nf_nat_core.c 20.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
/* NAT for netfilter; shared with compatibility layer. */

/* (C) 1999-2001 Paul `Rusty' Russell
 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/timer.h>
#include <linux/skbuff.h>
#include <linux/gfp.h>
#include <net/checksum.h>
#include <net/icmp.h>
#include <net/ip.h>
#include <net/tcp.h>  /* For tcp_prot in getorigdst */
#include <linux/icmp.h>
#include <linux/udp.h>
#include <linux/jhash.h>

#include <linux/netfilter_ipv4.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_nat.h>
#include <net/netfilter/nf_nat_protocol.h>
#include <net/netfilter/nf_nat_core.h>
#include <net/netfilter/nf_nat_helper.h>
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_l3proto.h>
#include <net/netfilter/nf_conntrack_zones.h>

static DEFINE_SPINLOCK(nf_nat_lock);

static struct nf_conntrack_l3proto *l3proto __read_mostly;

#define MAX_IP_NAT_PROTO 256
static const struct nf_nat_protocol __rcu *nf_nat_protos[MAX_IP_NAT_PROTO]
						__read_mostly;

static inline const struct nf_nat_protocol *
__nf_nat_proto_find(u_int8_t protonum)
{
	return rcu_dereference(nf_nat_protos[protonum]);
}

/* We keep an extra hash for each conntrack, for fast searching. */
static inline unsigned int
hash_by_src(const struct net *net, u16 zone,
	    const struct nf_conntrack_tuple *tuple)
{
	unsigned int hash;

	/* Original src, to ensure we map it consistently if poss. */
	hash = jhash_3words((__force u32)tuple->src.u3.ip,
			    (__force u32)tuple->src.u.all ^ zone,
			    tuple->dst.protonum, nf_conntrack_hash_rnd);
	return ((u64)hash * net->ipv4.nat_htable_size) >> 32;
}

/* Is this tuple already taken? (not by us) */
int
nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
		  const struct nf_conn *ignored_conntrack)
{
	/* Conntrack tracking doesn't keep track of outgoing tuples; only
	   incoming ones.  NAT means they don't have a fixed mapping,
	   so we invert the tuple and look for the incoming reply.

	   We could keep a separate hash if this proves too slow. */
	struct nf_conntrack_tuple reply;

	nf_ct_invert_tuplepr(&reply, tuple);
	return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
}
EXPORT_SYMBOL(nf_nat_used_tuple);

/* If we source map this tuple so reply looks like reply_tuple, will
 * that meet the constraints of range. */
static int
in_range(const struct nf_conntrack_tuple *tuple,
	 const struct nf_nat_ipv4_range *range)
{
	const struct nf_nat_protocol *proto;
	int ret = 0;

	/* If we are supposed to map IPs, then we must be in the
	   range specified, otherwise let this drag us onto a new src IP. */
	if (range->flags & NF_NAT_RANGE_MAP_IPS) {
		if (ntohl(tuple->src.u3.ip) < ntohl(range->min_ip) ||
		    ntohl(tuple->src.u3.ip) > ntohl(range->max_ip))
			return 0;
	}

	rcu_read_lock();
	proto = __nf_nat_proto_find(tuple->dst.protonum);
	if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) ||
	    proto->in_range(tuple, NF_NAT_MANIP_SRC,
			    &range->min, &range->max))
		ret = 1;
	rcu_read_unlock();

	return ret;
}

static inline int
same_src(const struct nf_conn *ct,
	 const struct nf_conntrack_tuple *tuple)
{
	const struct nf_conntrack_tuple *t;

	t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
	return (t->dst.protonum == tuple->dst.protonum &&
		t->src.u3.ip == tuple->src.u3.ip &&
		t->src.u.all == tuple->src.u.all);
}

/* Only called for SRC manip */
static int
find_appropriate_src(struct net *net, u16 zone,
		     const struct nf_conntrack_tuple *tuple,
		     struct nf_conntrack_tuple *result,
		     const struct nf_nat_ipv4_range *range)
{
	unsigned int h = hash_by_src(net, zone, tuple);
	const struct nf_conn_nat *nat;
	const struct nf_conn *ct;
	const struct hlist_node *n;

	rcu_read_lock();
	hlist_for_each_entry_rcu(nat, n, &net->ipv4.nat_bysource[h], bysource) {
		ct = nat->ct;
		if (same_src(ct, tuple) && nf_ct_zone(ct) == zone) {
			/* Copy source part from reply tuple. */
			nf_ct_invert_tuplepr(result,
				       &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
			result->dst = tuple->dst;

			if (in_range(result, range)) {
				rcu_read_unlock();
				return 1;
			}
		}
	}
	rcu_read_unlock();
	return 0;
}

/* For [FUTURE] fragmentation handling, we want the least-used
   src-ip/dst-ip/proto triple.  Fairness doesn't come into it.  Thus
   if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
   1-65535, we don't do pro-rata allocation based on ports; we choose
   the ip with the lowest src-ip/dst-ip/proto usage.
*/
static void
find_best_ips_proto(u16 zone, struct nf_conntrack_tuple *tuple,
		    const struct nf_nat_ipv4_range *range,
		    const struct nf_conn *ct,
		    enum nf_nat_manip_type maniptype)
{
	__be32 *var_ipp;
	/* Host order */
	u_int32_t minip, maxip, j;

	/* No IP mapping?  Do nothing. */
	if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
		return;

	if (maniptype == NF_NAT_MANIP_SRC)
		var_ipp = &tuple->src.u3.ip;
	else
		var_ipp = &tuple->dst.u3.ip;

	/* Fast path: only one choice. */
	if (range->min_ip == range->max_ip) {
		*var_ipp = range->min_ip;
		return;
	}

	/* Hashing source and destination IPs gives a fairly even
	 * spread in practice (if there are a small number of IPs
	 * involved, there usually aren't that many connections
	 * anyway).  The consistency means that servers see the same
	 * client coming from the same IP (some Internet Banking sites
	 * like this), even across reboots. */
	minip = ntohl(range->min_ip);
	maxip = ntohl(range->max_ip);
	j = jhash_2words((__force u32)tuple->src.u3.ip,
			 range->flags & NF_NAT_RANGE_PERSISTENT ?
				0 : (__force u32)tuple->dst.u3.ip ^ zone, 0);
	j = ((u64)j * (maxip - minip + 1)) >> 32;
	*var_ipp = htonl(minip + j);
}

/* Manipulate the tuple into the range given.  For NF_INET_POST_ROUTING,
 * we change the source to map into the range.  For NF_INET_PRE_ROUTING
 * and NF_INET_LOCAL_OUT, we change the destination to map into the
 * range.  It might not be possible to get a unique tuple, but we try.
 * At worst (or if we race), we will end up with a final duplicate in
 * __ip_conntrack_confirm and drop the packet. */
static void
get_unique_tuple(struct nf_conntrack_tuple *tuple,
		 const struct nf_conntrack_tuple *orig_tuple,
		 const struct nf_nat_ipv4_range *range,
		 struct nf_conn *ct,
		 enum nf_nat_manip_type maniptype)
{
	struct net *net = nf_ct_net(ct);
	const struct nf_nat_protocol *proto;
	u16 zone = nf_ct_zone(ct);

	/* 1) If this srcip/proto/src-proto-part is currently mapped,
	   and that same mapping gives a unique tuple within the given
	   range, use that.

	   This is only required for source (ie. NAT/masq) mappings.
	   So far, we don't do local source mappings, so multiple
	   manips not an issue.  */
	if (maniptype == NF_NAT_MANIP_SRC &&
	    !(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
		/* try the original tuple first */
		if (in_range(orig_tuple, range)) {
			if (!nf_nat_used_tuple(orig_tuple, ct)) {
				*tuple = *orig_tuple;
				return;
			}
		} else if (find_appropriate_src(net, zone, orig_tuple, tuple,
			   range)) {
			pr_debug("get_unique_tuple: Found current src map\n");
			if (!nf_nat_used_tuple(tuple, ct))
				return;
		}
	}

	/* 2) Select the least-used IP/proto combination in the given
	   range. */
	*tuple = *orig_tuple;
	find_best_ips_proto(zone, tuple, range, ct, maniptype);

	/* 3) The per-protocol part of the manip is made to map into
	   the range to make a unique tuple. */

	rcu_read_lock();
	proto = __nf_nat_proto_find(orig_tuple->dst.protonum);

	/* Only bother mapping if it's not already in range and unique */
	if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
		if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
			if (proto->in_range(tuple, maniptype, &range->min,
					    &range->max) &&
			    (range->min.all == range->max.all ||
			     !nf_nat_used_tuple(tuple, ct)))
				goto out;
		} else if (!nf_nat_used_tuple(tuple, ct)) {
			goto out;
		}
	}

	/* Last change: get protocol to try to obtain unique tuple. */
	proto->unique_tuple(tuple, range, maniptype, ct);
out:
	rcu_read_unlock();
}

unsigned int
nf_nat_setup_info(struct nf_conn *ct,
		  const struct nf_nat_ipv4_range *range,
		  enum nf_nat_manip_type maniptype)
{
	struct net *net = nf_ct_net(ct);
	struct nf_conntrack_tuple curr_tuple, new_tuple;
	struct nf_conn_nat *nat;

	/* nat helper or nfctnetlink also setup binding */
	nat = nfct_nat(ct);
	if (!nat) {
		nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
		if (nat == NULL) {
			pr_debug("failed to add NAT extension\n");
			return NF_ACCEPT;
		}
	}

	NF_CT_ASSERT(maniptype == NF_NAT_MANIP_SRC ||
		     maniptype == NF_NAT_MANIP_DST);
	BUG_ON(nf_nat_initialized(ct, maniptype));

	/* What we've got will look like inverse of reply. Normally
	   this is what is in the conntrack, except for prior
	   manipulations (future optimization: if num_manips == 0,
	   orig_tp =
	   conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple) */
	nf_ct_invert_tuplepr(&curr_tuple,
			     &ct->tuplehash[IP_CT_DIR_REPLY].tuple);

	get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);

	if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
		struct nf_conntrack_tuple reply;

		/* Alter conntrack table so will recognize replies. */
		nf_ct_invert_tuplepr(&reply, &new_tuple);
		nf_conntrack_alter_reply(ct, &reply);

		/* Non-atomic: we own this at the moment. */
		if (maniptype == NF_NAT_MANIP_SRC)
			ct->status |= IPS_SRC_NAT;
		else
			ct->status |= IPS_DST_NAT;
	}

	if (maniptype == NF_NAT_MANIP_SRC) {
		unsigned int srchash;

		srchash = hash_by_src(net, nf_ct_zone(ct),
				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
		spin_lock_bh(&nf_nat_lock);
		/* nf_conntrack_alter_reply might re-allocate extension area */
		nat = nfct_nat(ct);
		nat->ct = ct;
		hlist_add_head_rcu(&nat->bysource,
				   &net->ipv4.nat_bysource[srchash]);
		spin_unlock_bh(&nf_nat_lock);
	}

	/* It's done. */
	if (maniptype == NF_NAT_MANIP_DST)
		ct->status |= IPS_DST_NAT_DONE;
	else
		ct->status |= IPS_SRC_NAT_DONE;

	return NF_ACCEPT;
}
EXPORT_SYMBOL(nf_nat_setup_info);

/* Returns true if succeeded. */
static bool
manip_pkt(u_int16_t proto,
	  struct sk_buff *skb,
	  unsigned int iphdroff,
	  const struct nf_conntrack_tuple *target,
	  enum nf_nat_manip_type maniptype)
{
	struct iphdr *iph;
	const struct nf_nat_protocol *p;

	if (!skb_make_writable(skb, iphdroff + sizeof(*iph)))
		return false;

	iph = (void *)skb->data + iphdroff;

	/* Manipulate protcol part. */

	/* rcu_read_lock()ed by nf_hook_slow */
	p = __nf_nat_proto_find(proto);
	if (!p->manip_pkt(skb, iphdroff, target, maniptype))
		return false;

	iph = (void *)skb->data + iphdroff;

	if (maniptype == NF_NAT_MANIP_SRC) {
		csum_replace4(&iph->check, iph->saddr, target->src.u3.ip);
		iph->saddr = target->src.u3.ip;
	} else {
		csum_replace4(&iph->check, iph->daddr, target->dst.u3.ip);
		iph->daddr = target->dst.u3.ip;
	}
	return true;
}

/* Do packet manipulations according to nf_nat_setup_info. */
unsigned int nf_nat_packet(struct nf_conn *ct,
			   enum ip_conntrack_info ctinfo,
			   unsigned int hooknum,
			   struct sk_buff *skb)
{
	enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
	unsigned long statusbit;
	enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);

	if (mtype == NF_NAT_MANIP_SRC)
		statusbit = IPS_SRC_NAT;
	else
		statusbit = IPS_DST_NAT;

	/* Invert if this is reply dir. */
	if (dir == IP_CT_DIR_REPLY)
		statusbit ^= IPS_NAT_MASK;

	/* Non-atomic: these bits don't change. */
	if (ct->status & statusbit) {
		struct nf_conntrack_tuple target;

		/* We are aiming to look like inverse of other direction. */
		nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);

		if (!manip_pkt(target.dst.protonum, skb, 0, &target, mtype))
			return NF_DROP;
	}
	return NF_ACCEPT;
}
EXPORT_SYMBOL_GPL(nf_nat_packet);

/* Dir is direction ICMP is coming from (opposite to packet it contains) */
int nf_nat_icmp_reply_translation(struct nf_conn *ct,
				  enum ip_conntrack_info ctinfo,
				  unsigned int hooknum,
				  struct sk_buff *skb)
{
	struct {
		struct icmphdr icmp;
		struct iphdr ip;
	} *inside;
	struct nf_conntrack_tuple target;
	int hdrlen = ip_hdrlen(skb);
	enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
	unsigned long statusbit;
	enum nf_nat_manip_type manip = HOOK2MANIP(hooknum);

	if (!skb_make_writable(skb, hdrlen + sizeof(*inside)))
		return 0;

	inside = (void *)skb->data + hdrlen;

	/* We're actually going to mangle it beyond trivial checksum
	   adjustment, so make sure the current checksum is correct. */
	if (nf_ip_checksum(skb, hooknum, hdrlen, 0))
		return 0;

	/* Must be RELATED */
	NF_CT_ASSERT(skb->nfctinfo == IP_CT_RELATED ||
		     skb->nfctinfo == IP_CT_RELATED_REPLY);

	/* Redirects on non-null nats must be dropped, else they'll
	   start talking to each other without our translation, and be
	   confused... --RR */
	if (inside->icmp.type == ICMP_REDIRECT) {
		/* If NAT isn't finished, assume it and drop. */
		if ((ct->status & IPS_NAT_DONE_MASK) != IPS_NAT_DONE_MASK)
			return 0;

		if (ct->status & IPS_NAT_MASK)
			return 0;
	}

	if (manip == NF_NAT_MANIP_SRC)
		statusbit = IPS_SRC_NAT;
	else
		statusbit = IPS_DST_NAT;

	/* Invert if this is reply dir. */
	if (dir == IP_CT_DIR_REPLY)
		statusbit ^= IPS_NAT_MASK;

	if (!(ct->status & statusbit))
		return 1;

	pr_debug("icmp_reply_translation: translating error %p manip %u "
		 "dir %s\n", skb, manip,
		 dir == IP_CT_DIR_ORIGINAL ? "ORIG" : "REPLY");

	/* Change inner back to look like incoming packet.  We do the
	   opposite manip on this hook to normal, because it might not
	   pass all hooks (locally-generated ICMP).  Consider incoming
	   packet: PREROUTING (DST manip), routing produces ICMP, goes
	   through POSTROUTING (which must correct the DST manip). */
	if (!manip_pkt(inside->ip.protocol, skb, hdrlen + sizeof(inside->icmp),
		       &ct->tuplehash[!dir].tuple, !manip))
		return 0;

	if (skb->ip_summed != CHECKSUM_PARTIAL) {
		/* Reloading "inside" here since manip_pkt inner. */
		inside = (void *)skb->data + hdrlen;
		inside->icmp.checksum = 0;
		inside->icmp.checksum =
			csum_fold(skb_checksum(skb, hdrlen,
					       skb->len - hdrlen, 0));
	}

	/* Change outer to look the reply to an incoming packet
	 * (proto 0 means don't invert per-proto part). */
	nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
	if (!manip_pkt(0, skb, 0, &target, manip))
		return 0;

	return 1;
}
EXPORT_SYMBOL_GPL(nf_nat_icmp_reply_translation);

/* Protocol registration. */
int nf_nat_protocol_register(const struct nf_nat_protocol *proto)
{
	int ret = 0;

	spin_lock_bh(&nf_nat_lock);
	if (rcu_dereference_protected(
			nf_nat_protos[proto->protonum],
			lockdep_is_held(&nf_nat_lock)
			) != &nf_nat_unknown_protocol) {
		ret = -EBUSY;
		goto out;
	}
	RCU_INIT_POINTER(nf_nat_protos[proto->protonum], proto);
 out:
	spin_unlock_bh(&nf_nat_lock);
	return ret;
}
EXPORT_SYMBOL(nf_nat_protocol_register);

/* No one stores the protocol anywhere; simply delete it. */
void nf_nat_protocol_unregister(const struct nf_nat_protocol *proto)
{
	spin_lock_bh(&nf_nat_lock);
	RCU_INIT_POINTER(nf_nat_protos[proto->protonum],
			   &nf_nat_unknown_protocol);
	spin_unlock_bh(&nf_nat_lock);
	synchronize_rcu();
}
EXPORT_SYMBOL(nf_nat_protocol_unregister);

/* No one using conntrack by the time this called. */
static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
{
	struct nf_conn_nat *nat = nf_ct_ext_find(ct, NF_CT_EXT_NAT);

	if (nat == NULL || nat->ct == NULL)
		return;

	NF_CT_ASSERT(nat->ct->status & IPS_SRC_NAT_DONE);

	spin_lock_bh(&nf_nat_lock);
	hlist_del_rcu(&nat->bysource);
	spin_unlock_bh(&nf_nat_lock);
}

static void nf_nat_move_storage(void *new, void *old)
{
	struct nf_conn_nat *new_nat = new;
	struct nf_conn_nat *old_nat = old;
	struct nf_conn *ct = old_nat->ct;

	if (!ct || !(ct->status & IPS_SRC_NAT_DONE))
		return;

	spin_lock_bh(&nf_nat_lock);
	hlist_replace_rcu(&old_nat->bysource, &new_nat->bysource);
	spin_unlock_bh(&nf_nat_lock);
}

static struct nf_ct_ext_type nat_extend __read_mostly = {
	.len		= sizeof(struct nf_conn_nat),
	.align		= __alignof__(struct nf_conn_nat),
	.destroy	= nf_nat_cleanup_conntrack,
	.move		= nf_nat_move_storage,
	.id		= NF_CT_EXT_NAT,
	.flags		= NF_CT_EXT_F_PREALLOC,
};

#if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)

#include <linux/netfilter/nfnetlink.h>
#include <linux/netfilter/nfnetlink_conntrack.h>

static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
	[CTA_PROTONAT_PORT_MIN]	= { .type = NLA_U16 },
	[CTA_PROTONAT_PORT_MAX]	= { .type = NLA_U16 },
};

static int nfnetlink_parse_nat_proto(struct nlattr *attr,
				     const struct nf_conn *ct,
				     struct nf_nat_ipv4_range *range)
{
	struct nlattr *tb[CTA_PROTONAT_MAX+1];
	const struct nf_nat_protocol *npt;
	int err;

	err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr, protonat_nla_policy);
	if (err < 0)
		return err;

	rcu_read_lock();
	npt = __nf_nat_proto_find(nf_ct_protonum(ct));
	if (npt->nlattr_to_range)
		err = npt->nlattr_to_range(tb, range);
	rcu_read_unlock();
	return err;
}

static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
	[CTA_NAT_MINIP]		= { .type = NLA_U32 },
	[CTA_NAT_MAXIP]		= { .type = NLA_U32 },
	[CTA_NAT_PROTO]		= { .type = NLA_NESTED },
};

static int
nfnetlink_parse_nat(const struct nlattr *nat,
		    const struct nf_conn *ct, struct nf_nat_ipv4_range *range)
{
	struct nlattr *tb[CTA_NAT_MAX+1];
	int err;

	memset(range, 0, sizeof(*range));

	err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy);
	if (err < 0)
		return err;

	if (tb[CTA_NAT_MINIP])
		range->min_ip = nla_get_be32(tb[CTA_NAT_MINIP]);

	if (!tb[CTA_NAT_MAXIP])
		range->max_ip = range->min_ip;
	else
		range->max_ip = nla_get_be32(tb[CTA_NAT_MAXIP]);

	if (range->min_ip)
		range->flags |= NF_NAT_RANGE_MAP_IPS;

	if (!tb[CTA_NAT_PROTO])
		return 0;

	err = nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
	if (err < 0)
		return err;

	return 0;
}

static int
nfnetlink_parse_nat_setup(struct nf_conn *ct,
			  enum nf_nat_manip_type manip,
			  const struct nlattr *attr)
{
	struct nf_nat_ipv4_range range;

	if (nfnetlink_parse_nat(attr, ct, &range) < 0)
		return -EINVAL;
	if (nf_nat_initialized(ct, manip))
		return -EEXIST;

	return nf_nat_setup_info(ct, &range, manip);
}
#else
static int
nfnetlink_parse_nat_setup(struct nf_conn *ct,
			  enum nf_nat_manip_type manip,
			  const struct nlattr *attr)
{
	return -EOPNOTSUPP;
}
#endif

static int __net_init nf_nat_net_init(struct net *net)
{
	/* Leave them the same for the moment. */
	net->ipv4.nat_htable_size = net->ct.htable_size;
	net->ipv4.nat_bysource = nf_ct_alloc_hashtable(&net->ipv4.nat_htable_size, 0);
	if (!net->ipv4.nat_bysource)
		return -ENOMEM;
	return 0;
}

/* Clear NAT section of all conntracks, in case we're loaded again. */
static int clean_nat(struct nf_conn *i, void *data)
{
	struct nf_conn_nat *nat = nfct_nat(i);

	if (!nat)
		return 0;
	memset(nat, 0, sizeof(*nat));
	i->status &= ~(IPS_NAT_MASK | IPS_NAT_DONE_MASK | IPS_SEQ_ADJUST);
	return 0;
}

static void __net_exit nf_nat_net_exit(struct net *net)
{
	nf_ct_iterate_cleanup(net, &clean_nat, NULL);
	synchronize_rcu();
	nf_ct_free_hashtable(net->ipv4.nat_bysource, net->ipv4.nat_htable_size);
}

static struct pernet_operations nf_nat_net_ops = {
	.init = nf_nat_net_init,
	.exit = nf_nat_net_exit,
};

static int __init nf_nat_init(void)
{
	size_t i;
	int ret;

	need_ipv4_conntrack();

	ret = nf_ct_extend_register(&nat_extend);
	if (ret < 0) {
		printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
		return ret;
	}

	ret = register_pernet_subsys(&nf_nat_net_ops);
	if (ret < 0)
		goto cleanup_extend;

	/* Sew in builtin protocols. */
	spin_lock_bh(&nf_nat_lock);
	for (i = 0; i < MAX_IP_NAT_PROTO; i++)
		RCU_INIT_POINTER(nf_nat_protos[i], &nf_nat_unknown_protocol);
	RCU_INIT_POINTER(nf_nat_protos[IPPROTO_TCP], &nf_nat_protocol_tcp);
	RCU_INIT_POINTER(nf_nat_protos[IPPROTO_UDP], &nf_nat_protocol_udp);
	RCU_INIT_POINTER(nf_nat_protos[IPPROTO_ICMP], &nf_nat_protocol_icmp);
	spin_unlock_bh(&nf_nat_lock);

	/* Initialize fake conntrack so that NAT will skip it */
	nf_ct_untracked_status_or(IPS_NAT_DONE_MASK);

	l3proto = nf_ct_l3proto_find_get((u_int16_t)AF_INET);

	BUG_ON(nf_nat_seq_adjust_hook != NULL);
	RCU_INIT_POINTER(nf_nat_seq_adjust_hook, nf_nat_seq_adjust);
	BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
	RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook,
			   nfnetlink_parse_nat_setup);
	BUG_ON(nf_ct_nat_offset != NULL);
	RCU_INIT_POINTER(nf_ct_nat_offset, nf_nat_get_offset);
	return 0;

 cleanup_extend:
	nf_ct_extend_unregister(&nat_extend);
	return ret;
}

static void __exit nf_nat_cleanup(void)
{
	unregister_pernet_subsys(&nf_nat_net_ops);
	nf_ct_l3proto_put(l3proto);
	nf_ct_extend_unregister(&nat_extend);
	RCU_INIT_POINTER(nf_nat_seq_adjust_hook, NULL);
	RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook, NULL);
	RCU_INIT_POINTER(nf_ct_nat_offset, NULL);
	synchronize_net();
}

MODULE_LICENSE("GPL");
MODULE_ALIAS("nf-nat-ipv4");

module_init(nf_nat_init);
module_exit(nf_nat_cleanup);