xdp_redirect_cpu_kern.c 17.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
/*  XDP redirect to CPUs via cpumap (BPF_MAP_TYPE_CPUMAP)
 *
 *  GPLv2, Copyright(c) 2017 Jesper Dangaard Brouer, Red Hat, Inc.
 */
#include <uapi/linux/if_ether.h>
#include <uapi/linux/if_packet.h>
#include <uapi/linux/if_vlan.h>
#include <uapi/linux/ip.h>
#include <uapi/linux/ipv6.h>
#include <uapi/linux/in.h>
#include <uapi/linux/tcp.h>
#include <uapi/linux/udp.h>

#include <uapi/linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include "hash_func01.h"

#define MAX_CPUS NR_CPUS

/* Special map type that can XDP_REDIRECT frames to another CPU */
struct {
	__uint(type, BPF_MAP_TYPE_CPUMAP);
	__uint(key_size, sizeof(u32));
	__uint(value_size, sizeof(struct bpf_cpumap_val));
	__uint(max_entries, MAX_CPUS);
} cpu_map SEC(".maps");

/* Common stats data record to keep userspace more simple */
struct datarec {
	__u64 processed;
	__u64 dropped;
	__u64 issue;
	__u64 xdp_pass;
	__u64 xdp_drop;
	__u64 xdp_redirect;
};

/* Count RX packets, as XDP bpf_prog doesn't get direct TX-success
 * feedback.  Redirect TX errors can be caught via a tracepoint.
 */
struct {
	__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
	__type(key, u32);
	__type(value, struct datarec);
	__uint(max_entries, 1);
} rx_cnt SEC(".maps");

/* Used by trace point */
struct {
	__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
	__type(key, u32);
	__type(value, struct datarec);
	__uint(max_entries, 2);
	/* TODO: have entries for all possible errno's */
} redirect_err_cnt SEC(".maps");

/* Used by trace point */
struct {
	__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
	__type(key, u32);
	__type(value, struct datarec);
	__uint(max_entries, MAX_CPUS);
} cpumap_enqueue_cnt SEC(".maps");

/* Used by trace point */
struct {
	__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
	__type(key, u32);
	__type(value, struct datarec);
	__uint(max_entries, 1);
} cpumap_kthread_cnt SEC(".maps");

/* Set of maps controlling available CPU, and for iterating through
 * selectable redirect CPUs.
 */
struct {
	__uint(type, BPF_MAP_TYPE_ARRAY);
	__type(key, u32);
	__type(value, u32);
	__uint(max_entries, MAX_CPUS);
} cpus_available SEC(".maps");
struct {
	__uint(type, BPF_MAP_TYPE_ARRAY);
	__type(key, u32);
	__type(value, u32);
	__uint(max_entries, 1);
} cpus_count SEC(".maps");
struct {
	__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
	__type(key, u32);
	__type(value, u32);
	__uint(max_entries, 1);
} cpus_iterator SEC(".maps");

/* Used by trace point */
struct {
	__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
	__type(key, u32);
	__type(value, struct datarec);
	__uint(max_entries, 1);
} exception_cnt SEC(".maps");

/* Helper parse functions */

/* Parse Ethernet layer 2, extract network layer 3 offset and protocol
 *
 * Returns false on error and non-supported ether-type
 */
struct vlan_hdr {
	__be16 h_vlan_TCI;
	__be16 h_vlan_encapsulated_proto;
};

static __always_inline
bool parse_eth(struct ethhdr *eth, void *data_end,
	       u16 *eth_proto, u64 *l3_offset)
{
	u16 eth_type;
	u64 offset;

	offset = sizeof(*eth);
	if ((void *)eth + offset > data_end)
		return false;

	eth_type = eth->h_proto;

	/* Skip non 802.3 Ethertypes */
	if (unlikely(ntohs(eth_type) < ETH_P_802_3_MIN))
		return false;

	/* Handle VLAN tagged packet */
	if (eth_type == htons(ETH_P_8021Q) || eth_type == htons(ETH_P_8021AD)) {
		struct vlan_hdr *vlan_hdr;

		vlan_hdr = (void *)eth + offset;
		offset += sizeof(*vlan_hdr);
		if ((void *)eth + offset > data_end)
			return false;
		eth_type = vlan_hdr->h_vlan_encapsulated_proto;
	}
	/* Handle double VLAN tagged packet */
	if (eth_type == htons(ETH_P_8021Q) || eth_type == htons(ETH_P_8021AD)) {
		struct vlan_hdr *vlan_hdr;

		vlan_hdr = (void *)eth + offset;
		offset += sizeof(*vlan_hdr);
		if ((void *)eth + offset > data_end)
			return false;
		eth_type = vlan_hdr->h_vlan_encapsulated_proto;
	}

	*eth_proto = ntohs(eth_type);
	*l3_offset = offset;
	return true;
}

static __always_inline
u16 get_dest_port_ipv4_udp(struct xdp_md *ctx, u64 nh_off)
{
	void *data_end = (void *)(long)ctx->data_end;
	void *data     = (void *)(long)ctx->data;
	struct iphdr *iph = data + nh_off;
	struct udphdr *udph;
	u16 dport;

	if (iph + 1 > data_end)
		return 0;
	if (!(iph->protocol == IPPROTO_UDP))
		return 0;

	udph = (void *)(iph + 1);
	if (udph + 1 > data_end)
		return 0;

	dport = ntohs(udph->dest);
	return dport;
}

static __always_inline
int get_proto_ipv4(struct xdp_md *ctx, u64 nh_off)
{
	void *data_end = (void *)(long)ctx->data_end;
	void *data     = (void *)(long)ctx->data;
	struct iphdr *iph = data + nh_off;

	if (iph + 1 > data_end)
		return 0;
	return iph->protocol;
}

static __always_inline
int get_proto_ipv6(struct xdp_md *ctx, u64 nh_off)
{
	void *data_end = (void *)(long)ctx->data_end;
	void *data     = (void *)(long)ctx->data;
	struct ipv6hdr *ip6h = data + nh_off;

	if (ip6h + 1 > data_end)
		return 0;
	return ip6h->nexthdr;
}

SEC("xdp_cpu_map0")
int  xdp_prognum0_no_touch(struct xdp_md *ctx)
{
	void *data_end = (void *)(long)ctx->data_end;
	void *data     = (void *)(long)ctx->data;
	struct datarec *rec;
	u32 *cpu_selected;
	u32 cpu_dest;
	u32 key = 0;

	/* Only use first entry in cpus_available */
	cpu_selected = bpf_map_lookup_elem(&cpus_available, &key);
	if (!cpu_selected)
		return XDP_ABORTED;
	cpu_dest = *cpu_selected;

	/* Count RX packet in map */
	rec = bpf_map_lookup_elem(&rx_cnt, &key);
	if (!rec)
		return XDP_ABORTED;
	rec->processed++;

	if (cpu_dest >= MAX_CPUS) {
		rec->issue++;
		return XDP_ABORTED;
	}

	return bpf_redirect_map(&cpu_map, cpu_dest, 0);
}

SEC("xdp_cpu_map1_touch_data")
int  xdp_prognum1_touch_data(struct xdp_md *ctx)
{
	void *data_end = (void *)(long)ctx->data_end;
	void *data     = (void *)(long)ctx->data;
	struct ethhdr *eth = data;
	struct datarec *rec;
	u32 *cpu_selected;
	u32 cpu_dest;
	u16 eth_type;
	u32 key = 0;

	/* Only use first entry in cpus_available */
	cpu_selected = bpf_map_lookup_elem(&cpus_available, &key);
	if (!cpu_selected)
		return XDP_ABORTED;
	cpu_dest = *cpu_selected;

	/* Validate packet length is minimum Eth header size */
	if (eth + 1 > data_end)
		return XDP_ABORTED;

	/* Count RX packet in map */
	rec = bpf_map_lookup_elem(&rx_cnt, &key);
	if (!rec)
		return XDP_ABORTED;
	rec->processed++;

	/* Read packet data, and use it (drop non 802.3 Ethertypes) */
	eth_type = eth->h_proto;
	if (ntohs(eth_type) < ETH_P_802_3_MIN) {
		rec->dropped++;
		return XDP_DROP;
	}

	if (cpu_dest >= MAX_CPUS) {
		rec->issue++;
		return XDP_ABORTED;
	}

	return bpf_redirect_map(&cpu_map, cpu_dest, 0);
}

SEC("xdp_cpu_map2_round_robin")
int  xdp_prognum2_round_robin(struct xdp_md *ctx)
{
	void *data_end = (void *)(long)ctx->data_end;
	void *data     = (void *)(long)ctx->data;
	struct ethhdr *eth = data;
	struct datarec *rec;
	u32 cpu_dest;
	u32 *cpu_lookup;
	u32 key0 = 0;

	u32 *cpu_selected;
	u32 *cpu_iterator;
	u32 *cpu_max;
	u32 cpu_idx;

	cpu_max = bpf_map_lookup_elem(&cpus_count, &key0);
	if (!cpu_max)
		return XDP_ABORTED;

	cpu_iterator = bpf_map_lookup_elem(&cpus_iterator, &key0);
	if (!cpu_iterator)
		return XDP_ABORTED;
	cpu_idx = *cpu_iterator;

	*cpu_iterator += 1;
	if (*cpu_iterator == *cpu_max)
		*cpu_iterator = 0;

	cpu_selected = bpf_map_lookup_elem(&cpus_available, &cpu_idx);
	if (!cpu_selected)
		return XDP_ABORTED;
	cpu_dest = *cpu_selected;

	/* Count RX packet in map */
	rec = bpf_map_lookup_elem(&rx_cnt, &key0);
	if (!rec)
		return XDP_ABORTED;
	rec->processed++;

	if (cpu_dest >= MAX_CPUS) {
		rec->issue++;
		return XDP_ABORTED;
	}

	return bpf_redirect_map(&cpu_map, cpu_dest, 0);
}

SEC("xdp_cpu_map3_proto_separate")
int  xdp_prognum3_proto_separate(struct xdp_md *ctx)
{
	void *data_end = (void *)(long)ctx->data_end;
	void *data     = (void *)(long)ctx->data;
	struct ethhdr *eth = data;
	u8 ip_proto = IPPROTO_UDP;
	struct datarec *rec;
	u16 eth_proto = 0;
	u64 l3_offset = 0;
	u32 cpu_dest = 0;
	u32 cpu_idx = 0;
	u32 *cpu_lookup;
	u32 key = 0;

	/* Count RX packet in map */
	rec = bpf_map_lookup_elem(&rx_cnt, &key);
	if (!rec)
		return XDP_ABORTED;
	rec->processed++;

	if (!(parse_eth(eth, data_end, &eth_proto, &l3_offset)))
		return XDP_PASS; /* Just skip */

	/* Extract L4 protocol */
	switch (eth_proto) {
	case ETH_P_IP:
		ip_proto = get_proto_ipv4(ctx, l3_offset);
		break;
	case ETH_P_IPV6:
		ip_proto = get_proto_ipv6(ctx, l3_offset);
		break;
	case ETH_P_ARP:
		cpu_idx = 0; /* ARP packet handled on separate CPU */
		break;
	default:
		cpu_idx = 0;
	}

	/* Choose CPU based on L4 protocol */
	switch (ip_proto) {
	case IPPROTO_ICMP:
	case IPPROTO_ICMPV6:
		cpu_idx = 2;
		break;
	case IPPROTO_TCP:
		cpu_idx = 0;
		break;
	case IPPROTO_UDP:
		cpu_idx = 1;
		break;
	default:
		cpu_idx = 0;
	}

	cpu_lookup = bpf_map_lookup_elem(&cpus_available, &cpu_idx);
	if (!cpu_lookup)
		return XDP_ABORTED;
	cpu_dest = *cpu_lookup;

	if (cpu_dest >= MAX_CPUS) {
		rec->issue++;
		return XDP_ABORTED;
	}

	return bpf_redirect_map(&cpu_map, cpu_dest, 0);
}

SEC("xdp_cpu_map4_ddos_filter_pktgen")
int  xdp_prognum4_ddos_filter_pktgen(struct xdp_md *ctx)
{
	void *data_end = (void *)(long)ctx->data_end;
	void *data     = (void *)(long)ctx->data;
	struct ethhdr *eth = data;
	u8 ip_proto = IPPROTO_UDP;
	struct datarec *rec;
	u16 eth_proto = 0;
	u64 l3_offset = 0;
	u32 cpu_dest = 0;
	u32 cpu_idx = 0;
	u16 dest_port;
	u32 *cpu_lookup;
	u32 key = 0;

	/* Count RX packet in map */
	rec = bpf_map_lookup_elem(&rx_cnt, &key);
	if (!rec)
		return XDP_ABORTED;
	rec->processed++;

	if (!(parse_eth(eth, data_end, &eth_proto, &l3_offset)))
		return XDP_PASS; /* Just skip */

	/* Extract L4 protocol */
	switch (eth_proto) {
	case ETH_P_IP:
		ip_proto = get_proto_ipv4(ctx, l3_offset);
		break;
	case ETH_P_IPV6:
		ip_proto = get_proto_ipv6(ctx, l3_offset);
		break;
	case ETH_P_ARP:
		cpu_idx = 0; /* ARP packet handled on separate CPU */
		break;
	default:
		cpu_idx = 0;
	}

	/* Choose CPU based on L4 protocol */
	switch (ip_proto) {
	case IPPROTO_ICMP:
	case IPPROTO_ICMPV6:
		cpu_idx = 2;
		break;
	case IPPROTO_TCP:
		cpu_idx = 0;
		break;
	case IPPROTO_UDP:
		cpu_idx = 1;
		/* DDoS filter UDP port 9 (pktgen) */
		dest_port = get_dest_port_ipv4_udp(ctx, l3_offset);
		if (dest_port == 9) {
			if (rec)
				rec->dropped++;
			return XDP_DROP;
		}
		break;
	default:
		cpu_idx = 0;
	}

	cpu_lookup = bpf_map_lookup_elem(&cpus_available, &cpu_idx);
	if (!cpu_lookup)
		return XDP_ABORTED;
	cpu_dest = *cpu_lookup;

	if (cpu_dest >= MAX_CPUS) {
		rec->issue++;
		return XDP_ABORTED;
	}

	return bpf_redirect_map(&cpu_map, cpu_dest, 0);
}

/* Hashing initval */
#define INITVAL 15485863

static __always_inline
u32 get_ipv4_hash_ip_pair(struct xdp_md *ctx, u64 nh_off)
{
	void *data_end = (void *)(long)ctx->data_end;
	void *data     = (void *)(long)ctx->data;
	struct iphdr *iph = data + nh_off;
	u32 cpu_hash;

	if (iph + 1 > data_end)
		return 0;

	cpu_hash = iph->saddr + iph->daddr;
	cpu_hash = SuperFastHash((char *)&cpu_hash, 4, INITVAL + iph->protocol);

	return cpu_hash;
}

static __always_inline
u32 get_ipv6_hash_ip_pair(struct xdp_md *ctx, u64 nh_off)
{
	void *data_end = (void *)(long)ctx->data_end;
	void *data     = (void *)(long)ctx->data;
	struct ipv6hdr *ip6h = data + nh_off;
	u32 cpu_hash;

	if (ip6h + 1 > data_end)
		return 0;

	cpu_hash  = ip6h->saddr.s6_addr32[0] + ip6h->daddr.s6_addr32[0];
	cpu_hash += ip6h->saddr.s6_addr32[1] + ip6h->daddr.s6_addr32[1];
	cpu_hash += ip6h->saddr.s6_addr32[2] + ip6h->daddr.s6_addr32[2];
	cpu_hash += ip6h->saddr.s6_addr32[3] + ip6h->daddr.s6_addr32[3];
	cpu_hash = SuperFastHash((char *)&cpu_hash, 4, INITVAL + ip6h->nexthdr);

	return cpu_hash;
}

/* Load-Balance traffic based on hashing IP-addrs + L4-proto.  The
 * hashing scheme is symmetric, meaning swapping IP src/dest still hit
 * same CPU.
 */
SEC("xdp_cpu_map5_lb_hash_ip_pairs")
int  xdp_prognum5_lb_hash_ip_pairs(struct xdp_md *ctx)
{
	void *data_end = (void *)(long)ctx->data_end;
	void *data     = (void *)(long)ctx->data;
	struct ethhdr *eth = data;
	u8 ip_proto = IPPROTO_UDP;
	struct datarec *rec;
	u16 eth_proto = 0;
	u64 l3_offset = 0;
	u32 cpu_dest = 0;
	u32 cpu_idx = 0;
	u32 *cpu_lookup;
	u32 *cpu_max;
	u32 cpu_hash;
	u32 key = 0;

	/* Count RX packet in map */
	rec = bpf_map_lookup_elem(&rx_cnt, &key);
	if (!rec)
		return XDP_ABORTED;
	rec->processed++;

	cpu_max = bpf_map_lookup_elem(&cpus_count, &key);
	if (!cpu_max)
		return XDP_ABORTED;

	if (!(parse_eth(eth, data_end, &eth_proto, &l3_offset)))
		return XDP_PASS; /* Just skip */

	/* Hash for IPv4 and IPv6 */
	switch (eth_proto) {
	case ETH_P_IP:
		cpu_hash = get_ipv4_hash_ip_pair(ctx, l3_offset);
		break;
	case ETH_P_IPV6:
		cpu_hash = get_ipv6_hash_ip_pair(ctx, l3_offset);
		break;
	case ETH_P_ARP: /* ARP packet handled on CPU idx 0 */
	default:
		cpu_hash = 0;
	}

	/* Choose CPU based on hash */
	cpu_idx = cpu_hash % *cpu_max;

	cpu_lookup = bpf_map_lookup_elem(&cpus_available, &cpu_idx);
	if (!cpu_lookup)
		return XDP_ABORTED;
	cpu_dest = *cpu_lookup;

	if (cpu_dest >= MAX_CPUS) {
		rec->issue++;
		return XDP_ABORTED;
	}

	return bpf_redirect_map(&cpu_map, cpu_dest, 0);
}

char _license[] SEC("license") = "GPL";

/*** Trace point code ***/

/* Tracepoint format: /sys/kernel/debug/tracing/events/xdp/xdp_redirect/format
 * Code in:                kernel/include/trace/events/xdp.h
 */
struct xdp_redirect_ctx {
	u64 __pad;	// First 8 bytes are not accessible by bpf code
	int prog_id;	//	offset:8;  size:4; signed:1;
	u32 act;	//	offset:12  size:4; signed:0;
	int ifindex;	//	offset:16  size:4; signed:1;
	int err;	//	offset:20  size:4; signed:1;
	int to_ifindex;	//	offset:24  size:4; signed:1;
	u32 map_id;	//	offset:28  size:4; signed:0;
	int map_index;	//	offset:32  size:4; signed:1;
};			//	offset:36

enum {
	XDP_REDIRECT_SUCCESS = 0,
	XDP_REDIRECT_ERROR = 1
};

static __always_inline
int xdp_redirect_collect_stat(struct xdp_redirect_ctx *ctx)
{
	u32 key = XDP_REDIRECT_ERROR;
	struct datarec *rec;
	int err = ctx->err;

	if (!err)
		key = XDP_REDIRECT_SUCCESS;

	rec = bpf_map_lookup_elem(&redirect_err_cnt, &key);
	if (!rec)
		return 0;
	rec->dropped += 1;

	return 0; /* Indicate event was filtered (no further processing)*/
	/*
	 * Returning 1 here would allow e.g. a perf-record tracepoint
	 * to see and record these events, but it doesn't work well
	 * in-practice as stopping perf-record also unload this
	 * bpf_prog.  Plus, there is additional overhead of doing so.
	 */
}

SEC("tracepoint/xdp/xdp_redirect_err")
int trace_xdp_redirect_err(struct xdp_redirect_ctx *ctx)
{
	return xdp_redirect_collect_stat(ctx);
}

SEC("tracepoint/xdp/xdp_redirect_map_err")
int trace_xdp_redirect_map_err(struct xdp_redirect_ctx *ctx)
{
	return xdp_redirect_collect_stat(ctx);
}

/* Tracepoint format: /sys/kernel/debug/tracing/events/xdp/xdp_exception/format
 * Code in:                kernel/include/trace/events/xdp.h
 */
struct xdp_exception_ctx {
	u64 __pad;	// First 8 bytes are not accessible by bpf code
	int prog_id;	//	offset:8;  size:4; signed:1;
	u32 act;	//	offset:12; size:4; signed:0;
	int ifindex;	//	offset:16; size:4; signed:1;
};

SEC("tracepoint/xdp/xdp_exception")
int trace_xdp_exception(struct xdp_exception_ctx *ctx)
{
	struct datarec *rec;
	u32 key = 0;

	rec = bpf_map_lookup_elem(&exception_cnt, &key);
	if (!rec)
		return 1;
	rec->dropped += 1;

	return 0;
}

/* Tracepoint: /sys/kernel/debug/tracing/events/xdp/xdp_cpumap_enqueue/format
 * Code in:         kernel/include/trace/events/xdp.h
 */
struct cpumap_enqueue_ctx {
	u64 __pad;		// First 8 bytes are not accessible by bpf code
	int map_id;		//	offset:8;  size:4; signed:1;
	u32 act;		//	offset:12; size:4; signed:0;
	int cpu;		//	offset:16; size:4; signed:1;
	unsigned int drops;	//	offset:20; size:4; signed:0;
	unsigned int processed;	//	offset:24; size:4; signed:0;
	int to_cpu;		//	offset:28; size:4; signed:1;
};

SEC("tracepoint/xdp/xdp_cpumap_enqueue")
int trace_xdp_cpumap_enqueue(struct cpumap_enqueue_ctx *ctx)
{
	u32 to_cpu = ctx->to_cpu;
	struct datarec *rec;

	if (to_cpu >= MAX_CPUS)
		return 1;

	rec = bpf_map_lookup_elem(&cpumap_enqueue_cnt, &to_cpu);
	if (!rec)
		return 0;
	rec->processed += ctx->processed;
	rec->dropped   += ctx->drops;

	/* Record bulk events, then userspace can calc average bulk size */
	if (ctx->processed > 0)
		rec->issue += 1;

	/* Inception: It's possible to detect overload situations, via
	 * this tracepoint.  This can be used for creating a feedback
	 * loop to XDP, which can take appropriate actions to mitigate
	 * this overload situation.
	 */
	return 0;
}

/* Tracepoint: /sys/kernel/debug/tracing/events/xdp/xdp_cpumap_kthread/format
 * Code in:         kernel/include/trace/events/xdp.h
 */
struct cpumap_kthread_ctx {
	u64 __pad;			// First 8 bytes are not accessible
	int map_id;			//	offset:8;  size:4; signed:1;
	u32 act;			//	offset:12; size:4; signed:0;
	int cpu;			//	offset:16; size:4; signed:1;
	unsigned int drops;		//	offset:20; size:4; signed:0;
	unsigned int processed;		//	offset:24; size:4; signed:0;
	int sched;			//	offset:28; size:4; signed:1;
	unsigned int xdp_pass;		//	offset:32; size:4; signed:0;
	unsigned int xdp_drop;		//	offset:36; size:4; signed:0;
	unsigned int xdp_redirect;	//	offset:40; size:4; signed:0;
};

SEC("tracepoint/xdp/xdp_cpumap_kthread")
int trace_xdp_cpumap_kthread(struct cpumap_kthread_ctx *ctx)
{
	struct datarec *rec;
	u32 key = 0;

	rec = bpf_map_lookup_elem(&cpumap_kthread_cnt, &key);
	if (!rec)
		return 0;
	rec->processed += ctx->processed;
	rec->dropped   += ctx->drops;
	rec->xdp_pass  += ctx->xdp_pass;
	rec->xdp_drop  += ctx->xdp_drop;
	rec->xdp_redirect  += ctx->xdp_redirect;

	/* Count times kthread yielded CPU via schedule call */
	if (ctx->sched)
		rec->issue++;

	return 0;
}