curve25519-fiat32.c 29.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
 * Copyright (C) 2015-2016 The fiat-crypto Authors.
 * Copyright (C) 2018-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 *
 * This is a machine-generated formally verified implementation of Curve25519
 * ECDH from: <https://github.com/mit-plv/fiat-crypto>. Though originally
 * machine generated, it has been tweaked to be suitable for use in the kernel.
 * It is optimized for 32-bit machines and machines that cannot work efficiently
 * with 128-bit integer types.
 */

#include <asm/unaligned.h>
#include <crypto/curve25519.h>
#include <linux/string.h>

/* fe means field element. Here the field is \Z/(2^255-19). An element t,
 * entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
 * t[3]+2^102 t[4]+...+2^230 t[9].
 * fe limbs are bounded by 1.125*2^26,1.125*2^25,1.125*2^26,1.125*2^25,etc.
 * Multiplication and carrying produce fe from fe_loose.
 */
typedef struct fe { u32 v[10]; } fe;

/* fe_loose limbs are bounded by 3.375*2^26,3.375*2^25,3.375*2^26,3.375*2^25,etc
 * Addition and subtraction produce fe_loose from (fe, fe).
 */
typedef struct fe_loose { u32 v[10]; } fe_loose;

static __always_inline void fe_frombytes_impl(u32 h[10], const u8 *s)
{
	/* Ignores top bit of s. */
	u32 a0 = get_unaligned_le32(s);
	u32 a1 = get_unaligned_le32(s+4);
	u32 a2 = get_unaligned_le32(s+8);
	u32 a3 = get_unaligned_le32(s+12);
	u32 a4 = get_unaligned_le32(s+16);
	u32 a5 = get_unaligned_le32(s+20);
	u32 a6 = get_unaligned_le32(s+24);
	u32 a7 = get_unaligned_le32(s+28);
	h[0] = a0&((1<<26)-1);                    /* 26 used, 32-26 left.   26 */
	h[1] = (a0>>26) | ((a1&((1<<19)-1))<< 6); /* (32-26) + 19 =  6+19 = 25 */
	h[2] = (a1>>19) | ((a2&((1<<13)-1))<<13); /* (32-19) + 13 = 13+13 = 26 */
	h[3] = (a2>>13) | ((a3&((1<< 6)-1))<<19); /* (32-13) +  6 = 19+ 6 = 25 */
	h[4] = (a3>> 6);                          /* (32- 6)              = 26 */
	h[5] = a4&((1<<25)-1);                    /*                        25 */
	h[6] = (a4>>25) | ((a5&((1<<19)-1))<< 7); /* (32-25) + 19 =  7+19 = 26 */
	h[7] = (a5>>19) | ((a6&((1<<12)-1))<<13); /* (32-19) + 12 = 13+12 = 25 */
	h[8] = (a6>>12) | ((a7&((1<< 6)-1))<<20); /* (32-12) +  6 = 20+ 6 = 26 */
	h[9] = (a7>> 6)&((1<<25)-1); /*                                     25 */
}

static __always_inline void fe_frombytes(fe *h, const u8 *s)
{
	fe_frombytes_impl(h->v, s);
}

static __always_inline u8 /*bool*/
addcarryx_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
{
	/* This function extracts 25 bits of result and 1 bit of carry
	 * (26 total), so a 32-bit intermediate is sufficient.
	 */
	u32 x = a + b + c;
	*low = x & ((1 << 25) - 1);
	return (x >> 25) & 1;
}

static __always_inline u8 /*bool*/
addcarryx_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
{
	/* This function extracts 26 bits of result and 1 bit of carry
	 * (27 total), so a 32-bit intermediate is sufficient.
	 */
	u32 x = a + b + c;
	*low = x & ((1 << 26) - 1);
	return (x >> 26) & 1;
}

static __always_inline u8 /*bool*/
subborrow_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
{
	/* This function extracts 25 bits of result and 1 bit of borrow
	 * (26 total), so a 32-bit intermediate is sufficient.
	 */
	u32 x = a - b - c;
	*low = x & ((1 << 25) - 1);
	return x >> 31;
}

static __always_inline u8 /*bool*/
subborrow_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
{
	/* This function extracts 26 bits of result and 1 bit of borrow
	 *(27 total), so a 32-bit intermediate is sufficient.
	 */
	u32 x = a - b - c;
	*low = x & ((1 << 26) - 1);
	return x >> 31;
}

static __always_inline u32 cmovznz32(u32 t, u32 z, u32 nz)
{
	t = -!!t; /* all set if nonzero, 0 if 0 */
	return (t&nz) | ((~t)&z);
}

static __always_inline void fe_freeze(u32 out[10], const u32 in1[10])
{
	{ const u32 x17 = in1[9];
	{ const u32 x18 = in1[8];
	{ const u32 x16 = in1[7];
	{ const u32 x14 = in1[6];
	{ const u32 x12 = in1[5];
	{ const u32 x10 = in1[4];
	{ const u32 x8 = in1[3];
	{ const u32 x6 = in1[2];
	{ const u32 x4 = in1[1];
	{ const u32 x2 = in1[0];
	{ u32 x20; u8/*bool*/ x21 = subborrow_u26(0x0, x2, 0x3ffffed, &x20);
	{ u32 x23; u8/*bool*/ x24 = subborrow_u25(x21, x4, 0x1ffffff, &x23);
	{ u32 x26; u8/*bool*/ x27 = subborrow_u26(x24, x6, 0x3ffffff, &x26);
	{ u32 x29; u8/*bool*/ x30 = subborrow_u25(x27, x8, 0x1ffffff, &x29);
	{ u32 x32; u8/*bool*/ x33 = subborrow_u26(x30, x10, 0x3ffffff, &x32);
	{ u32 x35; u8/*bool*/ x36 = subborrow_u25(x33, x12, 0x1ffffff, &x35);
	{ u32 x38; u8/*bool*/ x39 = subborrow_u26(x36, x14, 0x3ffffff, &x38);
	{ u32 x41; u8/*bool*/ x42 = subborrow_u25(x39, x16, 0x1ffffff, &x41);
	{ u32 x44; u8/*bool*/ x45 = subborrow_u26(x42, x18, 0x3ffffff, &x44);
	{ u32 x47; u8/*bool*/ x48 = subborrow_u25(x45, x17, 0x1ffffff, &x47);
	{ u32 x49 = cmovznz32(x48, 0x0, 0xffffffff);
	{ u32 x50 = (x49 & 0x3ffffed);
	{ u32 x52; u8/*bool*/ x53 = addcarryx_u26(0x0, x20, x50, &x52);
	{ u32 x54 = (x49 & 0x1ffffff);
	{ u32 x56; u8/*bool*/ x57 = addcarryx_u25(x53, x23, x54, &x56);
	{ u32 x58 = (x49 & 0x3ffffff);
	{ u32 x60; u8/*bool*/ x61 = addcarryx_u26(x57, x26, x58, &x60);
	{ u32 x62 = (x49 & 0x1ffffff);
	{ u32 x64; u8/*bool*/ x65 = addcarryx_u25(x61, x29, x62, &x64);
	{ u32 x66 = (x49 & 0x3ffffff);
	{ u32 x68; u8/*bool*/ x69 = addcarryx_u26(x65, x32, x66, &x68);
	{ u32 x70 = (x49 & 0x1ffffff);
	{ u32 x72; u8/*bool*/ x73 = addcarryx_u25(x69, x35, x70, &x72);
	{ u32 x74 = (x49 & 0x3ffffff);
	{ u32 x76; u8/*bool*/ x77 = addcarryx_u26(x73, x38, x74, &x76);
	{ u32 x78 = (x49 & 0x1ffffff);
	{ u32 x80; u8/*bool*/ x81 = addcarryx_u25(x77, x41, x78, &x80);
	{ u32 x82 = (x49 & 0x3ffffff);
	{ u32 x84; u8/*bool*/ x85 = addcarryx_u26(x81, x44, x82, &x84);
	{ u32 x86 = (x49 & 0x1ffffff);
	{ u32 x88; addcarryx_u25(x85, x47, x86, &x88);
	out[0] = x52;
	out[1] = x56;
	out[2] = x60;
	out[3] = x64;
	out[4] = x68;
	out[5] = x72;
	out[6] = x76;
	out[7] = x80;
	out[8] = x84;
	out[9] = x88;
	}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
}

static __always_inline void fe_tobytes(u8 s[32], const fe *f)
{
	u32 h[10];
	fe_freeze(h, f->v);
	s[0] = h[0] >> 0;
	s[1] = h[0] >> 8;
	s[2] = h[0] >> 16;
	s[3] = (h[0] >> 24) | (h[1] << 2);
	s[4] = h[1] >> 6;
	s[5] = h[1] >> 14;
	s[6] = (h[1] >> 22) | (h[2] << 3);
	s[7] = h[2] >> 5;
	s[8] = h[2] >> 13;
	s[9] = (h[2] >> 21) | (h[3] << 5);
	s[10] = h[3] >> 3;
	s[11] = h[3] >> 11;
	s[12] = (h[3] >> 19) | (h[4] << 6);
	s[13] = h[4] >> 2;
	s[14] = h[4] >> 10;
	s[15] = h[4] >> 18;
	s[16] = h[5] >> 0;
	s[17] = h[5] >> 8;
	s[18] = h[5] >> 16;
	s[19] = (h[5] >> 24) | (h[6] << 1);
	s[20] = h[6] >> 7;
	s[21] = h[6] >> 15;
	s[22] = (h[6] >> 23) | (h[7] << 3);
	s[23] = h[7] >> 5;
	s[24] = h[7] >> 13;
	s[25] = (h[7] >> 21) | (h[8] << 4);
	s[26] = h[8] >> 4;
	s[27] = h[8] >> 12;
	s[28] = (h[8] >> 20) | (h[9] << 6);
	s[29] = h[9] >> 2;
	s[30] = h[9] >> 10;
	s[31] = h[9] >> 18;
}

/* h = f */
static __always_inline void fe_copy(fe *h, const fe *f)
{
	memmove(h, f, sizeof(u32) * 10);
}

static __always_inline void fe_copy_lt(fe_loose *h, const fe *f)
{
	memmove(h, f, sizeof(u32) * 10);
}

/* h = 0 */
static __always_inline void fe_0(fe *h)
{
	memset(h, 0, sizeof(u32) * 10);
}

/* h = 1 */
static __always_inline void fe_1(fe *h)
{
	memset(h, 0, sizeof(u32) * 10);
	h->v[0] = 1;
}

static noinline void fe_add_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
{
	{ const u32 x20 = in1[9];
	{ const u32 x21 = in1[8];
	{ const u32 x19 = in1[7];
	{ const u32 x17 = in1[6];
	{ const u32 x15 = in1[5];
	{ const u32 x13 = in1[4];
	{ const u32 x11 = in1[3];
	{ const u32 x9 = in1[2];
	{ const u32 x7 = in1[1];
	{ const u32 x5 = in1[0];
	{ const u32 x38 = in2[9];
	{ const u32 x39 = in2[8];
	{ const u32 x37 = in2[7];
	{ const u32 x35 = in2[6];
	{ const u32 x33 = in2[5];
	{ const u32 x31 = in2[4];
	{ const u32 x29 = in2[3];
	{ const u32 x27 = in2[2];
	{ const u32 x25 = in2[1];
	{ const u32 x23 = in2[0];
	out[0] = (x5 + x23);
	out[1] = (x7 + x25);
	out[2] = (x9 + x27);
	out[3] = (x11 + x29);
	out[4] = (x13 + x31);
	out[5] = (x15 + x33);
	out[6] = (x17 + x35);
	out[7] = (x19 + x37);
	out[8] = (x21 + x39);
	out[9] = (x20 + x38);
	}}}}}}}}}}}}}}}}}}}}
}

/* h = f + g
 * Can overlap h with f or g.
 */
static __always_inline void fe_add(fe_loose *h, const fe *f, const fe *g)
{
	fe_add_impl(h->v, f->v, g->v);
}

static noinline void fe_sub_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
{
	{ const u32 x20 = in1[9];
	{ const u32 x21 = in1[8];
	{ const u32 x19 = in1[7];
	{ const u32 x17 = in1[6];
	{ const u32 x15 = in1[5];
	{ const u32 x13 = in1[4];
	{ const u32 x11 = in1[3];
	{ const u32 x9 = in1[2];
	{ const u32 x7 = in1[1];
	{ const u32 x5 = in1[0];
	{ const u32 x38 = in2[9];
	{ const u32 x39 = in2[8];
	{ const u32 x37 = in2[7];
	{ const u32 x35 = in2[6];
	{ const u32 x33 = in2[5];
	{ const u32 x31 = in2[4];
	{ const u32 x29 = in2[3];
	{ const u32 x27 = in2[2];
	{ const u32 x25 = in2[1];
	{ const u32 x23 = in2[0];
	out[0] = ((0x7ffffda + x5) - x23);
	out[1] = ((0x3fffffe + x7) - x25);
	out[2] = ((0x7fffffe + x9) - x27);
	out[3] = ((0x3fffffe + x11) - x29);
	out[4] = ((0x7fffffe + x13) - x31);
	out[5] = ((0x3fffffe + x15) - x33);
	out[6] = ((0x7fffffe + x17) - x35);
	out[7] = ((0x3fffffe + x19) - x37);
	out[8] = ((0x7fffffe + x21) - x39);
	out[9] = ((0x3fffffe + x20) - x38);
	}}}}}}}}}}}}}}}}}}}}
}

/* h = f - g
 * Can overlap h with f or g.
 */
static __always_inline void fe_sub(fe_loose *h, const fe *f, const fe *g)
{
	fe_sub_impl(h->v, f->v, g->v);
}

static noinline void fe_mul_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
{
	{ const u32 x20 = in1[9];
	{ const u32 x21 = in1[8];
	{ const u32 x19 = in1[7];
	{ const u32 x17 = in1[6];
	{ const u32 x15 = in1[5];
	{ const u32 x13 = in1[4];
	{ const u32 x11 = in1[3];
	{ const u32 x9 = in1[2];
	{ const u32 x7 = in1[1];
	{ const u32 x5 = in1[0];
	{ const u32 x38 = in2[9];
	{ const u32 x39 = in2[8];
	{ const u32 x37 = in2[7];
	{ const u32 x35 = in2[6];
	{ const u32 x33 = in2[5];
	{ const u32 x31 = in2[4];
	{ const u32 x29 = in2[3];
	{ const u32 x27 = in2[2];
	{ const u32 x25 = in2[1];
	{ const u32 x23 = in2[0];
	{ u64 x40 = ((u64)x23 * x5);
	{ u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5));
	{ u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5));
	{ u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5));
	{ u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5));
	{ u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5));
	{ u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5));
	{ u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5));
	{ u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5));
	{ u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5));
	{ u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9));
	{ u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9));
	{ u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13));
	{ u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13));
	{ u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17));
	{ u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17));
	{ u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19))));
	{ u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21));
	{ u64 x58 = ((u64)(0x2 * x38) * x20);
	{ u64 x59 = (x48 + (x58 << 0x4));
	{ u64 x60 = (x59 + (x58 << 0x1));
	{ u64 x61 = (x60 + x58);
	{ u64 x62 = (x47 + (x57 << 0x4));
	{ u64 x63 = (x62 + (x57 << 0x1));
	{ u64 x64 = (x63 + x57);
	{ u64 x65 = (x46 + (x56 << 0x4));
	{ u64 x66 = (x65 + (x56 << 0x1));
	{ u64 x67 = (x66 + x56);
	{ u64 x68 = (x45 + (x55 << 0x4));
	{ u64 x69 = (x68 + (x55 << 0x1));
	{ u64 x70 = (x69 + x55);
	{ u64 x71 = (x44 + (x54 << 0x4));
	{ u64 x72 = (x71 + (x54 << 0x1));
	{ u64 x73 = (x72 + x54);
	{ u64 x74 = (x43 + (x53 << 0x4));
	{ u64 x75 = (x74 + (x53 << 0x1));
	{ u64 x76 = (x75 + x53);
	{ u64 x77 = (x42 + (x52 << 0x4));
	{ u64 x78 = (x77 + (x52 << 0x1));
	{ u64 x79 = (x78 + x52);
	{ u64 x80 = (x41 + (x51 << 0x4));
	{ u64 x81 = (x80 + (x51 << 0x1));
	{ u64 x82 = (x81 + x51);
	{ u64 x83 = (x40 + (x50 << 0x4));
	{ u64 x84 = (x83 + (x50 << 0x1));
	{ u64 x85 = (x84 + x50);
	{ u64 x86 = (x85 >> 0x1a);
	{ u32 x87 = ((u32)x85 & 0x3ffffff);
	{ u64 x88 = (x86 + x82);
	{ u64 x89 = (x88 >> 0x19);
	{ u32 x90 = ((u32)x88 & 0x1ffffff);
	{ u64 x91 = (x89 + x79);
	{ u64 x92 = (x91 >> 0x1a);
	{ u32 x93 = ((u32)x91 & 0x3ffffff);
	{ u64 x94 = (x92 + x76);
	{ u64 x95 = (x94 >> 0x19);
	{ u32 x96 = ((u32)x94 & 0x1ffffff);
	{ u64 x97 = (x95 + x73);
	{ u64 x98 = (x97 >> 0x1a);
	{ u32 x99 = ((u32)x97 & 0x3ffffff);
	{ u64 x100 = (x98 + x70);
	{ u64 x101 = (x100 >> 0x19);
	{ u32 x102 = ((u32)x100 & 0x1ffffff);
	{ u64 x103 = (x101 + x67);
	{ u64 x104 = (x103 >> 0x1a);
	{ u32 x105 = ((u32)x103 & 0x3ffffff);
	{ u64 x106 = (x104 + x64);
	{ u64 x107 = (x106 >> 0x19);
	{ u32 x108 = ((u32)x106 & 0x1ffffff);
	{ u64 x109 = (x107 + x61);
	{ u64 x110 = (x109 >> 0x1a);
	{ u32 x111 = ((u32)x109 & 0x3ffffff);
	{ u64 x112 = (x110 + x49);
	{ u64 x113 = (x112 >> 0x19);
	{ u32 x114 = ((u32)x112 & 0x1ffffff);
	{ u64 x115 = (x87 + (0x13 * x113));
	{ u32 x116 = (u32) (x115 >> 0x1a);
	{ u32 x117 = ((u32)x115 & 0x3ffffff);
	{ u32 x118 = (x116 + x90);
	{ u32 x119 = (x118 >> 0x19);
	{ u32 x120 = (x118 & 0x1ffffff);
	out[0] = x117;
	out[1] = x120;
	out[2] = (x119 + x93);
	out[3] = x96;
	out[4] = x99;
	out[5] = x102;
	out[6] = x105;
	out[7] = x108;
	out[8] = x111;
	out[9] = x114;
	}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
}

static __always_inline void fe_mul_ttt(fe *h, const fe *f, const fe *g)
{
	fe_mul_impl(h->v, f->v, g->v);
}

static __always_inline void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g)
{
	fe_mul_impl(h->v, f->v, g->v);
}

static __always_inline void
fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g)
{
	fe_mul_impl(h->v, f->v, g->v);
}

static noinline void fe_sqr_impl(u32 out[10], const u32 in1[10])
{
	{ const u32 x17 = in1[9];
	{ const u32 x18 = in1[8];
	{ const u32 x16 = in1[7];
	{ const u32 x14 = in1[6];
	{ const u32 x12 = in1[5];
	{ const u32 x10 = in1[4];
	{ const u32 x8 = in1[3];
	{ const u32 x6 = in1[2];
	{ const u32 x4 = in1[1];
	{ const u32 x2 = in1[0];
	{ u64 x19 = ((u64)x2 * x2);
	{ u64 x20 = ((u64)(0x2 * x2) * x4);
	{ u64 x21 = (0x2 * (((u64)x4 * x4) + ((u64)x2 * x6)));
	{ u64 x22 = (0x2 * (((u64)x4 * x6) + ((u64)x2 * x8)));
	{ u64 x23 = ((((u64)x6 * x6) + ((u64)(0x4 * x4) * x8)) + ((u64)(0x2 * x2) * x10));
	{ u64 x24 = (0x2 * ((((u64)x6 * x8) + ((u64)x4 * x10)) + ((u64)x2 * x12)));
	{ u64 x25 = (0x2 * (((((u64)x8 * x8) + ((u64)x6 * x10)) + ((u64)x2 * x14)) + ((u64)(0x2 * x4) * x12)));
	{ u64 x26 = (0x2 * (((((u64)x8 * x10) + ((u64)x6 * x12)) + ((u64)x4 * x14)) + ((u64)x2 * x16)));
	{ u64 x27 = (((u64)x10 * x10) + (0x2 * ((((u64)x6 * x14) + ((u64)x2 * x18)) + (0x2 * (((u64)x4 * x16) + ((u64)x8 * x12))))));
	{ u64 x28 = (0x2 * ((((((u64)x10 * x12) + ((u64)x8 * x14)) + ((u64)x6 * x16)) + ((u64)x4 * x18)) + ((u64)x2 * x17)));
	{ u64 x29 = (0x2 * (((((u64)x12 * x12) + ((u64)x10 * x14)) + ((u64)x6 * x18)) + (0x2 * (((u64)x8 * x16) + ((u64)x4 * x17)))));
	{ u64 x30 = (0x2 * (((((u64)x12 * x14) + ((u64)x10 * x16)) + ((u64)x8 * x18)) + ((u64)x6 * x17)));
	{ u64 x31 = (((u64)x14 * x14) + (0x2 * (((u64)x10 * x18) + (0x2 * (((u64)x12 * x16) + ((u64)x8 * x17))))));
	{ u64 x32 = (0x2 * ((((u64)x14 * x16) + ((u64)x12 * x18)) + ((u64)x10 * x17)));
	{ u64 x33 = (0x2 * ((((u64)x16 * x16) + ((u64)x14 * x18)) + ((u64)(0x2 * x12) * x17)));
	{ u64 x34 = (0x2 * (((u64)x16 * x18) + ((u64)x14 * x17)));
	{ u64 x35 = (((u64)x18 * x18) + ((u64)(0x4 * x16) * x17));
	{ u64 x36 = ((u64)(0x2 * x18) * x17);
	{ u64 x37 = ((u64)(0x2 * x17) * x17);
	{ u64 x38 = (x27 + (x37 << 0x4));
	{ u64 x39 = (x38 + (x37 << 0x1));
	{ u64 x40 = (x39 + x37);
	{ u64 x41 = (x26 + (x36 << 0x4));
	{ u64 x42 = (x41 + (x36 << 0x1));
	{ u64 x43 = (x42 + x36);
	{ u64 x44 = (x25 + (x35 << 0x4));
	{ u64 x45 = (x44 + (x35 << 0x1));
	{ u64 x46 = (x45 + x35);
	{ u64 x47 = (x24 + (x34 << 0x4));
	{ u64 x48 = (x47 + (x34 << 0x1));
	{ u64 x49 = (x48 + x34);
	{ u64 x50 = (x23 + (x33 << 0x4));
	{ u64 x51 = (x50 + (x33 << 0x1));
	{ u64 x52 = (x51 + x33);
	{ u64 x53 = (x22 + (x32 << 0x4));
	{ u64 x54 = (x53 + (x32 << 0x1));
	{ u64 x55 = (x54 + x32);
	{ u64 x56 = (x21 + (x31 << 0x4));
	{ u64 x57 = (x56 + (x31 << 0x1));
	{ u64 x58 = (x57 + x31);
	{ u64 x59 = (x20 + (x30 << 0x4));
	{ u64 x60 = (x59 + (x30 << 0x1));
	{ u64 x61 = (x60 + x30);
	{ u64 x62 = (x19 + (x29 << 0x4));
	{ u64 x63 = (x62 + (x29 << 0x1));
	{ u64 x64 = (x63 + x29);
	{ u64 x65 = (x64 >> 0x1a);
	{ u32 x66 = ((u32)x64 & 0x3ffffff);
	{ u64 x67 = (x65 + x61);
	{ u64 x68 = (x67 >> 0x19);
	{ u32 x69 = ((u32)x67 & 0x1ffffff);
	{ u64 x70 = (x68 + x58);
	{ u64 x71 = (x70 >> 0x1a);
	{ u32 x72 = ((u32)x70 & 0x3ffffff);
	{ u64 x73 = (x71 + x55);
	{ u64 x74 = (x73 >> 0x19);
	{ u32 x75 = ((u32)x73 & 0x1ffffff);
	{ u64 x76 = (x74 + x52);
	{ u64 x77 = (x76 >> 0x1a);
	{ u32 x78 = ((u32)x76 & 0x3ffffff);
	{ u64 x79 = (x77 + x49);
	{ u64 x80 = (x79 >> 0x19);
	{ u32 x81 = ((u32)x79 & 0x1ffffff);
	{ u64 x82 = (x80 + x46);
	{ u64 x83 = (x82 >> 0x1a);
	{ u32 x84 = ((u32)x82 & 0x3ffffff);
	{ u64 x85 = (x83 + x43);
	{ u64 x86 = (x85 >> 0x19);
	{ u32 x87 = ((u32)x85 & 0x1ffffff);
	{ u64 x88 = (x86 + x40);
	{ u64 x89 = (x88 >> 0x1a);
	{ u32 x90 = ((u32)x88 & 0x3ffffff);
	{ u64 x91 = (x89 + x28);
	{ u64 x92 = (x91 >> 0x19);
	{ u32 x93 = ((u32)x91 & 0x1ffffff);
	{ u64 x94 = (x66 + (0x13 * x92));
	{ u32 x95 = (u32) (x94 >> 0x1a);
	{ u32 x96 = ((u32)x94 & 0x3ffffff);
	{ u32 x97 = (x95 + x69);
	{ u32 x98 = (x97 >> 0x19);
	{ u32 x99 = (x97 & 0x1ffffff);
	out[0] = x96;
	out[1] = x99;
	out[2] = (x98 + x72);
	out[3] = x75;
	out[4] = x78;
	out[5] = x81;
	out[6] = x84;
	out[7] = x87;
	out[8] = x90;
	out[9] = x93;
	}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
}

static __always_inline void fe_sq_tl(fe *h, const fe_loose *f)
{
	fe_sqr_impl(h->v, f->v);
}

static __always_inline void fe_sq_tt(fe *h, const fe *f)
{
	fe_sqr_impl(h->v, f->v);
}

static __always_inline void fe_loose_invert(fe *out, const fe_loose *z)
{
	fe t0;
	fe t1;
	fe t2;
	fe t3;
	int i;

	fe_sq_tl(&t0, z);
	fe_sq_tt(&t1, &t0);
	for (i = 1; i < 2; ++i)
		fe_sq_tt(&t1, &t1);
	fe_mul_tlt(&t1, z, &t1);
	fe_mul_ttt(&t0, &t0, &t1);
	fe_sq_tt(&t2, &t0);
	fe_mul_ttt(&t1, &t1, &t2);
	fe_sq_tt(&t2, &t1);
	for (i = 1; i < 5; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t1, &t2, &t1);
	fe_sq_tt(&t2, &t1);
	for (i = 1; i < 10; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t2, &t2, &t1);
	fe_sq_tt(&t3, &t2);
	for (i = 1; i < 20; ++i)
		fe_sq_tt(&t3, &t3);
	fe_mul_ttt(&t2, &t3, &t2);
	fe_sq_tt(&t2, &t2);
	for (i = 1; i < 10; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t1, &t2, &t1);
	fe_sq_tt(&t2, &t1);
	for (i = 1; i < 50; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t2, &t2, &t1);
	fe_sq_tt(&t3, &t2);
	for (i = 1; i < 100; ++i)
		fe_sq_tt(&t3, &t3);
	fe_mul_ttt(&t2, &t3, &t2);
	fe_sq_tt(&t2, &t2);
	for (i = 1; i < 50; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t1, &t2, &t1);
	fe_sq_tt(&t1, &t1);
	for (i = 1; i < 5; ++i)
		fe_sq_tt(&t1, &t1);
	fe_mul_ttt(out, &t1, &t0);
}

static __always_inline void fe_invert(fe *out, const fe *z)
{
	fe_loose l;
	fe_copy_lt(&l, z);
	fe_loose_invert(out, &l);
}

/* Replace (f,g) with (g,f) if b == 1;
 * replace (f,g) with (f,g) if b == 0.
 *
 * Preconditions: b in {0,1}
 */
static noinline void fe_cswap(fe *f, fe *g, unsigned int b)
{
	unsigned i;
	b = 0 - b;
	for (i = 0; i < 10; i++) {
		u32 x = f->v[i] ^ g->v[i];
		x &= b;
		f->v[i] ^= x;
		g->v[i] ^= x;
	}
}

/* NOTE: based on fiat-crypto fe_mul, edited for in2=121666, 0, 0.*/
static __always_inline void fe_mul_121666_impl(u32 out[10], const u32 in1[10])
{
	{ const u32 x20 = in1[9];
	{ const u32 x21 = in1[8];
	{ const u32 x19 = in1[7];
	{ const u32 x17 = in1[6];
	{ const u32 x15 = in1[5];
	{ const u32 x13 = in1[4];
	{ const u32 x11 = in1[3];
	{ const u32 x9 = in1[2];
	{ const u32 x7 = in1[1];
	{ const u32 x5 = in1[0];
	{ const u32 x38 = 0;
	{ const u32 x39 = 0;
	{ const u32 x37 = 0;
	{ const u32 x35 = 0;
	{ const u32 x33 = 0;
	{ const u32 x31 = 0;
	{ const u32 x29 = 0;
	{ const u32 x27 = 0;
	{ const u32 x25 = 0;
	{ const u32 x23 = 121666;
	{ u64 x40 = ((u64)x23 * x5);
	{ u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5));
	{ u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5));
	{ u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5));
	{ u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5));
	{ u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5));
	{ u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5));
	{ u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5));
	{ u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5));
	{ u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5));
	{ u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9));
	{ u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9));
	{ u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13));
	{ u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13));
	{ u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17));
	{ u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17));
	{ u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19))));
	{ u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21));
	{ u64 x58 = ((u64)(0x2 * x38) * x20);
	{ u64 x59 = (x48 + (x58 << 0x4));
	{ u64 x60 = (x59 + (x58 << 0x1));
	{ u64 x61 = (x60 + x58);
	{ u64 x62 = (x47 + (x57 << 0x4));
	{ u64 x63 = (x62 + (x57 << 0x1));
	{ u64 x64 = (x63 + x57);
	{ u64 x65 = (x46 + (x56 << 0x4));
	{ u64 x66 = (x65 + (x56 << 0x1));
	{ u64 x67 = (x66 + x56);
	{ u64 x68 = (x45 + (x55 << 0x4));
	{ u64 x69 = (x68 + (x55 << 0x1));
	{ u64 x70 = (x69 + x55);
	{ u64 x71 = (x44 + (x54 << 0x4));
	{ u64 x72 = (x71 + (x54 << 0x1));
	{ u64 x73 = (x72 + x54);
	{ u64 x74 = (x43 + (x53 << 0x4));
	{ u64 x75 = (x74 + (x53 << 0x1));
	{ u64 x76 = (x75 + x53);
	{ u64 x77 = (x42 + (x52 << 0x4));
	{ u64 x78 = (x77 + (x52 << 0x1));
	{ u64 x79 = (x78 + x52);
	{ u64 x80 = (x41 + (x51 << 0x4));
	{ u64 x81 = (x80 + (x51 << 0x1));
	{ u64 x82 = (x81 + x51);
	{ u64 x83 = (x40 + (x50 << 0x4));
	{ u64 x84 = (x83 + (x50 << 0x1));
	{ u64 x85 = (x84 + x50);
	{ u64 x86 = (x85 >> 0x1a);
	{ u32 x87 = ((u32)x85 & 0x3ffffff);
	{ u64 x88 = (x86 + x82);
	{ u64 x89 = (x88 >> 0x19);
	{ u32 x90 = ((u32)x88 & 0x1ffffff);
	{ u64 x91 = (x89 + x79);
	{ u64 x92 = (x91 >> 0x1a);
	{ u32 x93 = ((u32)x91 & 0x3ffffff);
	{ u64 x94 = (x92 + x76);
	{ u64 x95 = (x94 >> 0x19);
	{ u32 x96 = ((u32)x94 & 0x1ffffff);
	{ u64 x97 = (x95 + x73);
	{ u64 x98 = (x97 >> 0x1a);
	{ u32 x99 = ((u32)x97 & 0x3ffffff);
	{ u64 x100 = (x98 + x70);
	{ u64 x101 = (x100 >> 0x19);
	{ u32 x102 = ((u32)x100 & 0x1ffffff);
	{ u64 x103 = (x101 + x67);
	{ u64 x104 = (x103 >> 0x1a);
	{ u32 x105 = ((u32)x103 & 0x3ffffff);
	{ u64 x106 = (x104 + x64);
	{ u64 x107 = (x106 >> 0x19);
	{ u32 x108 = ((u32)x106 & 0x1ffffff);
	{ u64 x109 = (x107 + x61);
	{ u64 x110 = (x109 >> 0x1a);
	{ u32 x111 = ((u32)x109 & 0x3ffffff);
	{ u64 x112 = (x110 + x49);
	{ u64 x113 = (x112 >> 0x19);
	{ u32 x114 = ((u32)x112 & 0x1ffffff);
	{ u64 x115 = (x87 + (0x13 * x113));
	{ u32 x116 = (u32) (x115 >> 0x1a);
	{ u32 x117 = ((u32)x115 & 0x3ffffff);
	{ u32 x118 = (x116 + x90);
	{ u32 x119 = (x118 >> 0x19);
	{ u32 x120 = (x118 & 0x1ffffff);
	out[0] = x117;
	out[1] = x120;
	out[2] = (x119 + x93);
	out[3] = x96;
	out[4] = x99;
	out[5] = x102;
	out[6] = x105;
	out[7] = x108;
	out[8] = x111;
	out[9] = x114;
	}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
}

static __always_inline void fe_mul121666(fe *h, const fe_loose *f)
{
	fe_mul_121666_impl(h->v, f->v);
}

void curve25519_generic(u8 out[CURVE25519_KEY_SIZE],
			const u8 scalar[CURVE25519_KEY_SIZE],
			const u8 point[CURVE25519_KEY_SIZE])
{
	fe x1, x2, z2, x3, z3;
	fe_loose x2l, z2l, x3l;
	unsigned swap = 0;
	int pos;
	u8 e[32];

	memcpy(e, scalar, 32);
	curve25519_clamp_secret(e);

	/* The following implementation was transcribed to Coq and proven to
	 * correspond to unary scalar multiplication in affine coordinates given
	 * that x1 != 0 is the x coordinate of some point on the curve. It was
	 * also checked in Coq that doing a ladderstep with x1 = x3 = 0 gives
	 * z2' = z3' = 0, and z2 = z3 = 0 gives z2' = z3' = 0. The statement was
	 * quantified over the underlying field, so it applies to Curve25519
	 * itself and the quadratic twist of Curve25519. It was not proven in
	 * Coq that prime-field arithmetic correctly simulates extension-field
	 * arithmetic on prime-field values. The decoding of the byte array
	 * representation of e was not considered.
	 *
	 * Specification of Montgomery curves in affine coordinates:
	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27>
	 *
	 * Proof that these form a group that is isomorphic to a Weierstrass
	 * curve:
	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35>
	 *
	 * Coq transcription and correctness proof of the loop
	 * (where scalarbits=255):
	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118>
	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278>
	 * preconditions: 0 <= e < 2^255 (not necessarily e < order),
	 * fe_invert(0) = 0
	 */
	fe_frombytes(&x1, point);
	fe_1(&x2);
	fe_0(&z2);
	fe_copy(&x3, &x1);
	fe_1(&z3);

	for (pos = 254; pos >= 0; --pos) {
		fe tmp0, tmp1;
		fe_loose tmp0l, tmp1l;
		/* loop invariant as of right before the test, for the case
		 * where x1 != 0:
		 *   pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3
		 *   is nonzero
		 *   let r := e >> (pos+1) in the following equalities of
		 *   projective points:
		 *   to_xz (r*P)     === if swap then (x3, z3) else (x2, z2)
		 *   to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3)
		 *   x1 is the nonzero x coordinate of the nonzero
		 *   point (r*P-(r+1)*P)
		 */
		unsigned b = 1 & (e[pos / 8] >> (pos & 7));
		swap ^= b;
		fe_cswap(&x2, &x3, swap);
		fe_cswap(&z2, &z3, swap);
		swap = b;
		/* Coq transcription of ladderstep formula (called from
		 * transcribed loop):
		 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89>
		 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131>
		 * x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217>
		 * x1  = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147>
		 */
		fe_sub(&tmp0l, &x3, &z3);
		fe_sub(&tmp1l, &x2, &z2);
		fe_add(&x2l, &x2, &z2);
		fe_add(&z2l, &x3, &z3);
		fe_mul_tll(&z3, &tmp0l, &x2l);
		fe_mul_tll(&z2, &z2l, &tmp1l);
		fe_sq_tl(&tmp0, &tmp1l);
		fe_sq_tl(&tmp1, &x2l);
		fe_add(&x3l, &z3, &z2);
		fe_sub(&z2l, &z3, &z2);
		fe_mul_ttt(&x2, &tmp1, &tmp0);
		fe_sub(&tmp1l, &tmp1, &tmp0);
		fe_sq_tl(&z2, &z2l);
		fe_mul121666(&z3, &tmp1l);
		fe_sq_tl(&x3, &x3l);
		fe_add(&tmp0l, &tmp0, &z3);
		fe_mul_ttt(&z3, &x1, &z2);
		fe_mul_tll(&z2, &tmp1l, &tmp0l);
	}
	/* here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3)
	 * else (x2, z2)
	 */
	fe_cswap(&x2, &x3, swap);
	fe_cswap(&z2, &z3, swap);

	fe_invert(&z2, &z2);
	fe_mul_ttt(&x2, &x2, &z2);
	fe_tobytes(out, &x2);

	memzero_explicit(&x1, sizeof(x1));
	memzero_explicit(&x2, sizeof(x2));
	memzero_explicit(&z2, sizeof(z2));
	memzero_explicit(&x3, sizeof(x3));
	memzero_explicit(&z3, sizeof(z3));
	memzero_explicit(&x2l, sizeof(x2l));
	memzero_explicit(&z2l, sizeof(z2l));
	memzero_explicit(&x3l, sizeof(x3l));
	memzero_explicit(&e, sizeof(e));
}