sm_test.c 16.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/*
 * Secure Memory / Keystore Exemplification Module
 * Copyright (C) 2012-2015 Freescale Semiconductor, Inc. All Rights Reserved
 *
 * This module has been overloaded as an example to show:
 * - Secure memory subsystem initialization/shutdown
 * - Allocation/deallocation of "slots" in a secure memory page
 * - Loading and unloading of key material into slots
 * - Covering of secure memory objects into "black keys" (ECB only at present)
 * - Verification of key covering (by differentiation only)
 * - Exportation of keys into secure memory blobs (with display of result)
 * - Importation of keys from secure memory blobs (with display of result)
 * - Verification of re-imported keys where possible.
 *
 * The module does not show the use of key objects as working key register
 * source material at this time.
 *
 * This module can use a substantial amount of refactoring, which may occur
 * after the API gets some mileage. Furthermore, expect this module to
 * eventually disappear once the API is integrated into "real" software.
 */

#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "desc.h"
#include "error.h"
#include "jr.h"
#include "sm.h"

/* Fixed known pattern for a key modifier */
static u8 skeymod[] = {
	0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,
	0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00
};

/* Fixed known pattern for a key */
static u8 clrkey[] = {
	0x00, 0x01, 0x02, 0x03, 0x04, 0x0f, 0x06, 0x07,
	0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
	0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
	0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
	0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
	0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
	0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
	0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
	0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
	0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
	0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
	0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
	0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
	0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
	0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
	0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
	0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
	0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
	0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
	0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
	0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
	0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
	0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
	0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
	0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
	0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
	0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
	0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
	0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
	0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
	0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
	0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
};

static void key_display(struct device *dev, u8 *label, u16 size, u8 *key)
{
	unsigned i;

	dev_info(dev, label);
	for (i = 0; i < size; i += 8)
		dev_info(dev,
			 "[%04d] %02x %02x %02x %02x %02x %02x %02x %02x\n",
			 i, key[i], key[i + 1], key[i + 2], key[i + 3],
			 key[i + 4], key[i + 5], key[i + 6], key[i + 7]);
}

int caam_sm_example_init(struct platform_device *pdev)
{
	struct device *ctrldev, *ksdev;
	struct caam_drv_private *ctrlpriv;
	struct caam_drv_private_sm *kspriv;
	u32 unit, units;
	int rtnval = 0;
	u8 clrkey8[8], clrkey16[16], clrkey24[24], clrkey32[32];
	u8 blkkey8[AES_BLOCK_PAD(8)], blkkey16[AES_BLOCK_PAD(16)];
	u8 blkkey24[AES_BLOCK_PAD(24)], blkkey32[AES_BLOCK_PAD(32)];
	u8 rstkey8[AES_BLOCK_PAD(8)], rstkey16[AES_BLOCK_PAD(16)];
	u8 rstkey24[AES_BLOCK_PAD(24)], rstkey32[AES_BLOCK_PAD(32)];
	u8 __iomem *blob8, *blob16, *blob24, *blob32;
	u32 keyslot8, keyslot16, keyslot24, keyslot32 = 0;

	blob8 = blob16 = blob24 = blob32 = NULL;

	/*
	 * 3.5.x and later revs for MX6 should be able to ditch this
	 * and detect via dts property
	 */
	ctrldev = &pdev->dev;
	ctrlpriv = dev_get_drvdata(ctrldev);

	/*
	 * If ctrlpriv is NULL, it's probably because the caam driver wasn't
	 * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
	 */
	if (!ctrlpriv)
		return -ENODEV;

	ksdev = ctrlpriv->smdev;
	kspriv = dev_get_drvdata(ksdev);
	if (kspriv == NULL)
		return -ENODEV;

	/* What keystores are available ? */
	units = sm_detect_keystore_units(ksdev);
	if (!units)
		dev_err(ksdev, "blkkey_ex: no keystore units available\n");

	/*
	 * MX6 bootloader stores some stuff in unit 0, so let's
	 * use 1 or above
	 */
	if (units < 2) {
		dev_err(ksdev, "blkkey_ex: insufficient keystore units\n");
		return -ENODEV;
	}
	unit = 1;

	dev_info(ksdev, "blkkey_ex: %d keystore units available\n", units);

	/* Initialize/Establish Keystore */
	sm_establish_keystore(ksdev, unit);	/* Initalize store in #1 */

	/*
	 * Now let's set up buffers for blobs in DMA-able memory. All are
	 * larger than need to be so that blob size can be seen.
	 */
	blob8 = kzalloc(128, GFP_KERNEL | GFP_DMA);
	blob16 = kzalloc(128, GFP_KERNEL | GFP_DMA);
	blob24 = kzalloc(128, GFP_KERNEL | GFP_DMA);
	blob32 = kzalloc(128, GFP_KERNEL | GFP_DMA);

	if ((blob8 == NULL) || (blob16 == NULL) || (blob24 == NULL) ||
	    (blob32 == NULL)) {
		rtnval = -ENOMEM;
		dev_err(ksdev, "blkkey_ex: can't get blob buffers\n");
		goto freemem;
	}

	/* Initialize clear keys with a known and recognizable pattern */
	memcpy(clrkey8, clrkey, 8);
	memcpy(clrkey16, clrkey, 16);
	memcpy(clrkey24, clrkey, 24);
	memcpy(clrkey32, clrkey, 32);

	memset(blkkey8, 0, AES_BLOCK_PAD(8));
	memset(blkkey16, 0, AES_BLOCK_PAD(16));
	memset(blkkey24, 0, AES_BLOCK_PAD(24));
	memset(blkkey32, 0, AES_BLOCK_PAD(32));

	memset(rstkey8, 0, AES_BLOCK_PAD(8));
	memset(rstkey16, 0, AES_BLOCK_PAD(16));
	memset(rstkey24, 0, AES_BLOCK_PAD(24));
	memset(rstkey32, 0, AES_BLOCK_PAD(32));

	/*
	 * Allocate keyslots. Since we're going to blacken keys in-place,
	 * we want slots big enough to pad out to the next larger AES blocksize
	 * so pad them out.
	 */
	if (sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(8), &keyslot8))
		goto freemem;

	if (sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(16), &keyslot16))
		goto dealloc_slot8;

	if (sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(24), &keyslot24))
		goto dealloc_slot16;

	if (sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(32), &keyslot32))
		goto dealloc_slot24;


	/* Now load clear key data into the newly allocated slots */
	if (sm_keystore_slot_load(ksdev, unit, keyslot8, clrkey8, 8))
		goto dealloc;

	if (sm_keystore_slot_load(ksdev, unit, keyslot16, clrkey16, 16))
		goto dealloc;

	if (sm_keystore_slot_load(ksdev, unit, keyslot24, clrkey24, 24))
		goto dealloc;

	if (sm_keystore_slot_load(ksdev, unit, keyslot32, clrkey32, 32))
		goto dealloc;

	/*
	 * All cleartext keys are loaded into slots (in an unprotected
	 * partition at this time)
	 *
	 * Cover keys in-place
	 */
	if (sm_keystore_cover_key(ksdev, unit, keyslot8, 8, KEY_COVER_ECB)) {
		dev_info(ksdev, "blkkey_ex: can't cover 64-bit key\n");
		goto dealloc;
	}

	if (sm_keystore_cover_key(ksdev, unit, keyslot16, 16, KEY_COVER_ECB)) {
		dev_info(ksdev, "blkkey_ex: can't cover 128-bit key\n");
		goto dealloc;
	}

	if (sm_keystore_cover_key(ksdev, unit, keyslot24, 24, KEY_COVER_ECB)) {
		dev_info(ksdev, "blkkey_ex: can't cover 192-bit key\n");
		goto dealloc;
	}

	if (sm_keystore_cover_key(ksdev, unit, keyslot32, 32, KEY_COVER_ECB)) {
		dev_info(ksdev, "blkkey_ex: can't cover 256-bit key\n");
		goto dealloc;
	}

	/*
	 * Keys should be covered and appear sufficiently "random"
	 * as a result of the covering (blackening) process. Assuming
	 * non-secure mode, read them back out for examination; they should
	 * appear as random data, completely differing from the clear
	 * inputs. So, this will read them back from secure memory and
	 * compare them. If they match the clear key, then the covering
	 * operation didn't occur.
	 */

	if (sm_keystore_slot_read(ksdev, unit, keyslot8, AES_BLOCK_PAD(8),
				  blkkey8)) {
		dev_info(ksdev, "blkkey_ex: can't read 64-bit black key\n");
		goto dealloc;
	}

	if (sm_keystore_slot_read(ksdev, unit, keyslot16, AES_BLOCK_PAD(16),
				  blkkey16)) {
		dev_info(ksdev, "blkkey_ex: can't read 128-bit black key\n");
		goto dealloc;
	}

	if (sm_keystore_slot_read(ksdev, unit, keyslot24, AES_BLOCK_PAD(24),
				  blkkey24)) {
		dev_info(ksdev, "blkkey_ex: can't read 192-bit black key\n");
		goto dealloc;
	}

	if (sm_keystore_slot_read(ksdev, unit, keyslot32, AES_BLOCK_PAD(32),
				  blkkey32)) {
		dev_info(ksdev, "blkkey_ex: can't read 256-bit black key\n");
		goto dealloc;
	}


	if (!memcmp(blkkey8, clrkey8, 8)) {
		dev_info(ksdev, "blkkey_ex: 64-bit key cover failed\n");
		goto dealloc;
	}

	if (!memcmp(blkkey16, clrkey16, 16)) {
		dev_info(ksdev, "blkkey_ex: 128-bit key cover failed\n");
		goto dealloc;
	}

	if (!memcmp(blkkey24, clrkey24, 24)) {
		dev_info(ksdev, "blkkey_ex: 192-bit key cover failed\n");
		goto dealloc;
	}

	if (!memcmp(blkkey32, clrkey32, 32)) {
		dev_info(ksdev, "blkkey_ex: 256-bit key cover failed\n");
		goto dealloc;
	}


	key_display(ksdev, "64-bit clear key:", 8, clrkey8);
	key_display(ksdev, "64-bit black key:", AES_BLOCK_PAD(8), blkkey8);

	key_display(ksdev, "128-bit clear key:", 16, clrkey16);
	key_display(ksdev, "128-bit black key:", AES_BLOCK_PAD(16), blkkey16);

	key_display(ksdev, "192-bit clear key:", 24, clrkey24);
	key_display(ksdev, "192-bit black key:", AES_BLOCK_PAD(24), blkkey24);

	key_display(ksdev, "256-bit clear key:", 32, clrkey32);
	key_display(ksdev, "256-bit black key:", AES_BLOCK_PAD(32), blkkey32);

	/*
	 * Now encapsulate all keys as SM blobs out to external memory
	 * Blobs will appear as random-looking blocks of data different
	 * from the original source key, and 48 bytes longer than the
	 * original key, to account for the extra data encapsulated within.
	 */
	key_display(ksdev, "64-bit unwritten blob:", 96, blob8);
	key_display(ksdev, "128-bit unwritten blob:", 96, blob16);
	key_display(ksdev, "196-bit unwritten blob:", 96, blob24);
	key_display(ksdev, "256-bit unwritten blob:", 96, blob32);

	if (sm_keystore_slot_export(ksdev, unit, keyslot8, BLACK_KEY,
				    KEY_COVER_ECB, blob8, 8, skeymod)) {
		dev_info(ksdev, "blkkey_ex: can't encapsulate 64-bit key\n");
		goto dealloc;
	}

	if (sm_keystore_slot_export(ksdev, unit, keyslot16, BLACK_KEY,
				    KEY_COVER_ECB, blob16, 16, skeymod)) {
		dev_info(ksdev, "blkkey_ex: can't encapsulate 128-bit key\n");
		goto dealloc;
	}

	if (sm_keystore_slot_export(ksdev, unit, keyslot24, BLACK_KEY,
				    KEY_COVER_ECB, blob24, 24, skeymod)) {
		dev_info(ksdev, "blkkey_ex: can't encapsulate 192-bit key\n");
		goto dealloc;
	}

	if (sm_keystore_slot_export(ksdev, unit, keyslot32, BLACK_KEY,
				    KEY_COVER_ECB, blob32, 32, skeymod)) {
		dev_info(ksdev, "blkkey_ex: can't encapsulate 256-bit key\n");
		goto dealloc;
	}

	key_display(ksdev, "64-bit black key in blob:", 96, blob8);
	key_display(ksdev, "128-bit black key in blob:", 96, blob16);
	key_display(ksdev, "192-bit black key in blob:", 96, blob24);
	key_display(ksdev, "256-bit black key in blob:", 96, blob32);

	/*
	 * Now re-import black keys from secure-memory blobs stored
	 * in general memory from the previous operation. Since we are
	 * working with black keys, and since power has not cycled, the
	 * restored black keys should match the original blackened keys
	 * (this would not be true if the blobs were save in some non-volatile
	 * store, and power was cycled between the save and restore)
	 */
	if (sm_keystore_slot_import(ksdev, unit, keyslot8, BLACK_KEY,
				    KEY_COVER_ECB, blob8, 8, skeymod)) {
		dev_info(ksdev, "blkkey_ex: can't decapsulate 64-bit blob\n");
		goto dealloc;
	}

	if (sm_keystore_slot_import(ksdev, unit, keyslot16, BLACK_KEY,
				    KEY_COVER_ECB, blob16, 16, skeymod)) {
		dev_info(ksdev, "blkkey_ex: can't decapsulate 128-bit blob\n");
		goto dealloc;
	}

	if (sm_keystore_slot_import(ksdev, unit, keyslot24, BLACK_KEY,
				    KEY_COVER_ECB, blob24, 24, skeymod)) {
		dev_info(ksdev, "blkkey_ex: can't decapsulate 196-bit blob\n");
		goto dealloc;
	}

	if (sm_keystore_slot_import(ksdev, unit, keyslot32, BLACK_KEY,
				    KEY_COVER_ECB, blob32, 32, skeymod)) {
		dev_info(ksdev, "blkkey_ex: can't decapsulate 256-bit blob\n");
		goto dealloc;
	}


	/*
	 * Blobs are now restored as black keys. Read those black keys back
	 * for a comparison with the original black key, they should match
	 */
	if (sm_keystore_slot_read(ksdev, unit, keyslot8, AES_BLOCK_PAD(8),
				  rstkey8)) {
		dev_info(ksdev,
			"blkkey_ex: can't read restored 64-bit black key\n");
		goto dealloc;
	}

	if (sm_keystore_slot_read(ksdev, unit, keyslot16, AES_BLOCK_PAD(16),
				  rstkey16)) {
		dev_info(ksdev,
			 "blkkey_ex: can't read restored 128-bit black key\n");
		goto dealloc;
	}

	if (sm_keystore_slot_read(ksdev, unit, keyslot24, AES_BLOCK_PAD(24),
				  rstkey24)) {
		dev_info(ksdev,
			 "blkkey_ex: can't read restored 196-bit black key\n");
		goto dealloc;
	}

	if (sm_keystore_slot_read(ksdev, unit, keyslot32, AES_BLOCK_PAD(32),
				  rstkey32)) {
		dev_info(ksdev,
			 "blkkey_ex: can't read restored 256-bit black key\n");
		goto dealloc;
	}

	key_display(ksdev, "restored 64-bit black key:", AES_BLOCK_PAD(8),
		    rstkey8);
	key_display(ksdev, "restored 128-bit black key:", AES_BLOCK_PAD(16),
		    rstkey16);
	key_display(ksdev, "restored 192-bit black key:", AES_BLOCK_PAD(24),
		    rstkey24);
	key_display(ksdev, "restored 256-bit black key:", AES_BLOCK_PAD(32),
		    rstkey32);

	/*
	 * Compare the restored black keys with the original blackened keys
	 * As long as we're operating within the same power cycle, a black key
	 * restored from a blob should match the original black key IF the
	 * key happens to be of a size that matches a multiple of the AES
	 * blocksize. Any key that is padded to fill the block size will not
	 * match, excepting a key that exceeds a block; only the first full
	 * blocks will match (assuming ECB).
	 *
	 * Therefore, compare the 16 and 32 bit keys, they should match.
	 * The 24 bit key can only match within the first 16 byte block.
	 */

	if (memcmp(rstkey16, blkkey16, AES_BLOCK_PAD(16))) {
		dev_info(ksdev, "blkkey_ex: 128-bit restored key mismatch\n");
		rtnval--;
	}

	/* Only first AES block will match, remainder subject to padding */
	if (memcmp(rstkey24, blkkey24, 16)) {
		dev_info(ksdev, "blkkey_ex: 192-bit restored key mismatch\n");
		rtnval--;
	}

	if (memcmp(rstkey32, blkkey32, AES_BLOCK_PAD(32))) {
		dev_info(ksdev, "blkkey_ex: 256-bit restored key mismatch\n");
		rtnval--;
	}


	/* Remove keys from keystore */
dealloc:
	sm_keystore_slot_dealloc(ksdev, unit, keyslot32);
dealloc_slot24:
	sm_keystore_slot_dealloc(ksdev, unit, keyslot24);
dealloc_slot16:
	sm_keystore_slot_dealloc(ksdev, unit, keyslot16);
dealloc_slot8:
	sm_keystore_slot_dealloc(ksdev, unit, keyslot8);

	/* Free resources */
freemem:
	kfree(blob8);
	kfree(blob16);
	kfree(blob24);
	kfree(blob32);

	/* Disconnect from keystore and leave */
	sm_release_keystore(ksdev, unit);

	return rtnval;
}
EXPORT_SYMBOL(caam_sm_example_init);

void caam_sm_example_shutdown(void)
{
	/* unused in present version */
	struct device_node *dev_node;
	struct platform_device *pdev;

	/*
	 * Do of_find_compatible_node() then of_find_device_by_node()
	 * once a functional device tree is available
	 */
	dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
	if (!dev_node) {
		dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
		if (!dev_node)
			return;
	}

	pdev = of_find_device_by_node(dev_node);
	if (!pdev)
		return;

	of_node_get(dev_node);

}

static int __init caam_sm_test_init(void)
{
	struct device_node *dev_node;
	struct platform_device *pdev;

	/*
	 * Do of_find_compatible_node() then of_find_device_by_node()
	 * once a functional device tree is available
	 */
	dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
	if (!dev_node) {
		dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
		if (!dev_node)
			return -ENODEV;
	}

	pdev = of_find_device_by_node(dev_node);
	if (!pdev)
		return -ENODEV;

	of_node_put(dev_node);

	caam_sm_example_init(pdev);

	return 0;
}


/* Module-based initialization needs to wait for dev tree */
#ifdef CONFIG_OF
module_init(caam_sm_test_init);
module_exit(caam_sm_example_shutdown);

MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("FSL CAAM Black Key Usage Example");
MODULE_AUTHOR("Freescale Semiconductor - NMSG/MAD");
#endif