pptt.c 23.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
// SPDX-License-Identifier: GPL-2.0
/*
 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
 *
 * Copyright (C) 2018, ARM
 *
 * This file implements parsing of the Processor Properties Topology Table
 * which is optionally used to describe the processor and cache topology.
 * Due to the relative pointers used throughout the table, this doesn't
 * leverage the existing subtable parsing in the kernel.
 *
 * The PPTT structure is an inverted tree, with each node potentially
 * holding one or two inverted tree data structures describing
 * the caches available at that level. Each cache structure optionally
 * contains properties describing the cache at a given level which can be
 * used to override hardware probed values.
 */
#define pr_fmt(fmt) "ACPI PPTT: " fmt

#include <linux/acpi.h>
#include <linux/cacheinfo.h>
#include <acpi/processor.h>

static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
							u32 pptt_ref)
{
	struct acpi_subtable_header *entry;

	/* there isn't a subtable at reference 0 */
	if (pptt_ref < sizeof(struct acpi_subtable_header))
		return NULL;

	if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
		return NULL;

	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);

	if (entry->length == 0)
		return NULL;

	if (pptt_ref + entry->length > table_hdr->length)
		return NULL;

	return entry;
}

static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
						   u32 pptt_ref)
{
	return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
}

static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
						u32 pptt_ref)
{
	return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
}

static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
							   struct acpi_pptt_processor *node,
							   int resource)
{
	u32 *ref;

	if (resource >= node->number_of_priv_resources)
		return NULL;

	ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
	ref += resource;

	return fetch_pptt_subtable(table_hdr, *ref);
}

static inline bool acpi_pptt_match_type(int table_type, int type)
{
	return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
		table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
}

/**
 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
 * @table_hdr: Pointer to the head of the PPTT table
 * @local_level: passed res reflects this cache level
 * @res: cache resource in the PPTT we want to walk
 * @found: returns a pointer to the requested level if found
 * @level: the requested cache level
 * @type: the requested cache type
 *
 * Attempt to find a given cache level, while counting the max number
 * of cache levels for the cache node.
 *
 * Given a pptt resource, verify that it is a cache node, then walk
 * down each level of caches, counting how many levels are found
 * as well as checking the cache type (icache, dcache, unified). If a
 * level & type match, then we set found, and continue the search.
 * Once the entire cache branch has been walked return its max
 * depth.
 *
 * Return: The cache structure and the level we terminated with.
 */
static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
				int local_level,
				struct acpi_subtable_header *res,
				struct acpi_pptt_cache **found,
				int level, int type)
{
	struct acpi_pptt_cache *cache;

	if (res->type != ACPI_PPTT_TYPE_CACHE)
		return 0;

	cache = (struct acpi_pptt_cache *) res;
	while (cache) {
		local_level++;

		if (local_level == level &&
		    cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
		    acpi_pptt_match_type(cache->attributes, type)) {
			if (*found != NULL && cache != *found)
				pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");

			pr_debug("Found cache @ level %d\n", level);
			*found = cache;
			/*
			 * continue looking at this node's resource list
			 * to verify that we don't find a duplicate
			 * cache node.
			 */
		}
		cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
	}
	return local_level;
}

static struct acpi_pptt_cache *acpi_find_cache_level(struct acpi_table_header *table_hdr,
						     struct acpi_pptt_processor *cpu_node,
						     int *starting_level, int level,
						     int type)
{
	struct acpi_subtable_header *res;
	int number_of_levels = *starting_level;
	int resource = 0;
	struct acpi_pptt_cache *ret = NULL;
	int local_level;

	/* walk down from processor node */
	while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
		resource++;

		local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
						   res, &ret, level, type);
		/*
		 * we are looking for the max depth. Since its potentially
		 * possible for a given node to have resources with differing
		 * depths verify that the depth we have found is the largest.
		 */
		if (number_of_levels < local_level)
			number_of_levels = local_level;
	}
	if (number_of_levels > *starting_level)
		*starting_level = number_of_levels;

	return ret;
}

/**
 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
 * @table_hdr: Pointer to the head of the PPTT table
 * @cpu_node: processor node we wish to count caches for
 *
 * Given a processor node containing a processing unit, walk into it and count
 * how many levels exist solely for it, and then walk up each level until we hit
 * the root node (ignore the package level because it may be possible to have
 * caches that exist across packages). Count the number of cache levels that
 * exist at each level on the way up.
 *
 * Return: Total number of levels found.
 */
static int acpi_count_levels(struct acpi_table_header *table_hdr,
			     struct acpi_pptt_processor *cpu_node)
{
	int total_levels = 0;

	do {
		acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
	} while (cpu_node);

	return total_levels;
}

/**
 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
 * @table_hdr: Pointer to the head of the PPTT table
 * @node: passed node is checked to see if its a leaf
 *
 * Determine if the *node parameter is a leaf node by iterating the
 * PPTT table, looking for nodes which reference it.
 *
 * Return: 0 if we find a node referencing the passed node (or table error),
 * or 1 if we don't.
 */
static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
			       struct acpi_pptt_processor *node)
{
	struct acpi_subtable_header *entry;
	unsigned long table_end;
	u32 node_entry;
	struct acpi_pptt_processor *cpu_node;
	u32 proc_sz;

	if (table_hdr->revision > 1)
		return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);

	table_end = (unsigned long)table_hdr + table_hdr->length;
	node_entry = ACPI_PTR_DIFF(node, table_hdr);
	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
			     sizeof(struct acpi_table_pptt));
	proc_sz = sizeof(struct acpi_pptt_processor *);

	while ((unsigned long)entry + proc_sz < table_end) {
		cpu_node = (struct acpi_pptt_processor *)entry;
		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
		    cpu_node->parent == node_entry)
			return 0;
		if (entry->length == 0)
			return 0;
		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
				     entry->length);

	}
	return 1;
}

/**
 * acpi_find_processor_node() - Given a PPTT table find the requested processor
 * @table_hdr:  Pointer to the head of the PPTT table
 * @acpi_cpu_id: CPU we are searching for
 *
 * Find the subtable entry describing the provided processor.
 * This is done by iterating the PPTT table looking for processor nodes
 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
 * passed into the function. If we find a node that matches this criteria
 * we verify that its a leaf node in the topology rather than depending
 * on the valid flag, which doesn't need to be set for leaf nodes.
 *
 * Return: NULL, or the processors acpi_pptt_processor*
 */
static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
							    u32 acpi_cpu_id)
{
	struct acpi_subtable_header *entry;
	unsigned long table_end;
	struct acpi_pptt_processor *cpu_node;
	u32 proc_sz;

	table_end = (unsigned long)table_hdr + table_hdr->length;
	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
			     sizeof(struct acpi_table_pptt));
	proc_sz = sizeof(struct acpi_pptt_processor *);

	/* find the processor structure associated with this cpuid */
	while ((unsigned long)entry + proc_sz < table_end) {
		cpu_node = (struct acpi_pptt_processor *)entry;

		if (entry->length == 0) {
			pr_warn("Invalid zero length subtable\n");
			break;
		}
		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
		    acpi_cpu_id == cpu_node->acpi_processor_id &&
		     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
			return (struct acpi_pptt_processor *)entry;
		}

		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
				     entry->length);
	}

	return NULL;
}

static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
				  u32 acpi_cpu_id)
{
	int number_of_levels = 0;
	struct acpi_pptt_processor *cpu;

	cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
	if (cpu)
		number_of_levels = acpi_count_levels(table_hdr, cpu);

	return number_of_levels;
}

static u8 acpi_cache_type(enum cache_type type)
{
	switch (type) {
	case CACHE_TYPE_DATA:
		pr_debug("Looking for data cache\n");
		return ACPI_PPTT_CACHE_TYPE_DATA;
	case CACHE_TYPE_INST:
		pr_debug("Looking for instruction cache\n");
		return ACPI_PPTT_CACHE_TYPE_INSTR;
	default:
	case CACHE_TYPE_UNIFIED:
		pr_debug("Looking for unified cache\n");
		/*
		 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
		 * contains the bit pattern that will match both
		 * ACPI unified bit patterns because we use it later
		 * to match both cases.
		 */
		return ACPI_PPTT_CACHE_TYPE_UNIFIED;
	}
}

static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
						    u32 acpi_cpu_id,
						    enum cache_type type,
						    unsigned int level,
						    struct acpi_pptt_processor **node)
{
	int total_levels = 0;
	struct acpi_pptt_cache *found = NULL;
	struct acpi_pptt_processor *cpu_node;
	u8 acpi_type = acpi_cache_type(type);

	pr_debug("Looking for CPU %d's level %d cache type %d\n",
		 acpi_cpu_id, level, acpi_type);

	cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);

	while (cpu_node && !found) {
		found = acpi_find_cache_level(table_hdr, cpu_node,
					      &total_levels, level, acpi_type);
		*node = cpu_node;
		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
	}

	return found;
}

/**
 * update_cache_properties() - Update cacheinfo for the given processor
 * @this_leaf: Kernel cache info structure being updated
 * @found_cache: The PPTT node describing this cache instance
 * @cpu_node: A unique reference to describe this cache instance
 *
 * The ACPI spec implies that the fields in the cache structures are used to
 * extend and correct the information probed from the hardware. Lets only
 * set fields that we determine are VALID.
 *
 * Return: nothing. Side effect of updating the global cacheinfo
 */
static void update_cache_properties(struct cacheinfo *this_leaf,
				    struct acpi_pptt_cache *found_cache,
				    struct acpi_pptt_processor *cpu_node)
{
	this_leaf->fw_token = cpu_node;
	if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
		this_leaf->size = found_cache->size;
	if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
		this_leaf->coherency_line_size = found_cache->line_size;
	if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
		this_leaf->number_of_sets = found_cache->number_of_sets;
	if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
		this_leaf->ways_of_associativity = found_cache->associativity;
	if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
		switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
		case ACPI_PPTT_CACHE_POLICY_WT:
			this_leaf->attributes = CACHE_WRITE_THROUGH;
			break;
		case ACPI_PPTT_CACHE_POLICY_WB:
			this_leaf->attributes = CACHE_WRITE_BACK;
			break;
		}
	}
	if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
		switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
		case ACPI_PPTT_CACHE_READ_ALLOCATE:
			this_leaf->attributes |= CACHE_READ_ALLOCATE;
			break;
		case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
			this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
			break;
		case ACPI_PPTT_CACHE_RW_ALLOCATE:
		case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
			this_leaf->attributes |=
				CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
			break;
		}
	}
	/*
	 * If cache type is NOCACHE, then the cache hasn't been specified
	 * via other mechanisms.  Update the type if a cache type has been
	 * provided.
	 *
	 * Note, we assume such caches are unified based on conventional system
	 * design and known examples.  Significant work is required elsewhere to
	 * fully support data/instruction only type caches which are only
	 * specified in PPTT.
	 */
	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
	    found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
		this_leaf->type = CACHE_TYPE_UNIFIED;
}

static void cache_setup_acpi_cpu(struct acpi_table_header *table,
				 unsigned int cpu)
{
	struct acpi_pptt_cache *found_cache;
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
	struct cacheinfo *this_leaf;
	unsigned int index = 0;
	struct acpi_pptt_processor *cpu_node = NULL;

	while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
		this_leaf = this_cpu_ci->info_list + index;
		found_cache = acpi_find_cache_node(table, acpi_cpu_id,
						   this_leaf->type,
						   this_leaf->level,
						   &cpu_node);
		pr_debug("found = %p %p\n", found_cache, cpu_node);
		if (found_cache)
			update_cache_properties(this_leaf,
						found_cache,
						cpu_node);

		index++;
	}
}

static bool flag_identical(struct acpi_table_header *table_hdr,
			   struct acpi_pptt_processor *cpu)
{
	struct acpi_pptt_processor *next;

	/* heterogeneous machines must use PPTT revision > 1 */
	if (table_hdr->revision < 2)
		return false;

	/* Locate the last node in the tree with IDENTICAL set */
	if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
		next = fetch_pptt_node(table_hdr, cpu->parent);
		if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
			return true;
	}

	return false;
}

/* Passing level values greater than this will result in search termination */
#define PPTT_ABORT_PACKAGE 0xFF

static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
							   struct acpi_pptt_processor *cpu,
							   int level, int flag)
{
	struct acpi_pptt_processor *prev_node;

	while (cpu && level) {
		/* special case the identical flag to find last identical */
		if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
			if (flag_identical(table_hdr, cpu))
				break;
		} else if (cpu->flags & flag)
			break;
		pr_debug("level %d\n", level);
		prev_node = fetch_pptt_node(table_hdr, cpu->parent);
		if (prev_node == NULL)
			break;
		cpu = prev_node;
		level--;
	}
	return cpu;
}

static void acpi_pptt_warn_missing(void)
{
	pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
}

/**
 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
 * @table: Pointer to the head of the PPTT table
 * @cpu: Kernel logical CPU number
 * @level: A level that terminates the search
 * @flag: A flag which terminates the search
 *
 * Get a unique value given a CPU, and a topology level, that can be
 * matched to determine which cpus share common topological features
 * at that level.
 *
 * Return: Unique value, or -ENOENT if unable to locate CPU
 */
static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
				     unsigned int cpu, int level, int flag)
{
	struct acpi_pptt_processor *cpu_node;
	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);

	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
	if (cpu_node) {
		cpu_node = acpi_find_processor_tag(table, cpu_node,
						   level, flag);
		/*
		 * As per specification if the processor structure represents
		 * an actual processor, then ACPI processor ID must be valid.
		 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
		 * should be set if the UID is valid
		 */
		if (level == 0 ||
		    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
			return cpu_node->acpi_processor_id;
		return ACPI_PTR_DIFF(cpu_node, table);
	}
	pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
		    cpu, acpi_cpu_id);
	return -ENOENT;
}

static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
{
	struct acpi_table_header *table;
	acpi_status status;
	int retval;

	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
	if (ACPI_FAILURE(status)) {
		acpi_pptt_warn_missing();
		return -ENOENT;
	}
	retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
	pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
		 cpu, level, retval);
	acpi_put_table(table);

	return retval;
}

/**
 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
 * @cpu: Kernel logical CPU number
 * @rev: The minimum PPTT revision defining the flag
 * @flag: The flag itself
 *
 * Check the node representing a CPU for a given flag.
 *
 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
 *	   the table revision isn't new enough.
 *	   1, any passed flag set
 *	   0, flag unset
 */
static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
{
	struct acpi_table_header *table;
	acpi_status status;
	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
	struct acpi_pptt_processor *cpu_node = NULL;
	int ret = -ENOENT;

	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
	if (ACPI_FAILURE(status)) {
		acpi_pptt_warn_missing();
		return ret;
	}

	if (table->revision >= rev)
		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);

	if (cpu_node)
		ret = (cpu_node->flags & flag) != 0;

	acpi_put_table(table);

	return ret;
}

/**
 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
 * @cpu: Kernel logical CPU number
 *
 * Given a logical CPU number, returns the number of levels of cache represented
 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
 * indicating we didn't find any cache levels.
 *
 * Return: Cache levels visible to this core.
 */
int acpi_find_last_cache_level(unsigned int cpu)
{
	u32 acpi_cpu_id;
	struct acpi_table_header *table;
	int number_of_levels = 0;
	acpi_status status;

	pr_debug("Cache Setup find last level CPU=%d\n", cpu);

	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
	if (ACPI_FAILURE(status)) {
		acpi_pptt_warn_missing();
	} else {
		number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
		acpi_put_table(table);
	}
	pr_debug("Cache Setup find last level level=%d\n", number_of_levels);

	return number_of_levels;
}

/**
 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
 * @cpu: Kernel logical CPU number
 *
 * Updates the global cache info provided by cpu_get_cacheinfo()
 * when there are valid properties in the acpi_pptt_cache nodes. A
 * successful parse may not result in any updates if none of the
 * cache levels have any valid flags set.  Further, a unique value is
 * associated with each known CPU cache entry. This unique value
 * can be used to determine whether caches are shared between CPUs.
 *
 * Return: -ENOENT on failure to find table, or 0 on success
 */
int cache_setup_acpi(unsigned int cpu)
{
	struct acpi_table_header *table;
	acpi_status status;

	pr_debug("Cache Setup ACPI CPU %d\n", cpu);

	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
	if (ACPI_FAILURE(status)) {
		acpi_pptt_warn_missing();
		return -ENOENT;
	}

	cache_setup_acpi_cpu(table, cpu);
	acpi_put_table(table);

	return status;
}

/**
 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
 * @cpu: Kernel logical CPU number
 *
 * Return: 1, a thread
 *         0, not a thread
 *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
 *         the table revision isn't new enough.
 */
int acpi_pptt_cpu_is_thread(unsigned int cpu)
{
	return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
}

/**
 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
 * @cpu: Kernel logical CPU number
 * @level: The topological level for which we would like a unique ID
 *
 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
 * /socket/etc. This ID can then be used to group peers, which will have
 * matching ids.
 *
 * The search terminates when either the requested level is found or
 * we reach a root node. Levels beyond the termination point will return the
 * same unique ID. The unique id for level 0 is the acpi processor id. All
 * other levels beyond this use a generated value to uniquely identify
 * a topological feature.
 *
 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 * Otherwise returns a value which represents a unique topological feature.
 */
int find_acpi_cpu_topology(unsigned int cpu, int level)
{
	return find_acpi_cpu_topology_tag(cpu, level, 0);
}

/**
 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
 * @cpu: Kernel logical CPU number
 * @level: The cache level for which we would like a unique ID
 *
 * Determine a unique ID for each unified cache in the system
 *
 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 * Otherwise returns a value which represents a unique topological feature.
 */
int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
{
	struct acpi_table_header *table;
	struct acpi_pptt_cache *found_cache;
	acpi_status status;
	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
	struct acpi_pptt_processor *cpu_node = NULL;
	int ret = -1;

	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
	if (ACPI_FAILURE(status)) {
		acpi_pptt_warn_missing();
		return -ENOENT;
	}

	found_cache = acpi_find_cache_node(table, acpi_cpu_id,
					   CACHE_TYPE_UNIFIED,
					   level,
					   &cpu_node);
	if (found_cache)
		ret = ACPI_PTR_DIFF(cpu_node, table);

	acpi_put_table(table);

	return ret;
}

/**
 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
 * @cpu: Kernel logical CPU number
 *
 * Determine a topology unique package ID for the given CPU.
 * This ID can then be used to group peers, which will have matching ids.
 *
 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
 * flag set or we reach a root node.
 *
 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 * Otherwise returns a value which represents the package for this CPU.
 */
int find_acpi_cpu_topology_package(unsigned int cpu)
{
	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
					  ACPI_PPTT_PHYSICAL_PACKAGE);
}

/**
 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
 * @cpu: Kernel logical CPU number
 *
 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
 * implementation should have matching tags.
 *
 * The returned tag can be used to group peers with identical implementation.
 *
 * The search terminates when a level is found with the identical implementation
 * flag set or we reach a root node.
 *
 * Due to limitations in the PPTT data structure, there may be rare situations
 * where two cores in a heterogeneous machine may be identical, but won't have
 * the same tag.
 *
 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 * Otherwise returns a value which represents a group of identical cores
 * similar to this CPU.
 */
int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
{
	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
					  ACPI_PPTT_ACPI_IDENTICAL);
}