffset, usersize, NULL);
#endif

	/* do the arch specific task caches init */
	arch_task_cache_init();

	set_max_threads(MAX_THREADS);

	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
	init_task.signal->rlim[RLIMIT_SIGPENDING] =
		init_task.signal->rlim[RLIMIT_NPROC];

	for (i = 0; i < UCOUNT_COUNTS; i++) {
		init_user_ns.ucount_max[i] = max_threads/2;
	}

#ifdef CONFIG_VMAP_STACK
	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
			  NULL, free_vm_stack_cache);
#endif

	scs_init();

	lockdep_init_task(&init_task);
	uprobes_init();
}

int __weak arch_dup_task_struct(struct task_struct *dst,
					       struct task_struct *src)
{
	*dst = *src;
	return 0;
}

void set_task_stack_end_magic(struct task_struct *tsk)
{
	unsigned long *stackend;

	stackend = end_of_stack(tsk);
	*stackend = STACK_END_MAGIC;	/* for overflow detection */
}

static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
{
	struct task_struct *tsk;
	unsigned long *stack;
	struct vm_struct *stack_vm_area __maybe_unused;
	int err;

	if (node == NUMA_NO_NODE)
		node = tsk_fork_get_node(orig);
	tsk = alloc_task_struct_node(node);
	if (!tsk)
		return NULL;

	stack = alloc_thread_stack_node(tsk, node);
	if (!stack)
		goto free_tsk;

	if (memcg_charge_kernel_stack(tsk))
		goto free_stack;

	stack_vm_area = task_stack_vm_area(tsk);

	err = arch_dup_task_struct(tsk, orig);

	/*
	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
	 * sure they're properly initialized before using any stack-related
	 * functions again.
	 */
	tsk->stack = stack;
#ifdef CONFIG_VMAP_STACK
	tsk->stack_vm_area = stack_vm_area;
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
	refcount_set(&tsk->stack_refcount, 1);
#endif

	if (err)
		goto free_stack;

	err = scs_prepare(tsk, node);
	if (err)
		goto free_stack;

#ifdef CONFIG_SECCOMP
	/*
	 * We must handle setting up seccomp filters once we're under
	 * the sighand lock in case orig has changed between now and
	 * then. Until then, filter must be NULL to avoid messing up
	 * the usage counts on the error path calling free_task.
	 */
	tsk->seccomp.filter = NULL;
#endif

	setup_thread_stack(tsk, orig);
	clear_user_return_notifier(tsk);
	clear_tsk_need_resched(tsk);
	set_task_stack_end_magic(tsk);

#ifdef CONFIG_STACKPROTECTOR
	tsk->stack_canary = get_random_canary();
#endif
	if (orig->cpus_ptr == &orig->cpus_mask)
		tsk->cpus_ptr = &tsk->cpus_mask;

	/*
	 * One for the user space visible state that goes away when reaped.
	 * One for the scheduler.
	 */
	refcount_set(&tsk->rcu_users, 2);
	/* One for the rcu users */
	refcount_set(&tsk->usage, 1);
#ifdef CONFIG_BLK_DEV_IO_TRACE
	tsk->btrace_seq = 0;
#endif
	tsk->splice_pipe = NULL;
	tsk->task_frag.page = NULL;
	tsk->wake_q.next = NULL;

	account_kernel_stack(tsk, 1);

	kcov_task_init(tsk);

#ifdef CONFIG_FAULT_INJECTION
	tsk->fail_nth = 0;
#endif

#ifdef CONFIG_BLK_CGROUP
	tsk->throttle_queue = NULL;
	tsk->use_memdelay = 0;
#endif

#ifdef CONFIG_MEMCG
	tsk->active_memcg = NULL;
#endif
	return tsk;

free_stack:
	free_thread_stack(tsk);
free_tsk:
	free_task_struct(tsk);
	return NULL;
}

__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);

static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;

static int __init coredump_filter_setup(char *s)
{
	default_dump_filter =
		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
		MMF_DUMP_FILTER_MASK;
	return 1;
}

__setup("coredump_filter=", coredump_filter_setup);

#include <linux/init_task.h>

static void mm_init_aio(struct mm_struct *mm)
{
#ifdef CONFIG_AIO
	spin_lock_init(&mm->ioctx_lock);
	mm->ioctx_table = NULL;
#endif
}

static __always_inline void mm_clear_owner(struct mm_struct *mm,
					   struct task_struct *p)
{
#ifdef CONFIG_MEMCG
	if (mm->owner == p)
		WRITE_ONCE(mm->owner, NULL);
#endif
}

static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
{
#ifdef CONFIG_MEMCG
	mm->owner = p;
#endif
}

static void mm_init_uprobes_state(struct mm_struct *mm)
{
#ifdef CONFIG_UPROBES
	mm->uprobes_state.xol_area = NULL;
#endif
}

static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
	struct user_namespace *user_ns)
{
	mm->mmap = NULL;
	mm->mm_rb = RB_ROOT;
	mm->vmacache_seqnum = 0;
	atomic_set(&mm->mm_users, 1);
	atomic_set(&mm->mm_count, 1);
	seqcount_init(&mm->write_protect_seq);
	mmap_init_lock(mm);
	INIT_LIST_HEAD(&mm->mmlist);
	mm->core_state = NULL;
	mm_pgtables_bytes_init(mm);
	mm->map_count = 0;
	mm->locked_vm = 0;
	atomic_set(&mm->has_pinned, 0);
	atomic64_set(&mm->pinned_vm, 0);
	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
	spin_lock_init(&mm->page_table_lock);
	spin_lock_init(&mm->arg_lock);
	mm_init_cpumask(mm);
	mm_init_aio(mm);
	mm_init_owner(mm, p);
	RCU_INIT_POINTER(mm->exe_file, NULL);
	mmu_notifier_subscriptions_init(mm);
	init_tlb_flush_pending(mm);
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
	mm->pmd_huge_pte = NULL;
#endif
	mm_init_uprobes_state(mm);

	if (current->mm) {
		mm->flags = current->mm->flags & MMF_INIT_MASK;
		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
	} else {
		mm->flags = default_dump_filter;
		mm->def_flags = 0;
	}

	if (mm_alloc_pgd(mm))
		goto fail_nopgd;

	if (init_new_context(p, mm))
		goto fail_nocontext;

	mm->user_ns = get_user_ns(user_ns);
	return mm;

fail_nocontext:
	mm_free_pgd(mm);
fail_nopgd:
	free_mm(mm);
	return NULL;
}

/*
 * Allocate and initialize an mm_struct.
 */
struct mm_struct *mm_alloc(void)
{
	struct mm_struct *mm;

	mm = allocate_mm();
	if (!mm)
		return NULL;

	memset(mm, 0, sizeof(*mm));
	return mm_init(mm, current, current_user_ns());
}

static inline void __mmput(struct mm_struct *mm)
{
	VM_BUG_ON(atomic_read(&mm->mm_users));

	uprobe_clear_state(mm);
	exit_aio(mm);
	ksm_exit(mm);
	khugepaged_exit(mm); /* must run before exit_mmap */
	exit_mmap(mm);
	mm_put_huge_zero_page(mm);
	set_mm_exe_file(mm, NULL);
	if (!list_empty(&mm->mmlist)) {
		spin_lock(&mmlist_lock);
		list_del(&mm->mmlist);
		spin_unlock(&mmlist_lock);
	}
	if (mm->binfmt)
		module_put(mm->binfmt->module);
	mmdrop(mm);
}

/*
 * Decrement the use count and release all resources for an mm.
 */
void mmput(struct mm_struct *mm)
{
	might_sleep();

	if (atomic_dec_and_test(&mm->mm_users))
		__mmput(mm);
}
EXPORT_SYMBOL_GPL(mmput);

#ifdef CONFIG_MMU
static void mmput_async_fn(struct work_struct *work)
{
	struct mm_struct *mm = container_of(work, struct mm_struct,
					    async_put_work);

	__mmput(mm);
}

void mmput_async(struct mm_struct *mm)
{
	if (atomic_dec_and_test(&mm->mm_users)) {
		INIT_WORK(&mm->async_put_work, mmput_async_fn);
		schedule_work(&mm->async_put_work);
	}
}
#endif

/**
 * set_mm_exe_file - change a reference to the mm's executable file
 *
 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
 *
 * Main users are mmput() and sys_execve(). Callers prevent concurrent
 * invocations: in mmput() nobody alive left, in execve task is single
 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
 * mm->exe_file, but does so without using set_mm_exe_file() in order
 * to do avoid the need for any locks.
 */
void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
{
	struct file *old_exe_file;

	/*
	 * It is safe to dereference the exe_file without RCU as
	 * this function is only called if nobody else can access
	 * this mm -- see comment above for justification.
	 */
	old_exe_file = rcu_dereference_raw(mm->exe_file);

	if (new_exe_file)
		get_file(new_exe_file);
	rcu_assign_pointer(mm->exe_file, new_exe_file);
	if (old_exe_file)
		fput(old_exe_file);
}

/**
 * get_mm_exe_file - acquire a reference to the mm's executable file
 *
 * Returns %NULL if mm has no associated executable file.
 * User must release file via fput().
 */
struct file *get_mm_exe_file(struct mm_struct *mm)
{
	struct file *exe_file;

	rcu_read_lock();
	exe_file = rcu_dereference(mm->exe_file);
	if (exe_file && !get_file_rcu(exe_file))
		exe_file = NULL;
	rcu_read_unlock();
	return exe_file;
}
EXPORT_SYMBOL(get_mm_exe_file);

/**
 * get_task_exe_file - acquire a reference to the task's executable file
 *
 * Returns %NULL if task's mm (if any) has no associated executable file or
 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
 * User must release file via fput().
 */
struct file *get_task_exe_file(struct task_struct *task)
{
	struct file *exe_file = NULL;
	struct mm_struct *mm;

	task_lock(task);
	mm = task->mm;
	if (mm) {
		if (!(task->flags & PF_KTHREAD))
			exe_file = get_mm_exe_file(mm);
	}
	task_unlock(task);
	return exe_file;
}
EXPORT_SYMBOL(get_task_exe_file);

/**
 * get_task_mm - acquire a reference to the task's mm
 *
 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 * this kernel workthread has transiently adopted a user mm with use_mm,
 * to do its AIO) is not set and if so returns a reference to it, after
 * bumping up the use count.  User must release the mm via mmput()
 * after use.  Typically used by /proc and ptrace.
 */
struct mm_struct *get_task_mm(struct task_struct *task)
{
	struct mm_struct *mm;

	task_lock(task);
	mm = task->mm;
	if (mm) {
		if (task->flags & PF_KTHREAD)
			mm = NULL;
		else
			mmget(mm);
	}
	task_unlock(task);
	return mm;
}
EXPORT_SYMBOL_GPL(get_task_mm);

struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
{
	struct mm_struct *mm;
	int err;

	err =  down_read_killable(&task->signal->exec_update_lock);
	if (err)
		return ERR_PTR(err);

	mm = get_task_mm(task);
	if (mm && mm != current->mm &&
			!ptrace_may_access(task, mode)) {
		mmput(mm);
		mm = ERR_PTR(-EACCES);
	}
	up_read(&task->signal->exec_update_lock);

	return mm;
}

static void complete_vfork_done(struct task_struct *tsk)
{
	struct completion *vfork;

	task_lock(tsk);
	vfork = tsk->vfork_done;
	if (likely(vfork)) {
		tsk->vfork_done = NULL;
		complete(vfork);
	}
	task_unlock(tsk);
}

static int wait_for_vfork_done(struct task_struct *child,
				struct completion *vfork)
{
	int killed;

	freezer_do_not_count();
	cgroup_enter_frozen();
	killed = wait_for_completion_killable(vfork);
	cgroup_leave_frozen(false);
	freezer_count();

	if (killed) {
		task_lock(child);
		child->vfork_done = NULL;
		task_unlock(child);
	}

	put_task_struct(child);
	return killed;
}

/* Please note the differences between mmput and mm_release.
 * mmput is called whenever we stop holding onto a mm_struct,
 * error success whatever.
 *
 * mm_release is called after a mm_struct has been removed
 * from the current process.
 *
 * This difference is important for error handling, when we
 * only half set up a mm_struct for a new process and need to restore
 * the old one.  Because we mmput the new mm_struct before
 * restoring the old one. . .
 * Eric Biederman 10 January 1998
 */
static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
	uprobe_free_utask(tsk);

	/* Get rid of any cached register state */
	deactivate_mm(tsk, mm);

	/*
	 * Signal userspace if we're not exiting with a core dump
	 * because we want to leave the value intact for debugging
	 * purposes.
	 */
	if (tsk->clear_child_tid) {
		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
		    atomic_read(&mm->mm_users) > 1) {
			/*
			 * We don't check the error code - if userspace has
			 * not set up a proper pointer then tough luck.
			 */
			put_user(0, tsk->clear_child_tid);
			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
					1, NULL, NULL, 0, 0);
		}
		tsk->clear_child_tid = NULL;
	}

	/*
	 * All done, finally we can wake up parent and return this mm to him.
	 * Also kthread_stop() uses this completion for synchronization.
	 */
	if (tsk->vfork_done)
		complete_vfork_done(tsk);
}

void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
	futex_exit_release(tsk);
	mm_release(tsk, mm);
}

void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
	futex_exec_release(tsk);
	mm_release(tsk, mm);
}

/**
 * dup_mm() - duplicates an existing mm structure
 * @tsk: the task_struct with which the new mm will be associated.
 * @oldmm: the mm to duplicate.
 *
 * Allocates a new mm structure and duplicates the provided @oldmm structure
 * content into it.
 *
 * Return: the duplicated mm or NULL on failure.
 */
static struct mm_struct *dup_mm(struct task_struct *tsk,
				struct mm_struct *oldmm)
{
	struct mm_struct *mm;
	int err;

	mm = allocate_mm();
	if (!mm)
		goto fail_nomem;

	memcpy(mm, oldmm, sizeof(*mm));

	if (!mm_init(mm, tsk, mm->user_ns))
		goto fail_nomem;

	err = dup_mmap(mm, oldmm);
	if (err)
		goto free_pt;

	mm->hiwater_rss = get_mm_rss(mm);
	mm->hiwater_vm = mm->total_vm;

	if (mm->binfmt && !try_module_get(mm->binfmt->module))
		goto free_pt;

	return mm;

free_pt:
	/* don't put binfmt in mmput, we haven't got module yet */
	mm->binfmt = NULL;
	mm_init_owner(mm, NULL);
	mmput(mm);

fail_nomem:
	return NULL;
}

static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
{
	struct mm_struct *mm, *oldmm;
	int retval;

	tsk->min_flt = tsk->maj_flt = 0;
	tsk->nvcsw = tsk->nivcsw = 0;
#ifdef CONFIG_DETECT_HUNG_TASK
	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
	tsk->last_switch_time = 0;
#endif

	tsk->mm = NULL;
	tsk->active_mm = NULL;

	/*
	 * Are we cloning a kernel thread?
	 *
	 * We need to steal a active VM for that..
	 */
	oldmm = current->mm;
	if (!oldmm)
		return 0;

	/* initialize the new vmacache entries */
	vmacache_flush(tsk);

	if (clone_flags & CLONE_VM) {
		mmget(oldmm);
		mm = oldmm;
		goto good_mm;
	}

	retval = -ENOMEM;
	mm = dup_mm(tsk, current->mm);
	if (!mm)
		goto fail_nomem;

good_mm:
	tsk->mm = mm;
	tsk->active_mm = mm;
	return 0;

fail_nomem:
	return retval;
}

static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
{
	struct fs_struct *fs = current->fs;
	if (clone_flags & CLONE_FS) {
		/* tsk->fs is already what we want */
		spin_lock(&fs->lock);
		if (fs->in_exec) {
			spin_unlock(&fs->lock);
			return -EAGAIN;
		}
		fs->users++;
		spin_unlock(&fs->lock);
		return 0;
	}
	tsk->fs = copy_fs_struct(fs);
	if (!tsk->fs)
		return -ENOMEM;
	return 0;
}

static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
{
	struct files_struct *oldf, *newf;
	int error = 0;

	/*
	 * A background process may not have any files ...
	 */
	oldf = current->files;
	if (!oldf)
		goto out;

	if (clone_flags & CLONE_FILES) {
		atomic_inc(&oldf->count);
		goto out;
	}

	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
	if (!newf)
		goto out;

	tsk->files = newf;
	error = 0;
out:
	return error;
}

static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
{
#ifdef CONFIG_BLOCK
	struct io_context *ioc = current->io_context;
	struct io_context *new_ioc;

	if (!ioc)
		return 0;
	/*
	 * Share io context with parent, if CLONE_IO is set
	 */
	if (clone_flags & CLONE_IO) {
		ioc_task_link(ioc);
		tsk->io_context = ioc;
	} else if (ioprio_valid(ioc->ioprio)) {
		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
		if (unlikely(!new_ioc))
			return -ENOMEM;

		new_ioc->ioprio = ioc->ioprio;
		put_io_context(new_ioc);
	}
#endif
	return 0;
}

static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
{
	struct sighand_struct *sig;

	if (clone_flags & CLONE_SIGHAND) {
		refcount_inc(&current->sighand->count);
		return 0;
	}
	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
	RCU_INIT_POINTER(tsk->sighand, sig);
	if (!sig)
		return -ENOMEM;

	refcount_set(&sig->count, 1);
	spin_lock_irq(&current->sighand->siglock);
	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
	spin_unlock_irq(&current->sighand->siglock);

	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
	if (clone_flags & CLONE_CLEAR_SIGHAND)
		flush_signal_handlers(tsk, 0);

	return 0;
}

void __cleanup_sighand(struct sighand_struct *sighand)
{
	if (refcount_dec_and_test(&sighand->count)) {
		signalfd_cleanup(sighand);
		/*
		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
		 * without an RCU grace period, see __lock_task_sighand().
		 */
		kmem_cache_free(sighand_cachep, sighand);
	}
}

/*
 * Initialize POSIX timer handling for a thread group.
 */
static void posix_cpu_timers_init_group(struct signal_struct *sig)
{
	struct posix_cputimers *pct = &sig->posix_cputimers;
	unsigned long cpu_limit;

	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
	posix_cputimers_group_init(pct, cpu_limit);
}

static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
{
	struct signal_struct *sig;

	if (clone_flags & CLONE_THREAD)
		return 0;

	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
	tsk->signal = sig;
	if (!sig)
		return -ENOMEM;

	sig->nr_threads = 1;
	atomic_set(&sig->live, 1);
	refcount_set(&sig->sigcnt, 1);

	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);

	init_waitqueue_head(&sig->wait_chldexit);
	sig->curr_target = tsk;
	init_sigpending(&sig->shared_pending);
	INIT_HLIST_HEAD(&sig->multiprocess);
	seqlock_init(&sig->stats_lock);
	prev_cputime_init(&sig->prev_cputime);

#ifdef CONFIG_POSIX_TIMERS
	INIT_LIST_HEAD(&sig->posix_timers);
	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	sig->real_timer.function = it_real_fn;
#endif

	task_lock(current->group_leader);
	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
	task_unlock(current->group_leader);

	posix_cpu_timers_init_group(sig);

	tty_audit_fork(sig);
	sched_autogroup_fork(sig);

	sig->oom_score_adj = current->signal->oom_score_adj;
	sig->oom_score_adj_min = current->signal->oom_score_adj_min;

	mutex_init(&sig->cred_guard_mutex);
	init_rwsem(&sig->exec_update_lock);

	return 0;
}

static void copy_seccomp(struct task_struct *p)
{
#ifdef CONFIG_SECCOMP
	/*
	 * Must be called with sighand->lock held, which is common to
	 * all threads in the group. Holding cred_guard_mutex is not
	 * needed because this new task is not yet running and cannot
	 * be racing exec.
	 */
	assert_spin_locked(&current->sighand->siglock);

	/* Ref-count the new filter user, and assign it. */
	get_seccomp_filter(current);
	p->seccomp = current->seccomp;

	/*
	 * Explicitly enable no_new_privs here in case it got set
	 * between the task_struct being duplicated and holding the
	 * sighand lock. The seccomp state and nnp must be in sync.
	 */
	if (task_no_new_privs(current))
		task_set_no_new_privs(p);

	/*
	 * If the parent gained a seccomp mode after copying thread
	 * flags and between before we held the sighand lock, we have
	 * to manually enable the seccomp thread flag here.
	 */
	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
		set_tsk_thread_flag(p, TIF_SECCOMP);
#endif
}

SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
{
	current->clear_child_tid = tidptr;

	return task_pid_vnr(current);
}

static void rt_mutex_init_task(struct task_struct *p)
{
	raw_spin_lock_init(&p->pi_lock);
#ifdef CONFIG_RT_MUTEXES
	p->pi_waiters = RB_ROOT_CACHED;
	p->pi_top_task = NULL;
	p->pi_blocked_on = NULL;
#endif
}

static inline void init_task_pid_links(struct task_struct *task)
{
	enum pid_type type;

	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
		INIT_HLIST_NODE(&task->pid_links[type]);
	}
}

static inline void
init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
{
	if (type == PIDTYPE_PID)
		task->thread_pid = pid;
	else
		task->signal->pids[type] = pid;
}

static inline void rcu_copy_process(struct task_struct *p)
{
#ifdef CONFIG_PREEMPT_RCU
	p->rcu_read_lock_nesting = 0;
	p->rcu_read_unlock_special.s = 0;
	p->rcu_blocked_node = NULL;
	INIT_LIST_HEAD(&p->rcu_node_entry);
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TASKS_RCU
	p->rcu_tasks_holdout = false;
	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
	p->rcu_tasks_idle_cpu = -1;
#endif /* #ifdef CONFIG_TASKS_RCU */
#ifdef CONFIG_TASKS_TRACE_RCU
	p->trc_reader_nesting = 0;
	p->trc_reader_special.s = 0;
	INIT_LIST_HEAD(&p->trc_holdout_list);
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
}

struct pid *pidfd_pid(const struct file *file)
{
	if (file->f_op == &pidfd_fops)
		return file->private_data;

	return ERR_PTR(-EBADF);
}

static int pidfd_release(struct inode *inode, struct file *file)
{
	struct pid *pid = file->private_data;

	file->private_data = NULL;
	put_pid(pid);
	return 0;
}

#ifdef CONFIG_PROC_FS
/**
 * pidfd_show_fdinfo - print information about a pidfd
 * @m: proc fdinfo file
 * @f: file referencing a pidfd
 *
 * Pid:
 * This function will print the pid that a given pidfd refers to in the
 * pid namespace of the procfs instance.
 * If the pid namespace of the process is not a descendant of the pid
 * namespace of the procfs instance 0 will be shown as its pid. This is
 * similar to calling getppid() on a process whose parent is outside of
 * its pid namespace.
 *
 * NSpid:
 * If pid namespaces are supported then this function will also print
 * the pid of a given pidfd refers to for all descendant pid namespaces
 * starting from the current pid namespace of the instance, i.e. the
 * Pid field and the first entry in the NSpid field will be identical.
 * If the pid namespace of the process is not a descendant of the pid
 * namespace of the procfs instance 0 will be shown as its first NSpid
 * entry and no others will be shown.
 * Note that this differs from the Pid and NSpid fields in
 * /proc/<pid>/status where Pid and NSpid are always shown relative to
 * the  pid namespace of the procfs instance. The difference becomes
 * obvious when sending around a pidfd between pid namespaces from a
 * different branch of the tree, i.e. where no ancestoral relation is
 * present between the pid namespaces:
 * - create two new pid namespaces ns1 and ns2 in the initial pid
 *   namespace (also take care to create new mount namespaces in the
 *   new pid namespace and mount procfs)
 * - create a process with a pidfd in ns1
 * - send pidfd from ns1 to ns2
 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
 *   have exactly one entry, which is 0
 */
static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
{
	struct pid *pid = f->private_data;
	struct pid_namespace *ns;
	pid_t nr = -1;

	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
		ns = proc_pid_ns(file_inode(m->file)->i_sb);
		nr = pid_nr_ns(pid, ns);
	}

	seq_put_decimal_ll(m, "Pid:\t", nr);

#ifdef CONFIG_PID_NS
	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
	if (nr > 0) {
		int i;

		/* If nr is non-zero it means that 'pid' is valid and that
		 * ns, i.e. the pid namespace associated with the procfs
		 * instance, is in the pid namespace hierarchy of pid.
		 * Start at one below the already printed level.
		 */
		for (i = ns->level + 1; i <= pid->level; i++)
			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
	}
#endif
	seq_putc(m, '\n');
}
#endif

/*
 * Poll support for process exit notification.
 */
static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
{
	struct pid *pid = file->private_data;
	__poll_t poll_flags = 0;

	poll_wait(file, &pid->wait_pidfd, pts);

	/*
	 * Inform pollers only when the whole thread group exits.
	 * If the thread group leader exits before all other threads in the
	 * group, then poll(2) should block, similar to the wait(2) family.
	 */
	if (thread_group_exited(pid))
		poll_flags = EPOLLIN | EPOLLRDNORM;

	return poll_flags;
}

const struct file_operations pidfd_fops = {
	.release = pidfd_release,
	.poll = pidfd_poll,
#ifdef CONFIG_PROC_FS
	.show_fdinfo = pidfd_show_fdinfo,
#endif
};

static void __delayed_free_task(struct rcu_head *rhp)
{
	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);

	free_task(tsk);
}

static __always_inline void delayed_free_task(struct task_struct *tsk)
{
	if (IS_ENABLED(CONFIG_MEMCG))
		call_rcu(&tsk->rcu, __delayed_free_task);
	else
		free_task(tsk);
}

static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
{
	/* Skip if kernel thread */
	if (!tsk->mm)
		return;

	/* Skip if spawning a thread or using vfork */
	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
		return;

	/* We need to synchronize with __set_oom_adj */
	mutex_lock(&oom_adj_mutex);
	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
	/* Update the values in case they were changed after copy_signal */
	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
	mutex_unlock(&oom_adj_mutex);
}

/*
 * This creates a new process as a copy of the old one,
 * but does not actually start it yet.
 *
 * It copies the registers, and all the appropriate
 * parts of the process environment (as per the clone
 * flags). The actual kick-off is left to the caller.
 */
static __latent_entropy struct task_struct *copy_process(
					struct pid *pid,
					int trace,
					int node,
					struct kernel_clone_args *args)
{
	int pidfd = -1, retval;
	struct task_struct *p;
	struct multiprocess_signals delayed;
	struct file *pidfile = NULL;
	u64 clone_flags = args->flags;
	struct nsproxy *nsp = current->nsproxy;

	/*
	 * Don't allow sharing the root directory with processes in a different
	 * namespace
	 */
	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
		return ERR_PTR(-EINVAL);

	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
		return ERR_PTR(-EINVAL);

	/*
	 * Thread groups must share signals as well, and detached threads
	 * can only be started up within the thread group.
	 */
	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
		return ERR_PTR(-EINVAL);

	/*
	 * Shared signal handlers imply shared VM. By way of the above,
	 * thread groups also imply shared VM. Blocking this case allows
	 * for various simplifications in other code.
	 */
	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
		return ERR_PTR(-EINVAL);

	/*
	 * Siblings of global init remain as zombies on exit since they are
	 * not reaped by their parent (swapper). To solve this and to avoid
	 * multi-rooted process trees, prevent global and container-inits
	 * from creating siblings.
	 */
	if ((clone_flags & CLONE_PARENT) &&
				current->signal->flags & SIGNAL_UNKILLABLE)
		return ERR_PTR(-EINVAL);

	/*
	 * If the new process will be in a different pid or user namespace
	 * do not allow it to share a thread group with the forking task.
	 */
	if (clone_flags & CLONE_THREAD) {
		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
			return ERR_PTR(-EINVAL);
	}

	/*
	 * If the new process will be in a different time namespace
	 * do not allow it to share VM or a thread group with the forking task.
	 */
	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
		if (nsp->time_ns != nsp->time_ns_for_children)
			return ERR_PTR(-EINVAL);
	}

	if (clone_flags & CLONE_PIDFD) {
		/*
		 * - CLONE_DETACHED is blocked so that we can potentially
		 *   reuse it later for CLONE_PIDFD.
		 * - CLONE_THREAD is blocked until someone really needs it.
		 */
		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
			return ERR_PTR(-EINVAL);
	}

	/*
	 * Force any signals received before this point to be delivered
	 * before the fork happens.  Collect up signals sent to multiple
	 * processes that happen during the fork and delay them so that
	 * they appear to happen after the fork.
	 */
	sigemptyset(&delayed.signal);
	INIT_HLIST_NODE(&delayed.node);

	spin_lock_irq(&current->sighand->siglock);
	if (!(clone_flags & CLONE_THREAD))
		hlist_add_head(&delayed.node, &current->signal->multiprocess);
	recalc_sigpending();
	spin_unlock_irq(&current->sighand->siglock);
	retval = -ERESTARTNOINTR;
	if (signal_pending(current))
		goto fork_out;

	retval = -ENOMEM;
	p = dup_task_struct(current, node);
	if (!p)
		goto fork_out;

	cpufreq_task_times_init(p);

	/*
	 * This _must_ happen before we call free_task(), i.e. before we jump
	 * to any of the bad_fork_* labels. This is to avoid freeing
	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
	 * kernel threads (PF_KTHREAD).
	 */
	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
	/*
	 * Clear TID on mm_release()?
	 */
	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;

	ftrace_graph_init_task(p);

	rt_mutex_init_task(p);

	lockdep_assert_irqs_enabled();
#ifdef CONFIG_PROVE_LOCKING
	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
#endif
	retval = -EAGAIN;
	if (atomic_read(&p->real_cred->user->processes) >=
			task_rlimit(p, RLIMIT_NPROC)) {
		if (p->real_cred->user != INIT_USER &&
		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
			goto bad_fork_free;
	}
	current->flags &= ~PF_NPROC_EXCEEDED;

	retval = copy_creds(p, clone_flags);
	if (retval < 0)
		goto bad_fork_free;

	/*
	 * If multiple threads are within copy_process(), then this check
	 * triggers too late. This doesn't hurt, the check is only there
	 * to stop root fork bombs.
	 */
	retval = -EAGAIN;
	if (data_race(nr_threads >= max_threads))
		goto bad_fork_cleanup_count;

	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
	p->flags |= PF_FORKNOEXEC;
	INIT_LIST_HEAD(&p->children);
	INIT_LIST_HEAD(&p->sibling);
	rcu_copy_process(p);
	p->vfork_done = NULL;
	spin_lock_init(&p->alloc_lock);

	init_sigpending(&p->pending);

	p->utime = p->stime = p->gtime = 0;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
	p->utimescaled = p->stimescaled = 0;
#endif
	prev_cputime_init(&p->prev_cputime);

#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
	seqcount_init(&p->vtime.seqcount);
	p->vtime.starttime = 0;
	p->vtime.state = VTIME_INACTIVE;
#endif

#ifdef CONFIG_IO_URING
	p->io_uring = NULL;
#endif

#if defined(SPLIT_RSS_COUNTING)
	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
#endif

	p->default_timer_slack_ns = current->timer_slack_ns;

#ifdef CONFIG_PSI
	p->psi_flags = 0;
#endif

	task_io_accounting_init(&p->ioac);
	acct_clear_integrals(p);

	posix_cputimers_init(&p->posix_cputimers);

	p->io_context = NULL;
	audit_set_context(p, NULL);
	cgroup_fork(p);
#ifdef CONFIG_NUMA
	p->mempolicy = mpol_dup(p->mempolicy);
	if (IS_ERR(p->mempolicy)) {
		retval = PTR_ERR(p->mempolicy);
		p->mempolicy = NULL;
		goto bad_fork_cleanup_threadgroup_lock;
	}
#endif
#ifdef CONFIG_CPUSETS
	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
	p->softirqs_enabled		= 1;
	p->softirq_context		= 0;
#endif

	p->pagefault_disabled = 0;

#ifdef CONFIG_LOCKDEP
	lockdep_init_task(p);
#endif

#ifdef CONFIG_DEBUG_MUTEXES
	p->blocked_on = NULL; /* not blocked yet */
#endif
#ifdef CONFIG_BCACHE
	p->sequential_io	= 0;
	p->sequential_io_avg	= 0;
#endif

	/* Perform scheduler related setup. Assign this task to a CPU. */
	retval = sched_fork(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_policy;

	retval = perf_event_init_task(p);
	if (retval)
		goto bad_fork_cleanup_policy;
	retval = audit_alloc(p);
	if (retval)
		goto bad_fork_cleanup_perf;
	/* copy all the process information */
	shm_init_task(p);
	retval = security_task_alloc(p, clone_flags);
	if (retval)
		goto bad_fork_cleanup_audit;
	retval = copy_semundo(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_security;
	retval = copy_files(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_semundo;
	retval = copy_fs(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_files;
	retval = copy_sighand(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_fs;
	retval = copy_signal(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_sighand;
	retval = copy_mm(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_signal;
	retval = copy_namespaces(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_mm;
	retval = copy_io(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_namespaces;
	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
	if (retval)
		goto bad_fork_cleanup_io;

	stackleak_task_init(p);

	if (pid != &init_struct_pid) {
		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
				args->set_tid_size);
		if (IS_ERR(pid)) {
			retval = PTR_ERR(pid);
			goto bad_fork_cleanup_thread;
		}
	}

	/*
	 * This has to happen after we've potentially unshared the file
	 * descriptor table (so that the pidfd doesn't leak into the child
	 * if the fd table isn't shared).
	 */
	if (clone_flags & CLONE_PIDFD) {
		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
		if (retval < 0)
			goto bad_fork_free_pid;

		pidfd = retval;

		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
					      O_RDWR | O_CLOEXEC);
		if (IS_ERR(pidfile)) {
			put_unused_fd(pidfd);
			retval = PTR_ERR(pidfile);
			goto bad_fork_free_pid;
		}
		get_pid(pid);	/* held by pidfile now */

		retval = put_user(pidfd, args->pidfd);
		if (retval)
			goto bad_fork_put_pidfd;
	}

#ifdef CONFIG_BLOCK
	p->plug = NULL;
#endif
	futex_init_task(p);

	/*
	 * sigaltstack should be cleared when sharing the same VM
	 */
	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
		sas_ss_reset(p);

	/*
	 * Syscall tracing and stepping should be turned off in the
	 * child regardless of CLONE_PTRACE.
	 */
	user_disable_single_step(p);
	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
#ifdef TIF_SYSCALL_EMU
	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
#endif
	clear_tsk_latency_tracing(p);

	/* ok, now we should be set up.. */
	p->pid = pid_nr(pid);
	if (clone_flags & CLONE_THREAD) {
		p->group_leader = current->group_leader;
		p->tgid = current->tgid;
	} else {
		p->group_leader = p;
		p->tgid = p->pid;
	}

	p->nr_dirtied = 0;
	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
	p->dirty_paused_when = 0;

	p->pdeath_signal = 0;
	INIT_LIST_HEAD(&p->thread_group);
	p->task_works = NULL;

	/*
	 * Ensure that the cgroup subsystem policies allow the new process to be
	 * forked. It should be noted that the new process's css_set can be changed
	 * between here and cgroup_post_fork() if an organisation operation is in
	 * progress.
	 */
	retval = cgroup_can_fork(p, args);
	if (retval)
		goto bad_fork_put_pidfd;

	/*
	 * From this point on we must avoid any synchronous user-space
	 * communication until we take the tasklist-lock. In particular, we do
	 * not want user-space to be able to predict the process start-time by
	 * stalling fork(2) after we recorded the start_time but before it is
	 * visible to the system.
	 */

	p->start_time = ktime_get_ns();
	p->start_boottime = ktime_get_boottime_ns();

	/*
	 * Make it visible to the rest of the system, but dont wake it up yet.
	 * Need tasklist lock for parent etc handling!
	 */
	write_lock_irq(&tasklist_lock);

	/* CLONE_PARENT re-uses the old parent */
	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
		p->real_parent = current->real_parent;
		p->parent_exec_id = current->parent_exec_id;
		if (clone_flags & CLONE_THREAD)
			p->exit_signal = -1;
		else
			p->exit_signal = current->group_leader->exit_signal;
	} else {
		p->real_parent = current;
		p->parent_exec_id = current->self_exec_id;
		p->exit_signal = args->exit_signal;
	}

	klp_copy_process(p);

	spin_lock(&current->sighand->siglock);

	/*
	 * Copy seccomp details explicitly here, in case they were changed
	 * before holding sighand lock.
	 */
	copy_seccomp(p);

	rseq_fork(p, clone_flags);

	/* Don't start children in a dying pid namespace */
	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
		retval = -ENOMEM;
		goto bad_fork_cancel_cgroup;
	}

	/* Let kill terminate clone/fork in the middle */
	if (fatal_signal_pending(current)) {
		retval = -EINTR;
		goto bad_fork_cancel_cgroup;
	}

	/* past the last point of failure */
	if (pidfile)
		fd_install(pidfd, pidfile);

	init_task_pid_links(p);
	if (likely(p->pid)) {
		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);

		init_task_pid(p, PIDTYPE_PID, pid);
		if (thread_group_leader(p)) {
			init_task_pid(p, PIDTYPE_TGID, pid);
			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
			init_task_pid(p, PIDTYPE_SID, task_session(current));

			if (is_child_reaper(pid)) {
				ns_of_pid(pid)->child_reaper = p;
				p->signal->flags |= SIGNAL_UNKILLABLE;
			}
			p->signal->shared_pending.signal = delayed.signal;
			p->signal->tty = tty_kref_get(current->signal->tty);
			/*
			 * Inherit has_child_subreaper flag under the same
			 * tasklist_lock with adding child to the process tree
			 * for propagate_has_child_subreaper optimization.
			 */
			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
							 p->real_parent->signal->is_child_subreaper;
			list_add_tail(&p->sibling, &p->real_parent->children);
			list_add_tail_rcu(&p->tasks, &init_task.tasks);
			attach_pid(p, PIDTYPE_TGID);
			attach_pid(p, PIDTYPE_PGID);
			attach_pid(p, PIDTYPE_SID);
			__this_cpu_inc(process_counts);
		} else {
			current->signal->nr_threads++;
			atomic_inc(&current->signal->live);
			refcount_inc(&current->signal->sigcnt);
			task_join_group_stop(p);
			list_add_tail_rcu(&p->thread_group,
					  &p->group_leader->thread_group);
			list_add_tail_rcu(&p->thread_node,
					  &p->signal->thread_head);
		}
		attach_pid(p, PIDTYPE_PID);
		nr_threads++;
	}
	total_forks++;
	hlist_del_init(&delayed.node);
	spin_unlock(&current->sighand->siglock);
	syscall_tracepoint_update(p);
	write_unlock_irq(&tasklist_lock);

	proc_fork_connector(p);
	sched_post_fork(p);
	cgroup_post_fork(p, args);
	perf_event_fork(p);

	trace_task_newtask(p, clone_flags);
	uprobe_copy_process(p, clone_flags);

	copy_oom_score_adj(clone_flags, p);

	return p;

bad_fork_cancel_cgroup:
	spin_unlock(&current->sighand->siglock);
	write_unlock_irq(&tasklist_lock);
	cgroup_cancel_fork(p, args);
bad_fork_put_pidfd:
	if (clone_flags & CLONE_PIDFD) {
		fput(pidfile);
		put_unused_fd(pidfd);
	}
bad_fork_free_pid:
	if (pid != &init_struct_pid)
		free_pid(pid);
bad_fork_cleanup_thread:
	exit_thread(p);
bad_fork_cleanup_io:
	if (p->io_context)
		exit_io_context(p);
bad_fork_cleanup_namespaces:
	exit_task_namespaces(p);
bad_fork_cleanup_mm:
	if (p->mm) {
		mm_clear_owner(p->mm, p);
		mmput(p->mm);
	}
bad_fork_cleanup_signal:
	if (!(clone_flags & CLONE_THREAD))
		free_signal_struct(p->signal);
bad_fork_cleanup_sighand:
	__cleanup_sighand(p->sighand);
bad_fork_cleanup_fs:
	exit_fs(p); /* blocking */
bad_fork_cleanup_files:
	exit_files(p); /* blocking */
bad_fork_cleanup_semundo:
	exit_sem(p);
bad_fork_cleanup_security:
	security_task_free(p);
bad_fork_cleanup_audit:
	audit_free(p);
bad_fork_cleanup_perf:
	perf_event_free_task(p);
bad_fork_cleanup_policy:
	lockdep_free_task(p);
#ifdef CONFIG_NUMA
	mpol_put(p->mempolicy);
bad_fork_cleanup_threadgroup_lock:
#endif
	delayacct_tsk_free(p);
bad_fork_cleanup_count:
	atomic_dec(&p->cred->user->processes);
	exit_creds(p);
bad_fork_free:
	p->state = TASK_DEAD;
	put_task_stack(p);
	delayed_free_task(p);
fork_out:
	spin_lock_irq(&current->sighand->siglock);
	hlist_del_init(&delayed.node);
	spin_unlock_irq(&current->sighand->siglock);
	return ERR_PTR(retval);
}

static inline void init_idle_pids(struct task_struct *idle)
{
	enum pid_type type;

	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
		init_task_pid(idle, type, &init_struct_pid);
	}
}

struct task_struct *fork_idle(int cpu)
{
	struct task_struct *task;
	struct kernel_clone_args args = {
		.flags = CLONE_VM,
	};

	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
	if (!IS_ERR(task)) {
		init_idle_pids(task);
		init_idle(task, cpu);
	}

	return task;
}

struct mm_struct *copy_init_mm(void)
{
	return dup_mm(NULL, &init_mm);
}

/*
 *  Ok, this is the main fork-routine.
 *
 * It copies the process, and if successful kick-starts
 * it and waits for it to finish using the VM if required.
 *
 * args->exit_signal is expected to be checked for sanity by the caller.
 */
pid_t kernel_clone(struct kernel_clone_args *args)
{
	u64 clone_flags = args->flags;
	struct completion vfork;
	struct pid *pid;
	struct task_struct *p;
	int trace = 0;
	pid_t nr;

	/*
	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
	 * field in struct clone_args and it still doesn't make sense to have
	 * them both point at the same memory location. Performing this check
	 * here has the advantage that we don't need to have a separate helper
	 * to check for legacy clone().
	 */
	if ((args->flags & CLONE_PIDFD) &&
	    (args->flags & CLONE_PARENT_SETTID) &&
	    (args->pidfd == args->parent_tid))
		return -EINVAL;

	/*
	 * Determine whether and which event to report to ptracer.  When
	 * called from kernel_thread or CLONE_UNTRACED is explicitly
	 * requested, no event is reported; otherwise, report if the event
	 * for the type of forking is enabled.
	 */
	if (!(clone_flags & CLONE_UNTRACED)) {
		if (clone_flags & CLONE_VFORK)
			trace = PTRACE_EVENT_VFORK;
		else if (args->exit_signal != SIGCHLD)
			trace = PTRACE_EVENT_CLONE;
		else
			trace = PTRACE_EVENT_FORK;

		if (likely(!ptrace_event_enabled(current, trace)))
			trace = 0;
	}

	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
	add_latent_entropy();

	if (IS_ERR(p))
		return PTR_ERR(p);

	cpufreq_task_times_alloc(p);

	/*
	 * Do this prior waking up the new thread - the thread pointer
	 * might get invalid after that point, if the thread exits quickly.
	 */
	trace_sched_process_fork(current, p);

	pid = get_task_pid(p, PIDTYPE_PID);
	nr = pid_vnr(pid);

	if (clone_flags & CLONE_PARENT_SETTID)
		put_user(nr, args->parent_tid);

	if (clone_flags & CLONE_VFORK) {
		p->vfork_done = &vfork;
		init_completion(&vfork);
		get_task_struct(p);
	}

	wake_up_new_task(p);

	/* forking complete and child started to run, tell ptracer */
	if (unlikely(trace))
		ptrace_event_pid(trace, pid);

	if (clone_flags & CLONE_VFORK) {
		if (!wait_for_vfork_done(p, &vfork))
			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
	}

	put_pid(pid);
	return nr;
}

/*
 * Create a kernel thread.
 */
pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
{
	struct kernel_clone_args args = {
		.flags		= ((lower_32_bits(flags) | CLONE_VM |
				    CLONE_UNTRACED) & ~CSIGNAL),
		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
		.stack		= (unsigned long)fn,
		.stack_size	= (unsigned long)arg,
	};

	return kernel_clone(&args);
}

#ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)
{
#ifdef CONFIG_MMU
	struct kernel_clone_args args = {
		.exit_signal = SIGCHLD,
	};

	return kernel_clone(&args);
#else
	/* can not support in nommu mode */
	return -EINVAL;
#endif
}
#endif

#ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)
{
	struct kernel_clone_args args = {
		.flags		= CLONE_VFORK | CLONE_VM,
		.exit_signal	= SIGCHLD,
	};

	return kernel_clone(&args);
}
#endif

#ifdef __ARCH_WANT_SYS_CLONE
#ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
		 int __user *, parent_tidptr,
		 unsigned long, tls,
		 int __user *, child_tidptr)
#elif defined(CONFIG_CLONE_BACKWARDS2)
SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
		 int __user *, parent_tidptr,
		 int __user *, child_tidptr,
		 unsigned long, tls)
#elif defined(CONFIG_CLONE_BACKWARDS3)
SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
		int, stack_size,
		int __user *, parent_tidptr,
		int __user *, child_tidptr,
		unsigned long, tls)
#else
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
		 int __user *, parent_tidptr,
		 int __user *, child_tidptr,
		 unsigned long, tls)
#endif
{
	struct kernel_clone_args args = {
		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
		.pidfd		= parent_tidptr,
		.child_tid	= child_tidptr,
		.parent_tid	= parent_tidptr,
		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
		.stack		= newsp,
		.tls		= tls,
	};

	return kernel_clone(&args);
}
#endif

#ifdef __ARCH_WANT_SYS_CLONE3

noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
					      struct clone_args __user *uargs,
					      size_t usize)
{
	int err;
	struct clone_args args;
	pid_t *kset_tid = kargs->set_tid;

	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
		     CLONE_ARGS_SIZE_VER0);
	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
		     CLONE_ARGS_SIZE_VER1);
	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
		     CLONE_ARGS_SIZE_VER2);
	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);

	if (unlikely(usize > PAGE_SIZE))
		return -E2BIG;
	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
		return -EINVAL;

	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
	if (err)
		return err;

	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
		return -EINVAL;

	if (unlikely(!args.set_tid && args.set_tid_size > 0))
		return -EINVAL;

	if (unlikely(args.set_tid && args.set_tid_size == 0))
		return -EINVAL;

	/*
	 * Verify that higher 32bits of exit_signal are unset and that
	 * it is a valid signal
	 */
	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
		     !valid_signal(args.exit_signal)))
		return -EINVAL;

	if ((args.flags & CLONE_INTO_CGROUP) &&
	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
		return -EINVAL;

	*kargs = (struct kernel_clone_args){
		.flags		= args.flags,
		.pidfd		= u64_to_user_ptr(args.pidfd),
		.child_tid	= u64_to_user_ptr(args.child_tid),
		.parent_tid	= u64_to_user_ptr(args.parent_tid),
		.exit_signal	= args.exit_signal,
		.stack		= args.stack,
		.stack_size	= args.stack_size,
		.tls		= args.tls,
		.set_tid_size	= args.set_tid_size,
		.cgroup		= args.cgroup,
	};

	if (args.set_tid &&
		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
			(kargs->set_tid_size * sizeof(pid_t))))
		return -EFAULT;

	kargs->set_tid = kset_tid;

	return 0;
}

/**
 * clone3_stack_valid - check and prepare stack
 * @kargs: kernel clone args
 *
 * Verify that the stack arguments userspace gave us are sane.
 * In addition, set the stack direction for userspace since it's easy for us to
 * determine.
 */
static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
{
	if (kargs->stack == 0) {
		if (kargs->stack_size > 0)
			return false;
	} else {
		if (kargs->stack_size == 0)
			return false;

		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
			return false;

#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
		kargs->stack += kargs->stack_size;
#endif
	}

	return true;
}

static bool clone3_args_valid(struct kernel_clone_args *kargs)
{
	/* Verify that no unknown flags are passed along. */
	if (kargs->flags &
	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
		return false;

	/*
	 * - make the CLONE_DETACHED bit reuseable for clone3
	 * - make the CSIGNAL bits reuseable for clone3
	 */
	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
		return false;

	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
		return false;

	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
	    kargs->exit_signal)
		return false;

	if (!clone3_stack_valid(kargs))
		return false;

	return true;
}

/**
 * clone3 - create a new process with specific properties
 * @uargs: argument structure
 * @size:  size of @uargs
 *
 * clone3() is the extensible successor to clone()/clone2().
 * It takes a struct as argument that is versioned by its size.
 *
 * Return: On success, a positive PID for the child process.
 *         On error, a negative errno number.
 */
SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
{
	int err;

	struct kernel_clone_args kargs;
	pid_t set_tid[MAX_PID_NS_LEVEL];

	kargs.set_tid = set_tid;

	err = copy_clone_args_from_user(&kargs, uargs, size);
	if (err)
		return err;

	if (!clone3_args_valid(&kargs))
		return -EINVAL;

	return kernel_clone(&kargs);
}
#endif

void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
{
	struct task_struct *leader, *parent, *child;
	int res;

	read_lock(&tasklist_lock);
	leader = top = top->group_leader;
down:
	for_each_thread(leader, parent) {
		list_for_each_entry(child, &parent->children, sibling) {
			res = visitor(child, data);
			if (res) {
				if (res < 0)
					goto out;
				leader = child;
				goto down;
			}
up:
			;
		}
	}

	if (leader != top) {
		child = leader;
		parent = child->real_parent;
		leader = parent->group_leader;
		goto up;
	}
out:
	read_unlock(&tasklist_lock);
}

#ifndef ARCH_MIN_MMSTRUCT_ALIGN
#define ARCH_MIN_MMSTRUCT_ALIGN 0
#endif

static void sighand_ctor(void *data)
{
	struct sighand_struct *sighand = data;

	spin_lock_init(&sighand->siglock);
	init_waitqueue_head(&sighand->signalfd_wqh);
}

void __init proc_caches_init(void)
{
	unsigned int mm_size;

	sighand_cachep = kmem_cache_create("sighand_cache",
			sizeof(struct sighand_struct), 0,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
			SLAB_ACCOUNT, sighand_ctor);
	signal_cachep = kmem_cache_create("signal_cache",
			sizeof(struct signal_struct), 0,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
			NULL);
	files_cachep = kmem_cache_create("files_cache",
			sizeof(struct files_struct), 0,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
			NULL);
	fs_cachep = kmem_cache_create("fs_cache",
			sizeof(struct fs_struct), 0,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
			NULL);

	/*
	 * The mm_cpumask is located at the end of mm_struct, and is
	 * dynamically sized based on the maximum CPU number this system
	 * can have, taking hotplug into account (nr_cpu_ids).
	 */
	mm_size = sizeof(struct mm_struct) + cpumask_size();

	mm_cachep = kmem_cache_create_usercopy("mm_struct",
			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
			offsetof(struct mm_struct, saved_auxv),
			sizeof_field(struct mm_struct, saved_auxv),
			NULL);
	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
	mmap_init();
	nsproxy_cache_init();
}

/*
 * Check constraints on flags passed to the unshare system call.
 */
static int check_unshare_flags(unsigned long unshare_flags)
{
	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
				CLONE_NEWTIME))
		return -EINVAL;
	/*
	 * Not implemented, but pretend it works if there is nothing
	 * to unshare.  Note that unsharing the address space or the
	 * signal handlers also need to unshare the signal queues (aka
	 * CLONE_THREAD).
	 */
	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
		if (!thread_group_empty(current))
			return -EINVAL;
	}
	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
		if (refcount_read(&current->sighand->count) > 1)
			return -EINVAL;
	}
	if (unshare_flags & CLONE_VM) {
		if (!current_is_single_threaded())
			return -EINVAL;
	}

	return 0;
}

/*
 * Unshare the filesystem structure if it is being shared
 */
static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
{
	struct fs_struct *fs = current->fs;

	if (!(unshare_flags & CLONE_FS) || !fs)
		return 0;

	/* don't need lock here; in the worst case we'll do useless copy */
	if (fs->users == 1)
		return 0;

	*new_fsp = copy_fs_struct(fs);
	if (!*new_fsp)
		return -ENOMEM;

	return 0;
}

/*
 * Unshare file descriptor table if it is being shared
 */
int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
	       struct files_struct **new_fdp)
{
	struct files_struct *fd = current->files;
	int error = 0;

	if ((unshare_flags & CLONE_FILES) &&
	    (fd && atomic_read(&fd->count) > 1)) {
		*new_fdp = dup_fd(fd, max_fds, &error);
		if (!*new_fdp)
			return error;
	}

	return 0;
}

/*
 * unshare allows a process to 'unshare' part of the process
 * context which was originally shared using clone.  copy_*
 * functions used by kernel_clone() cannot be used here directly
 * because they modify an inactive task_struct that is being
 * constructed. Here we are modifying the current, active,
 * task_struct.
 */
int ksys_unshare(unsigned long unshare_flags)
{
	struct fs_struct *fs, *new_fs = NULL;
	struct files_struct *fd, *new_fd = NULL;
	struct cred *new_cred = NULL;
	struct nsproxy *new_nsproxy = NULL;
	int do_sysvsem = 0;
	int err;

	/*
	 * If unsharing a user namespace must also unshare the thread group
	 * and unshare the filesystem root and working directories.
	 */
	if (unshare_flags & CLONE_NEWUSER)
		unshare_flags |= CLONE_THREAD | CLONE_FS;
	/*
	 * If unsharing vm, must also unshare signal handlers.
	 */
	if (unshare_flags & CLONE_VM)
		unshare_flags |= CLONE_SIGHAND;
	/*
	 * If unsharing a signal handlers, must also unshare the signal queues.
	 */
	if (unshare_flags & CLONE_SIGHAND)
		unshare_flags |= CLONE_THREAD;
	/*
	 * If unsharing namespace, must also unshare filesystem information.
	 */
	if (unshare_flags & CLONE_NEWNS)
		unshare_flags |= CLONE_FS;

	err = check_unshare_flags(unshare_flags);
	if (err)
		goto bad_unshare_out;
	/*
	 * CLONE_NEWIPC must also detach from the undolist: after switching
	 * to a new ipc namespace, the semaphore arrays from the old
	 * namespace are unreachable.
	 */
	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
		do_sysvsem = 1;
	err = unshare_fs(unshare_flags, &new_fs);
	if (err)
		goto bad_unshare_out;
	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
	if (err)
		goto bad_unshare_cleanup_fs;
	err = unshare_userns(unshare_flags, &new_cred);
	if (err)
		goto bad_unshare_cleanup_fd;
	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
					 new_cred, new_fs);
	if (err)
		goto bad_unshare_cleanup_cred;

	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
		if (do_sysvsem) {
			/*
			 * CLONE_SYSVSEM is equivalent to sys_exit().
			 */
			exit_sem(current);
		}
		if (unshare_flags & CLONE_NEWIPC) {
			/* Orphan segments in old ns (see sem above). */
			exit_shm(current);
			shm_init_task(current);
		}

		if (new_nsproxy)
			switch_task_namespaces(current, new_nsproxy);

		task_lock(current);

		if (new_fs) {
			fs = current->fs;
			spin_lock(&fs->lock);
			current->fs = new_fs;
			if (--fs->users)
				new_fs = NULL;
			else
				new_fs = fs;
			spin_unlock(&fs->lock);
		}

		if (new_fd) {
			fd = current->files;
			current->files = new_fd;
			new_fd = fd;
		}

		task_unlock(current);

		if (new_cred) {
			/* Install the new user namespace */
			commit_creds(new_cred);
			new_cred = NULL;
		}
	}

	perf_event_namespaces(current);

bad_unshare_cleanup_cred:
	if (new_cred)
		put_cred(new_cred);
bad_unshare_cleanup_fd:
	if (new_fd)
		put_files_struct(new_fd);

bad_unshare_cleanup_fs:
	if (new_fs)
		free_fs_struct(new_fs);

bad_unshare_out:
	return err;
}

SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
{
	return ksys_unshare(unshare_flags);
}

/*
 *	Helper to unshare the files of the current task.
 *	We don't want to expose copy_files internals to
 *	the exec layer of the kernel.
 */

int unshare_files(struct files_struct **displaced)
{
	struct task_struct *task = current;
	struct files_struct *copy = NULL;
	int error;

	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
	if (error || !copy) {
		*displaced = NULL;
		return error;
	}
	*displaced = task->files;
	task_lock(task);
	task->files = copy;
	task_unlock(task);
	return 0;
}

int sysctl_max_threads(struct ctl_table *table, int write,
		       void *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int ret;
	int threads = max_threads;
	int min = 1;
	int max = MAX_THREADS;

	t = *table;
	t.data = &threads;
	t.extra1 = &min;
	t.extra2 = &max;

	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (ret || !write)
		return ret;

	max_threads = threads;

	return 0;
}